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1. Introduction 

The notion of neutrosophic set has gained much relevance in recent years due to its various 

applications. This notion was proposed by Smarandache [1] and has been studied by many 

researchers as can be seen in [2-8]. In particular, Karatas and Kuru [4] introduced new neutrosophic 

set operations and with them defined the concept of neutrosophic topological space. Following this 

line of research, Albowi and Salama [2] introduced the notion of neutrosophic ideal, which was later 

used by Salama and Smarandache [8] to introduce the concept of neutrosophic local function, 

investigate its properties and analyze the relations between different neutrosophic ideals and 

neutrosophic topologies. The purpose of this paper is to continue with this line of research, but this 

time we define the neutrosophic co-local function and the neutrosophic complement co-local 

function, investigate the main properties of these new neutrosophic operators with them we build 

new classes of neutrosophic sets in a neutrosophic topological space endowed with a neutrosophic 

ideal. 

2. Preliminaries  

Throughout this paper, let 𝑋 be a nonempty set, called the universe of discourse. 

Definition 2.1. [1] A neutrosophic set 𝑁 on 𝑋 is an object of the form 

𝑁 = {⟨𝑥, 𝜇𝑁(𝑥), 𝜎𝑁(𝑥), 𝛾𝑁 (𝑥)⟩: 𝑥 ∈ 𝑋}, 

where 𝜇𝑁 , 𝜎𝑁 , 𝛾𝑁 are functions from 𝑋 to [0,1] and 0 ≤ 𝜇𝑁(𝑥) + 𝜎𝑁(𝑥) + 𝛾𝑁(𝑥) ≤ 3. 

We denote by 𝒩(𝑋) the collection of all neutrosophic sets over 𝑋. 

Definition 2.2. [4] For 𝑁, 𝑀 ∈ 𝒩(𝑋) we define the following: 
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(1) (Inclusion) 𝑁  is called a neutrosophic subset of 𝑀 , denoted by 𝑁 ⊑ 𝑀 , if 𝜇𝑁(𝑥) ≤ 𝜇𝑀(𝑥) , 

𝜎𝑁(𝑥) ≥ 𝜎𝑀(𝑥) and 𝛾𝑁 (𝑥) ≥ 𝛾𝑀(𝑥) for all 𝑥 ∈ 𝑋. Also, we can say that 𝑀 is a neutrosophic super 

set of 𝑁. 

(2) (Equality) 𝑁 is called neutrosophic equal to 𝑀, denoted by 𝑁 = 𝑀, if 𝑁 ⊑ 𝑀 and 𝑀 ⊑ 𝑁. 

(3) (Universal set) 𝑁 is called the neutrosophic universal set, denoted by 𝑋̃, if 𝜇𝑁(𝑥) = 1, 𝜎𝑁(𝑥) = 0 

and 𝛾𝑁(𝑥) = 0 for all 𝑥 ∈ 𝑋. 

(4) (Empty set) 𝑁 is called the neutrosophic empty set, denoted by ∅̃, if 𝜇𝑁(𝑥) = 0, 𝜎𝑁(𝑥) = 1 and 

𝛾𝑁(𝑥) = 1 for all 𝑥 ∈ 𝑋. 

(5) (Intersection) The neutrosophic intersection of 𝑁 and 𝑀, denoted by 𝑁 ⊓ 𝑀, is defined as 

𝑁 ⊓ 𝑀 = {(𝑥, 𝜇𝑁(𝑥) ∧ 𝜇𝑀(𝑥), 𝜎𝑁(𝑥) ∨ 𝜎𝑀(𝑥), 𝛾𝑁 (𝑥) ∨ 𝛾𝑀(𝑥)⟩: 𝑥 ∈ 𝑋}. 

(6) (Union) The neutrosophic union of 𝑁 and 𝑀, denoted by 𝑁 ⊔ 𝑀, is defined as 

𝑁 ⊔ 𝑀 = {⟨𝑥, 𝜇𝑁(𝑥) ∨ 𝜇𝑀(𝑥), 𝜎𝑁(𝑥) ∧ 𝜎𝑀(𝑥), 𝛾𝑁 (𝑥) ∧ 𝛾𝑀(𝑥)⟩: 𝑥 ∈ 𝑋}. 

(7) (Complement) The neutrosophic complement of 𝑁, denoted by 𝑁𝑐, is defined as 

𝑁𝑐 = {⟨𝑥, 𝛾𝑁 (𝑥),1 − 𝜎𝑁(𝑥), 𝜇𝑁(𝑥)⟩: 𝑥 ∈ 𝑋}. 

Proposition 2.3. [4] If 𝑁, 𝑀 ∈ 𝒩(𝑋), then we have the following properties: 

(1) 𝑁 ⊓ 𝑁 = 𝑁 and 𝑁 ⊔ 𝑁 = 𝑁. 

(2) 𝑁 ⊓ 𝑀 = 𝑀 ⊓ 𝑁 and 𝑁 ⊔ 𝑀 = 𝑀 ⊔ 𝑁. 

(3) 𝑁 ⊓ ∅̃ = ∅̃ and 𝑁 ⊓ 𝑋̃ = 𝑁. 

(4) 𝑁 ⊔ ∅̃ = 𝑁 and 𝑁 ⊔ 𝑋̃ = 𝑋̃. 

(5) 𝑁 ⊓ (𝑀 ⊓ 𝑂) = (𝑁 ⊓ 𝑀) ⊓ 𝑂 and 𝑁 ⊔ (𝑀 ⊔ 𝑂) = (𝑁 ⊔ 𝑀) ⊔ 𝑂. 

(6) (𝑁𝑐)𝑐 = 𝑁. 

Proposition 2.4. [6] Let 𝑁, 𝑀 ∈ 𝒩(𝑋). Then, 𝑁 ⊑ 𝑀 if and only if 𝑀𝑐 ⊑ 𝑁𝑐. 

The union and intersection operations given in Definition 2.2 can be extended as follows. 

Definition 2.5. [7] For {𝑁𝑗 : 𝑗 ∈ 𝐽} ⊆ 𝒩(𝑋) we define the following operations: 

(1) (Arbitrary intersection) The arbitrary neutrosophic intersection of the collection {𝑁𝑗 : 𝑗 ∈ 𝐽} , 

denoted by ⨅𝑗∈𝐽𝑁𝑗, is defined as 

⨅ 𝑁𝑗

𝑗∈𝐽

= {⟨𝑥, inf
𝑗∈𝐽

 𝜇𝑁𝑗
(𝑥), sup

𝑗∈𝐽
 𝜎𝑁𝑗

(𝑥), sup
𝑗∈𝐽

 𝛾𝑁𝑗
(𝑥)⟩ : 𝑥 ∈ 𝑋}. 

(2) (Arbitrary union) The arbitrary neutrosophic union of the collecction {𝑁𝑗 : 𝑗 ∈ 𝐽}, denoted by 

⨆𝑗∈𝐽  𝑁𝑗, is defined as 

⨆  
𝑗∈𝐽

𝑁𝑗 = {⟨𝑥, sup
𝑗∈𝐽

 𝜇𝑁𝑗
(𝑥), inf

𝑗∈𝐽
 𝜎𝑁𝑗

(𝑥), inf
𝑗∈𝐽

 𝛾𝑁𝑗
(𝑥)⟩ : 𝑥 ∈ 𝑋}. 

Proposition 2.6. [4] If {𝑁𝑗 : 𝑗 ∈ 𝐽} ⊆ 𝒩(𝑋) and 𝑀 ∈ 𝒩(𝑋), then we have the following properties: 

(1) 𝑀 ⊓ (⨆𝑗∈𝐽  𝑁𝑗) = ⨆𝑗∈𝐽  (𝑀 ⊓ 𝑁𝑗). 

(2) 𝑀 ⊔ (⨅𝑗∈𝐽𝑁𝑗) = ⨅𝑗∈𝐽(𝑀 ⊔ 𝑁𝑗). 

(3) (⨅𝑗∈𝐽𝑁𝑗)
𝑐

= ⨆𝑗∈𝐽  𝑁𝑗
𝑐. 

(4) (⨆𝑗∈𝐽  𝑁𝑗)
𝑐

= ⨅𝑗∈𝐽  𝑁𝑗
𝑐. 
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Definition 2.7. [4] A neutrosophic topology on a set 𝑋 is a collection 𝜏 ⊆ 𝒩𝒮(𝑋) which satisfies the 

following conditions: 

(1) ∅̃ and 𝑋̃ are in 𝜏. 

(2) The intersection of two neutrosophic sets belonging to 𝜏 is in 𝜏. 

(3) The union of any collection of neutrosophic sets belonging to 𝜏 is in 𝜏. 

A set 𝑋  for which a neutrosophic topology 𝜏  has been defined is called a neutrosophic 

topological space and is denoted as a pair (𝑋, 𝜏). If 𝑁 ∈ 𝜏, then 𝑁 is called a neutrosophic open set 

and if 𝑁𝑐 ∈ 𝜏, then 𝑁 is called a neutrosophic closed set. We denote by 𝜏𝑐  the collection of all 

neutrosophic closed sets in the neutrosophic topological space (𝑋, 𝜏). 

Proposition 2.8. [4] Let (𝑋, 𝜏) be a neutrosophic topological space. Then, the following conditions 

hold: 

(1) ∅̃ and 𝑋̃ are in 𝜏𝑐 . 

(2) The union of two neutrosophic sets belonging to 𝜏𝑐  is in 𝜏𝑐 . 

(3) The intersection of any collection of neutrosophic sets belonging to 𝜏𝑐  is in 𝜏𝑐 . 

Definition 2.9. [4] Let (𝑋, 𝜏) be a neutrosophic topological space and 𝑁 ∈ 𝒩(𝑋). The neutrosophic 

closure of 𝑁, denoted by 𝐶𝑙(𝑁), is defined as 

𝐶𝑙(𝑁) = ⨅  {𝐹 ∈ 𝒩(𝑋): 𝑁 ⊑ 𝐹 and 𝐹 ∈ 𝜏𝑐} ; 

while the neutrosophic interior of 𝑁, denoted by Int (𝑁), is defined as 

Int (𝑁) = ⨆  {𝑈 ∈ 𝒩(𝑋): 𝑈 ⊑ 𝑁 and 𝑈 ∈ 𝜏}. 

Proposition 2.10. [4] Let (𝑋, 𝜏) be a neutrosophic topological space and 𝑁, 𝑀 ∈ 𝒩(𝑋). Then, the 

following conditions hold: 

(1) 𝑁 ⊑ 𝐶𝑙(𝑁) and Int (𝑁) ⊑ 𝑁. 

(2) If 𝑁 ⊑ 𝑀, then 𝐶𝑙(𝑁) ⊑ 𝐶𝑙(𝑀) and Int (𝑁) ⊑ Int (𝑀). 

(3) 𝑁 ∈ 𝜏𝑐 if and only if 𝑁 = 𝐶𝑙(𝑁). 

(4) 𝑁 ∈ 𝜏 if and only if 𝑁 = Int (𝑁). 

Definition 2.11. [5] A neutrosophic set 𝑀 = {⟨𝑥, 𝜇𝑀(𝑥), 𝜎𝑀(𝑥), 𝛾𝑀(𝑥)⟩: 𝑥 ∈ 𝑋} is called a neutrosophic 

point if for any element 𝑦 ∈ 𝑋, 𝜇𝑀(𝑦) = 𝑎, 𝜎𝑀(𝑦) = 𝑏, 𝛾𝑀(𝑦) = 𝑐 for 𝑦 = 𝑥 and 𝜇𝑀(𝑦) = 0, 𝜎𝑀(𝑦) =

1, 𝛾𝑀(𝑦) = 1 for 𝑦 ≠ 𝑥, where 𝑎 ∈ (0,1] and 𝑏, 𝑐 ∈ [0,1). In this case, the neutrosophic point 𝑀 is 

denoted by 𝑀𝑎,𝑏,𝑐
𝑥  or simply by 𝑥𝑎,𝑏,𝑐. Also, 𝑥 is called the support of the neutrosophic point 𝑥𝑎,𝑏,𝑐. 

The neutrosophic point 𝑥1,0,0 is called a neutrosophic crisp point. 

Definition 2.12. [5] Let 𝑁 ∈ 𝒩(𝑋). A neutrosophic point 𝑥𝑎,𝑏,𝑐 is said to belong to 𝑁, denoted by 

𝑥𝑎,𝑏,𝑐 ∈ 𝑁, if 𝜇𝑁(𝑥) ≥ 𝑎, 𝜎𝑁(𝑥) ≤ 𝑏 and 𝛾𝑁(𝑥) ≤ 𝑐. 

Lemma 2.13. [5] Let 𝑁, 𝑀 ∈ 𝒩(𝑋). Then, we have: 

(1) 𝑁 = ⨆{𝑥𝑎,𝑏,𝑐 : 𝑥𝑎,𝑏,𝑐 ∈ 𝑁}. 

(2) If 𝑥𝑎,𝑏,𝑐 ∈ 𝑁 and 𝑁 ⊑ 𝑀, then 𝑥𝑎,𝑏,𝑐 ∈ 𝑀. 

Proposition 2.14. Let 𝑁, 𝑀 ∈ 𝒩(𝑋). Then, the following properties are equivalent: 

(1) 𝑁 ⊑ 𝑀. 

(2) 𝑥𝑎,𝑏,𝑐 ∈ 𝑁 implies that 𝑥𝑎,𝑏,𝑐 ∈ 𝑀. 
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Proof. The proof follows directly from Lemma 2.13. 

Remark 2.15. It is important to note that ∅̃ is not the only neutrosophic set that does not have points 

belonging to it. For example, if 𝑋 = {𝑥, 𝑦}, then 𝑁 = {⟨𝑥, 0,0.5,1⟩, ⟨𝑦, 0,0.4,1⟩} is a neutrosophic set 

over 𝑋 for which there are no neutrosophic points belonging to it. 

Let 𝒩𝑝(𝑋) = {𝑁 ∈ 𝒩(𝑋) : there exists a neutrosophic point 𝑥𝑎,𝑏,𝑐 ∈ 𝑁} and let 𝒩 ′(𝑋) = {∅̃} ∪

𝒩𝑝(𝑋). In the remainder of this paper, we will use the definitions and results described previously, 

restricted to the collection 𝒩 ′(𝑋). 

Definition 2.16. [9] Let (𝑋, 𝜏)  be a neutrosophic topological space and 𝑁 ∈ 𝒩 ′(𝑋) . The 

neutrosophic point-kernel of 𝑁, denoted by Ker𝑝 (𝑁), is defined as 

Ker𝑝  (𝑁) = ⨆  {𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋): 𝐹 ⊓ 𝑁 ≠ ∅̃ for every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐)},  

where 𝜏𝑐(𝑥𝑎,𝑏,𝑐) = {𝐹 ∈ 𝜏𝑐 : 𝑥𝑎,𝑏,𝑐 ∈ 𝐹}. 

According to [9], the collection 𝜏𝑘 = {𝑁 ∈ 𝒩′(𝑋): Ker𝑝 (𝑁𝑐) = 𝑁𝑐} is a neutrosophic topology 

on 𝑋 and Ker𝑝 is the neutrosophic closure in the neutrosophic topological space (𝑋, 𝜏𝑘). We say 

that a neutrosophic set 𝑁 is neutrosophic 𝜏𝑘-open, if 𝑁 ∈ 𝜏𝑘. The complement of a neutrosophic 

𝜏𝑘 -open set we will call it a neutrosophic 𝜏𝑘 -closed set. We denote by 𝐶𝑜𝑘𝑝  the neutrosophic 

interior in the neutrosophic topological space (𝑋, 𝜏𝑘). Let us note that 𝑀 is 𝜏𝑘-open neutrosophic if 

and only if Cok𝑝 (𝑀) = 𝑀; while 𝑀 is 𝜏𝑘-closed neutrosophic if and only if Ker𝑝 (𝑀) = 𝑀. 

Definition 2.17. [2] A neutrosophic ideal on a set 𝑋 is a nonempty collection ℒ ⊆ 𝒩 ′(𝑋), which 

satisfies the following conditions: 

(1) 𝑁 ∈ ℒ and 𝑀 ⊑ 𝑁 imply that 𝑀 ∈ ℒ.   (Hereditary property) 

(2) 𝑁, 𝑀 ∈ ℒ imply that 𝑁 ⊔ 𝑀 ∈ ℒ.   (Finite additivity property) 

Definition 2.18. [9] An application Υ: 𝒩′(𝑋) → 𝒩 ′(𝑋) is called a neutrosophic closure operator if it 

satisfies the following conditions: 

(1) 𝑁 ⊑ Υ(𝑁) (expansivity), 

(2) Υ(Υ(𝑁)) = Υ(𝑁) (idempotency), 

(3) Υ(𝑁 ⊔ 𝑀) = Υ(𝑁) ⊔ Υ(𝑀) (additivity), 

(4) Υ(∅̃) = ∅̃ (non-spontaneous creation), 

whenever 𝑀, 𝑁 ∈ 𝒩 ′(𝑋). 

Lemma 2.19. [9] If Υ: 𝒩 ′(𝑋) → 𝒩 ′(𝑋) is a neutrosophic closure operator, then the collection 𝜏(Υ) =

{𝑁 ∈ 𝒩 ′(𝑋): Υ(𝑁𝑐) = 𝑁𝑐} is a neutrosophic topology on 𝑋 and Υ is the neutrosophic closure in the 

neutrosophic topological space (𝑋, 𝜏(Υ)). 

3. Neutrosophic co-local function and related 𝚽-operator 

In this section, we introduce and study the concept of neutrosophic co-local function as a 

natural generalization of the neutrosophic point-kernel of a set in a neutrosophic topological space.  

Moreover, we introduce the concept of neutrosophic complement co-local function (also called 

neutrosophic Φ-operator) and explore some new classes of neutrosophic sets defined in terms of the 

neutrosophic co-local function and the neutrosophic complement co-local function. 

3.1. Neutrosophic co-local function 



Neutrosophic Sets and Systems, Vol. 63, 2024     53  

 

 
 

José Sanabria, Carlos Granados and Leslie Sánchez , Properties of Co-local Function and Related Φ-operator in Ideal 
Neutrosophic Topological Spaces 

Definition 3.1.1. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

For each 𝑁 ∈ 𝒩′(𝑋), we define the neutrosophic co-local function of 𝑁 as follows: 

𝑁•(ℒ, 𝜏) = ⨆  {𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋): 𝐹 ⊓ 𝑁 ∉ ℒ for every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐)}. 

We will denote 𝑁•(ℒ, 𝜏) by 𝑁• or 𝑁•(ℒ). Observe that the neutrosophic co-local function can 

be seen as an operator from 𝒩 ′(𝑋) to 𝒩 ′(𝑋); that is, ( )•: 𝒩 ′(𝑋) → 𝒩 ′(𝑋), defined by 𝑁 ↦ 𝑁•. 

The co-local function is not a neutrosophic closure operator, since in general, it does not satisfy 

𝑁 ⊑ 𝑁• for each 𝑁 ∈ 𝒩 ′(𝑋). In the case that 𝑁 ⊑ 𝑁•, we say that 𝑁 is a neutrosophic •-dense in 

itself set. The following example shows that, in general, 𝑋̃• is a proper neutrosophic subset of 𝑋̃; 

that is, 𝑋̃ is not neutrosophic •-dense in itself. 

Example 3.1.2. Let 𝑋 = ℝ  with the neutrosophic topology 𝜏 = {∅̃, ℝ̃, 𝐴𝑐} , where 𝐴 ≠ ∅̃  is any 

neutrosophic subset having countable support of ℝ  and ℒ = ℒ𝑐  the neutrosophic ideal of all 

neutrosophic subsets having countable support of ℝ. Observe that 𝐹1 = ℝ̃ and 𝐹2 = 𝐴 are the only 

neutrosophic closed sets such that 𝐹1 ≠ ∅̃ and 𝐹2 ≠ ∅̃. Since 𝑋̃ ∩ 𝐹1 = 𝐹1 ∉ ℒ𝑐 and 𝑋̃ ⊓ 𝐹2 = 𝐴 ∈ ℒ𝑐, 

then is clear that 𝑋̃• = ℝ̃• = 𝐴𝑐 ⊑ ℝ̃ = 𝑋̃, but 𝑋̃• ≠ 𝑋̃. 

Proposition 3.1.3. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. For every 𝑁 ∈ 𝒩 ′(𝑋), the following properties hold: 

(1) If ℒ = {∅̃}, then 𝑁• = Ker𝑝 (𝑁). 

(2) If ℒ = 𝒩 ′(𝑋), then 𝑁• = ∅̃. 

Lemma 3.1.4. Let (𝑋, 𝜏) be a neutrosophic topological space with two arbitrary neutrosophic ideals 

ℒ and ℒ′ on 𝑋. If 𝑁, 𝑀 ∈ 𝒩 ′(𝑋), then the following properties hold: 

(1) If 𝑁 ⊑ 𝑀, then 𝑁• ⊑ 𝑀•. 

(2) If ℒ ⊆ ℒ′, then 𝑁•(ℒ′) ⊑ 𝑁•(ℒ). 

(3) 𝑁• = Ker𝑝  (𝑁•) ⊑ Ker𝑝(𝑁)  (𝑁• is a neutrosophic 𝜏𝑘-closed set). 

(4) (𝑁•)• ⊑ 𝑁•. 

(5) ∅̃• = ∅̃. 

(6) (𝑁 ⊔ 𝑀)• = 𝑁• ⊔ 𝑀•. 

(7) If 𝐹 is a neutrosophic closed set, then 𝐹 ⊓ 𝑁• = 𝐹 ⊓ (𝐹 ⊓ 𝑁)• ⊑ (𝐹 ⊓ 𝑁)•. 

(8) If 𝑁 ∈ ℒ, then 𝑁• = ∅̃. 

(9) If 𝑁 ⊑ 𝑁•, then 𝑁• = Ker𝑝 (𝑁). 

(10) If 𝜏1  and 𝜏2  be are two neutrosophic topologies on 𝑋 such that 𝜏1 ⊆ 𝜏2 , then 𝑁•(ℒ, 𝜏2) ⊑ 

𝑁•(ℒ, 𝜏1). 

(11) 𝑁•(ℒ ∩ ℒ′) = 𝑁•(ℒ) ⊔ 𝑁•(ℒ′). 

Proof. (1) Assume that 𝑥𝑎,𝑏,𝑐 ∈ 𝑁• and let 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐). Then, 𝐹 ⊓ 𝑁 ∉ ℒ and as 𝑁 ⊑ 𝑀, we have 

𝐹 ⊓ 𝑁 ⊑ 𝐹 ⊓ 𝑀. By the hereditary property of ℒ, it follows that 𝐹 ⊓ 𝑀 ∉ ℒ and hence 𝑥𝑎,𝑏,𝑐 ∈ 𝑀•. 

(2) Suppose that ℒ ⊆ ℒ′,  𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ′) and let 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐) be arbitrary. Then 𝑁 ⊓ 𝐹 ∉ ℒ′ and as 

ℒ ⊆ ℒ′ , it follows that 𝑁 ⊓ 𝐹 ∉ ℒ , which implies that 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ) . Thus, we conclude that 

𝑁•(ℒ′) ⊑ 𝑁•(ℒ). 

(3) Let 𝑥𝑎,𝑏,𝑐 ∈ Ker𝑝 (𝑁•)  and 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐)  be arbitrary. Then, 𝐹 ⊓ 𝑁• ≠ ∅̃ , so there exists a 

neutrosophic point 𝑦𝑢,𝑣,𝑤 ∈ 𝐹 ⊓ 𝑁• , which implies that 𝑦𝑢,𝑣,𝑤 ∈ 𝐹  and 𝑦𝑢,𝑣,𝑤 ∈ 𝑁•.  Since 𝐹 ∈



Neutrosophic Sets and Systems, Vol. 63, 2024     54  

 

 
 

José Sanabria, Carlos Granados and Leslie Sánchez , Properties of Co-local Function and Related Φ-operator in Ideal 
Neutrosophic Topological Spaces 

𝜏𝑐(𝑦𝑢,𝑣,𝑤), it follows that 𝐹 ⊓ 𝑁 ∉ ℒ and so 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•. On the other hand, as 𝑁 ∙ ⊑ Ker𝑝 (𝑁•), we 

conclude that 𝑁• = Ker𝑝 (𝑁•). Now, since {∅̃} ⊆ ℒ, by part (1) of Proposition 3.1.3, we have 𝑁• ⊑

𝑁•({∅̃}) = Ker𝑝  (𝑁). 

(4) By part (3), 𝑁• = Ker𝑝 (𝑁•) ⊑ Ker𝑝  (𝑁)  for every 𝑁 ∈ 𝒩 ′(𝑋). In particular, for 𝑁•  we have 

(𝑁•)• ⊑ Ker𝑝 (𝑁•) = 𝑁•. 

(5) We have 

∅̃ = ⨆  {𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋): 𝐹 ⊓ ∅̃ ∉ ℒ for every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐)}

 = ⨆  {𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋): ∅̃ ∉ ℒ for every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐)} = ∅̃.
 

(6) By part (1), we have 𝑁• ⊑ (𝑁 ⊔ 𝑀)• and 𝑀• ⊑ (𝑁 ⊔ 𝑀)•. Therefore, 𝑁• ⊔ 𝑀• ⊑ (𝑁 ⊔ 𝑀)•. For 

the other inclusion, assume that 𝑥𝑎,𝑏,𝑐 ∈ (𝑁 ⊔ 𝑀)• and let 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐) be arbitrary. Then, (𝑀 ⊔

𝑁) ⊓ 𝐹 ∉ ℒ, i.e. (𝑀 ⊓ 𝐹) ⊔ (𝑁 ⊓ 𝐹) ∉ ℒ. Accordingly, we have the cases 𝑀 ⊓ 𝐹 ∉ ℒ or 𝑁 ⊓ 𝐹 ∉ ℒ. If 

𝑀 ⊓ 𝐹 ∉ ℒ, then we obtain that 𝑥𝑎,𝑏,𝑐 ∈ 𝑀•, whereas if 𝑁 ⊓ 𝐹 ∉ ℒ, then we have 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•. In both 

cases, it follows that 𝑥𝑎,𝑏,𝑐 ∈ 𝑀• ⊔ 𝑁•. 

(7) Let 𝐹 ∈ 𝜏𝑐 , 𝑥𝑎,𝑏,𝑐 ∈ 𝐹 ⊓ 𝑁•  and 𝐺 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐) be arbitrary. Then, 𝑥𝑎,𝑏,𝑐 ∈ 𝐹 ⊓ 𝐺, 𝐹 ⊓ 𝐺 ∈ 𝜏𝑐  and 

𝑥𝑎,𝑏,𝑐 ∈ 𝑁•, which implies that 𝐺 ⊓ (𝐹 ⊓ 𝑁) ∉ ℒ and so 𝑥𝑎,𝑏,𝑐 ∈ (𝐹 ⊓ 𝑁)•. Thus, we have 𝐹 ⊓ 𝑁• ⊑ 

(𝐹 ⊓ 𝑁)•, 𝐹 ⊓ 𝑁• ⊑ 𝐹 and we conclude that 𝐹 ⊓ 𝑁• ⊑ 𝐹 ⊓ (𝐹 ⊓ 𝑁)•. On the other hand, the 

inclusion 𝐹 ⊓ 𝑁 ⊑ 𝑁, means that (𝐹 ⊓ 𝑁)• ⊑ 𝑁• and 𝐹 ⊓ (𝐹 ⊓ 𝑁)∙ ⊑ 𝐹 ⊓ 𝑁•. Therefore, 𝐹 ⊓ 𝑁• =

𝐹 ⊓ (𝐹 ⊓ 𝑁)• ⊑ (𝐹 ⊓ 𝑁)•. 

(8) Suppose that 𝑁 ∈ ℒ and 𝑁• ≠ ∅̃. Then, there exists a neutrosophic point 𝑥𝑎,𝑏,𝑐 ∈ 𝑁• and so, 𝑁 ⊓

𝐹 ∉ ℒ for 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐) being arbitrary. But the fact that 𝑁 ∈ ℒ implies that 𝑁 ⊓ 𝐹 ∈ ℒ  for each 

𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐). Thus, we obtain a contradiction and hence, 𝑁• = ∅̃. 

(9) Assume that 𝑁 ⊑ 𝑁•. By part (3), 𝑁• = Ker𝑝 (𝑁•) ⊑ Ker𝑝  (𝑁) and by hypotheses, it follows that 

Ker𝑝  (𝑁) ⊑ Ker𝑝 (𝑁•) = 𝑁• ⊑ Ker𝑝 (𝑁) and hence, 𝑁• = Ker𝑝 (𝑁). 

(10) Let 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ, 𝜏2) and 𝐹 ∈ 𝜏1
𝑐(𝑥𝑎,𝑏,𝑐) be arbitrary. Since 𝜏1 ⊆ 𝜏2, we have 𝐹 ∈ 𝜏2

𝑐(𝑥𝑎,𝑏,𝑐) and 

so, 𝐹 ⊓ 𝑁 ∉ ℒ. Therefore, 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ, 𝜏1). 

(11) Since ℒ ∩ ℒ′ ⊆ ℒ  and ℒ ∩ ℒ′ ⊆ ℒ′ , by part (2), we have 𝑁•(ℒ) ⊑ 𝑁•(ℒ ∩ 𝐿′)  and 𝑁•(ℒ′) ⊑

𝑁•(ℒ ∩ ℒ′). Thus, we deduce the inclusion 𝑁•(ℒ) ⊔ 𝑁•(ℒ′) ⊑ 𝑁•(ℒ ∩ ℒ′). For the other inclusion, 

suppose that 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ ∩ ℒ′) and let 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐) be arbitrary. Then, 𝑁 ⊓ 𝐹 ∉ ℒ ∩ ℒ′ , which 

implies that 𝑁 ⊓ 𝐹 ∉ ℒ or 𝑁 ⊓ 𝐹 ∉ ℒ′. If 𝑁 ⊓ 𝐹 ∉ ℒ, then 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ), whereas if 𝑁 ⊓ 𝐹 ∉ ℒ′, then 

𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ′) . In both cases, it follows that 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ) ⊔ 𝑁•(ℒ′) . Therefore, 𝑁•(ℒ ∩ ℒ′) ⊑

𝑁•(ℒ) ⊔ 𝑁•(ℒ′). 

Corollary 3.1.5. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

If {𝑁𝛼: 𝛼 ∈ Δ} ⊆ 𝒩 ′(𝑋), then the following properties hold: 

(1) (⨅ 𝑁𝛼𝛼∈Δ )• = ⨅ 𝑁𝛼
•

𝛼∈Δ . 

(2) (⨆𝛼∈Δ  𝑁𝛼)• = ⨆𝛼∈Δ  𝑁𝛼
•, if Δ is finite. 

Since the neutrosophic co-local function is not a neutrosophic closure operator, it is necessary to 

introduce a new concept that allows us to obtain a new neutrosophic topology from it. 

Definition 3.1.6. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

For each 𝑁 ∈ 𝒩′(𝑋), we define 𝐶𝑙•(𝑁) = 𝑁 ⊔ 𝑁•. 
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Remark 3.1.7. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

For each 𝑁 ∈ 𝒩′(𝑋), the following properties hold: 

(1) If ℒ = {∅̃} then 𝐶𝑙•(𝑁) = 𝑁 ⊔ 𝑁• = 𝑁 ⊔ Ker𝑝 (𝑁) = Ker𝑝 (𝑁).  

(2) If ℒ = 𝒩 ′(𝑋), then 𝐶𝑙•(𝑁) = 𝑁 ⊔ ∅̃ = 𝑁.  

Proposition 3.1.8. 𝐶𝑙• is a neutrosophic closure operator. 

Proof. The proof is an immediate consequence of Lemma 3.1.4. 

According with Proposition 3.1.8 and Lemma 2.19, if (𝑋, 𝜏) is a neutrosophic topological space 

and ℒ is a neutrosophic ideal on 𝑋, we denote by 𝜏•(ℒ) the neutrosophic topology generated by 

𝐶𝑙•; that is 𝜏•(ℒ) = {𝑁 ∈ 𝒩 ′(𝑋):  𝐶𝑙•(𝑁𝑐) = 𝑁𝑐}. When there is no chance for confusion, we will 

simply write 𝜏•  for 𝜏•(ℒ) . The elements of 𝜏•  are called neutrosophic 𝜏• -open sets and the 

complement of a neutrosophic 𝜏•-open set is called neutrosophic 𝜏•-closed set. Note that if 𝑁 ∈

𝒩 ′(𝑋), then: 𝑁 is neutrosophic 𝜏•-closed if and only if 𝑁𝑐 ∈ 𝜏• if and only if 𝐶𝑙•((𝑁𝑐)𝑐) = (𝑁𝑐)𝑐 if 

and only if 𝐶𝑙•(𝑁) = 𝑁. 

Remark 3.1.9. Since 𝑁• = Ker𝑝 (𝑁•) ⊑ Ker𝑝  (𝑁) , then 𝐶𝑙•(𝑁) ⊑ Ker𝑝 (𝑁)  for each 𝑁 ∈ 𝒩 ′(𝑋) . 

Therefore, if 𝑁 is a neutrosophic 𝜏𝑘-closed set, then 𝑁 is neutrosophic 𝜏•-closed. It follows that 

each neutrosophic 𝜏𝑘-open set is neutrosophic 𝜏•-open; that is 𝜏𝑘 ⊆ 𝜏•. Moreover, from Remark 

3.1.7 it follows that 𝜏•({∅̃}) = 𝜏𝑘 and 𝜏•(𝒩 ′(𝑋)) = 𝒩 ′(𝑋). 

Proposition 3.1.10. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. If {𝑁𝛼: 𝛼 ∈ Δ} is a collection of neutrosophic 𝜏•-closed sets, then the following properties hold: 

(1) ⨅  {𝑁𝛼: 𝛼 ∈ Δ′} is a neutrosophic 𝜏•-closed set for any subset Δ′ of Δ. 

(2) ⨆{𝑁𝛼: 𝛼 ∈ Δ0} is a neutrosophic 𝜏•-closed set for any finite subset Δ0 of Δ. 

Proof. The proof is an immediate consequence of Proposition 2.6 and the duality between the 

notions of neutrosophic 𝜏•-open and neutrosophic 𝜏•-closed sets. 

Proposition 3.1.11. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. Then, 𝑁 ∈ 𝒩 ′(𝑋) is neutrosophic 𝜏•-closed if and only if 𝑁• ⊑ 𝑁. 

Proof. Suppose that 𝑁 is neutrosophic 𝜏•-closed. Then, 𝐶𝑙•(𝑁) = 𝑁. In consequence, 𝑁 ⊔ 𝑁• = 𝑁 

and hence, 𝑁• ⊑ 𝑁. Conversely, assume that 𝑁• ⊑ 𝑁. Since 𝐶𝑙•(𝑁) = 𝑁 ⊔ 𝑁• and 𝑁 ⊔ 𝑁• ⊑ 𝑁, we 

have 𝐶𝑙•(𝑁) ⊑ 𝑁. By Proposition 3.1.8, we have 𝑁 ⊑ 𝐶𝑙•(𝑁) and so, we conclude that 𝐶𝑙•(𝑁) = 𝑁. 

This shows that 𝑁 is neutrosophic 𝜏•-closed. 

Proposition 3.1.12. If ℒ and ℒ′ are neutrosophic ideals on a neutrosophic topological space (𝑋, 𝜏) 

such that ℒ ⊆ ℒ′, then 𝜏•(ℒ) ⊆ 𝜏•(ℒ′). 

Proof. Consider 𝑁 ∈ 𝜏•(ℒ). Then, 𝑁𝑐  is a neutrosophic 𝜏•(ℒ)-closed set and so, by Proposition 

3.1.11, (𝑁𝑐)•(ℒ) ⊑ 𝑁𝑐. Now, by part (2) of Lemma 3.1.4, it follows that (𝑁𝑐)•(ℒ′) ⊑ (𝑁𝑐)•(ℒ) ⊑ 𝑁𝑐 . 

This shows that (𝑁𝑐)•(ℒ′) ⊑ 𝑁𝑐 and 𝑁𝑐 is a neutrosophic 𝜏•(ℒ′)-closed set. Therefore, 𝑁 ∈ 𝜏•(ℒ′). 

Corollary 3.1.13. Let {ℐ𝛼: 𝛼 ∈ Δ} be a collection of neutrosophic ideals on a neutrosophic topological 

space (𝑋, 𝜏). If ℐ = ⋂𝛼∈Δ  ℐ𝛼 then 𝜏•(ℐ) ⊆ 𝜏#, where 𝜏# = ⋂𝛼∈Δ𝜏•(ℐ𝛼). 

Proof. It is clear that 𝜏♯ is a neutrosophic topology on 𝑋. Since ℐ = ⋂𝛼∈Δ  ℐ𝛼 ⊆ ℐ𝛼 for every 𝛼 ∈ Δ, by 

Proposition 3.1.12, we have 𝜏•(ℐ) ⊂ 𝜏•(ℐ𝛼) for every 𝛼 ∈ Δ. Therefore, 𝜏•(ℐ) ⊆ ⋂𝛼∈Δ𝜏•(ℐ𝛼) = 𝜏#. 

Corollary 3.1.14. Suppose that (𝑋, 𝜏) be a neutrosophic topological space and let ℒ and ℒ′ be two 

neutrosophic ideals on 𝑋. Then, 𝜏•(ℒ ∩ ℒ′) = 𝜏•(ℒ) ∩ 𝜏•(ℒ′). 
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Proof. Let 𝑀 ∈ 𝜏•(ℒ ∩ ℒ′) and put 𝑀 = 𝑁𝑐. Then, by part (11) of Lemma 3.4 and Proposition 3.1.11, 

we have: 

𝑀 ∈ 𝜏•(ℒ ∩ ℒ′) ⟺ 𝑁 is neutrosophic 𝜏•(ℒ ∩ ℒ′)-closed 

                             ⟺ 𝑁•(ℒ) ⊔ 𝑁•(ℒ′) = 𝑁•(ℒ ∩ ℒ′) ⊑ 𝑁 

               ⟺ 𝑁•(ℒ) ⊑ 𝑁 and 𝑁•(ℒ′) ⊑ 𝑁 

           ⟺ 𝑀 ∈ 𝜏•(ℒ) and 𝑀 ∈ 𝜏•(ℒ′) 

⟺ 𝑀 ∈ 𝜏•(ℒ) ∩ 𝜏•(ℒ′). 

3.2. Neutrosophic Φ-operator and new neutrosophic sets 

Definition 3.2.1. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

For each 𝑁 ∈ 𝒩′(𝑋), we define the neutrosophic complement co-local function of 𝑁 as Φ(𝑁) =

((𝑁𝑐)∙)𝑐.  

In Table 1 we summarize the main equalities related to the neutrosophic operator Φ, which are 

obtained by applying the neutrosophic complement operation or the co-local neutrosophic function 

from equation (1). 

Table 1. Equalities related to the neutrosophic operator Φ. 

(1)  Φ(𝑁) = ((𝑁𝑐)•)𝑐 (2)  [Φ(𝑁)]𝑐 = (𝑁𝑐)• 

(3)  [Φ(𝑁)]• = ((𝑁𝑐)•)𝑐)• (4)  Φ(𝑁𝑐) = (𝑁•)𝑐 

(5)  [Φ(𝑁𝑐)]𝑐 = 𝑁• (6)  [Φ(𝑁𝑐)]• = ((𝑁•)𝑐)• 

(7)  Φ(𝑁•) = (((𝑁•)𝑐)•)𝑐 (8)  [Φ(𝑁•)]𝑐 = ((𝑁•)𝑐)• 

Remark 3.2.2. From the equalities (6) and (8) of Table 1, we can deduce that [Φ(𝑁𝑐)]• = [Φ(𝑁•)]𝑐. 

In the following proposition, relevant properties related to the neutrosophic operator Φ  (also 

called neutrosophic Φ-operator) are presented. 

Proposition 3.2.3. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. Then, we have the following properties: 

(1) If 𝑁, 𝑀 ∈ 𝒩 ′(𝑋) and 𝑁 ⊑ 𝑀, then Φ(𝑁) ⊑ Φ(𝑀).   ( Φ is monotone) 

(2) Φ(𝑁 ⊓ 𝑀) = Φ(𝑁) ⊓ Φ(𝑀) for every 𝑁, 𝑀 ∈ 𝒩 ′(𝑋). 

(3) Φ(𝑁) ⊑ Φ(Φ(𝑁)) for every 𝑁 ∈ 𝒩 ′(𝑋). 

(4) Φ(𝑋̃) = 𝑋̃. 

(5) 𝑂 ⊑ Φ(𝑂) for every 𝑂 ∈ 𝜏𝑘 .  (Φ is expansive on 𝜏𝑘) 

(6) Cok𝑝 (𝑁) ⊑ Φ(𝑁) for every 𝑁 ∈ 𝒩 ′(𝑋). 

Proof. (1) Let 𝑁, 𝑀 ∈ 𝒩 ′(𝑋) such that 𝑁 ⊑ 𝑀. Then, 𝑀𝑐 ⊑ 𝑁𝑐  and by part (1) of Lemma 3.1.4, 

(𝑀𝑐)• ⊑ (𝑁𝑐)•. Therefore, Φ(𝑁) = (𝑁𝑐)•)𝑐 ⊑ ((𝑀𝑐)•)𝑐 = Φ(𝑀). 

(2) If 𝑁, 𝑀 ∈ 𝒩 ′(𝑋), then 

Φ(𝑁 ⊓ 𝑀) = (((𝑁 ⊓ 𝑀)𝑐)•)𝑐 = ((𝑁𝑐 ⊔ 𝑀𝑐)•)𝑐

 = ((𝑁𝑐)• ⊔ (𝑀𝑐)•)𝑐 = ((𝑁𝑐)•)𝑐 ⊓ ((𝑀𝑐)•)𝑐

 = Φ(𝑁) ⊓ Φ(𝑀).
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(3) Let 𝑁 ∈ 𝒩 ′(𝑋). By part (5) of Lemma 3.1.4, we have ((𝑁𝑐)•)• ⊑ (𝑁𝑐)• , which implies that 

Φ(𝑁) = ((𝑁𝑐)•)𝑐 ⊑ (((𝑁𝑐)•)•)𝑐. Now, by applying Definition 3.2.1 to the neutrosophic set Φ(𝑁), we 

obtain that Φ(Φ(𝑁)) = (([Φ(𝑁)]𝑐)•)𝑐 and by equation (2) of Table 1 , we deduce that Φ(Φ(𝑁)) =

(((𝑁𝑐)•)•)𝑐. Hence, Φ(𝑁) ⊑ ((𝑁𝑐)•)•)𝑐 = Φ(Φ(𝑁)). 

(4) By definition we have Φ(𝑋̃) = ((𝑋̃𝑐)
•

)
𝑐

= (∅̃•)
𝑐

= ∅̃𝑐 = 𝑋̃. 

(5) If 𝑂 ∈ 𝜏𝑘, then 𝑂𝑐  is a neutrosophic 𝜏𝑘-closed set and so Ker𝑝 (𝑂𝑐) = 𝑂𝑐 . By equation (2) of Table 

1 and part (3) of Lemma 3.1.4, we obtain that [Φ(𝑂)]𝑐 = (𝑂𝑐)• ⊑ Ker𝑝 (𝑂𝑐) = 𝑂𝑐 and hence, 𝑂 ⊑

Φ(𝑂) for every 𝑂 ∈ 𝜏𝑘 . 

(6) Since Cok𝑝 (𝑁) ∈ 𝜏𝑘, by part (5), we have Cok𝑝 (𝑁) ⊑ Φ(Cok𝑝 (𝑁)) and as Cok𝑝 (𝑁) ⊑ 𝑁, by part 

(1), we deuce that Cok𝑝 (𝑁) ⊑ Φ(Cok𝑝 (𝑁)) ⊑ Φ(𝑁). 

Definition 3.2.4. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrophic ideal on 𝑋. A 

subset 𝑁 ∈ 𝒩 ′(𝑋) is said to be: 

(1) neutrosophic •-perfect, if 𝑁 = 𝑁• 

(2) neutrosophic •-dense, if 𝑁• = 𝑋̃. 

(3) neutrosophic •-condensed, if [Φ(𝑁)]• = 𝑁•. 

(4) neutrosophic Φ-condensed, if Φ(𝑁•) = Φ(𝑁). 

(5) neutrosophic Φ•-condensed, if it is neutrosophic •-condensed and neutrosophic Φ-condensed. 

(6) neutrosophic non Φ•-condensed, if Φ(𝑁•) = ∅̃. 

(7) neutrosophic •-congruent, if [Φ(𝑁)]• = 𝑁. 

(8) neutrosophic Φ-congruent, if Φ(𝑁•) = 𝑁. 

(9) neutrosophic Φ•-congruent, if it is neutrosophic •-congruent and neutrosophic Φ-congruent. 

Proposition 3.2.5. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. If 𝑁 ∈ 𝒩 ′(𝑋), then we have the following properties: 

(1) If 𝑁 is neutrosophic •-perfect, then it is neutrosophic Φ-condensed. 

(2) 𝑁 is neutrosophic Φ-condensed if and only if 𝑁𝑐 is neutrosophic •-condensed. 

(3) 𝑁 is neutrosophic Φ•-condensed if and only if 𝑁𝑐 is neutrosophic Φ•-condensed. 

(4) 𝑁 is neutrosophic Φ-congruent if and only if 𝑁𝑐 is neutrosophic •-congruent. 

(5) 𝑁 is neutrosophic Φ•-congruent if and only if 𝑁𝑐 is neutrosophic Φ•-congruent. 

(6) If 𝑁 neutrosophic Φ-condensed and neutrosophic non Φ•-condensed, then 𝑁𝑐 is neutrosophic 

•-dense. 

(7) If 𝑁  neutrosophic • -condensed and 𝑁𝑐  is neutrosophic non Φ• -condensed, then 𝑁  is 

neutrosophic •-dense. 

(8) If 𝑁 is neutrosophic non Φ•-condensed and neutrosophic •-perfect, then 𝑁𝑐  is neutrosopic 

•-dense. 

Proof. (1) From Definition 3.2.4, we have: 

𝑁 is neutrosophic • -perfect  ⟺ 𝑁 = 𝑁•

 ⟺ Φ(𝑁) = Φ(𝑁•)

 ⟺ 𝑁 is neutrosophic Φ-condensed. 

 

(2) By Remark 3.2.2 and equation (2) of Table 1, we get that 
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𝑁 is neutrosophic Φ-condensed  ⟺ Φ(𝑁•) = Φ(𝑁)

 ⟺ [Φ(𝑁•)]𝑐 = [Φ(𝑁)]𝑐

 ⟺ [Φ(𝑁𝑐)]• = (𝑁𝑐)•

 ⟺ 𝑁𝑐  is neutrosophic • -condensed. 

 

(3) The proof follows from (2). 

(4) By Remark 3.2.2, we obtain that 

𝑁 is neutrosophic Φ-congruent  ⟺ Φ(𝑁•) = 𝑁

 ⟺ [Φ(𝑁•)]𝑐 = 𝑁𝑐

 ⟺ [Φ(𝑁𝑐)]• = 𝑁𝑐

 ⟺ 𝑁𝑐  is neutrosophic • -congruent. 

 

(5) The proof follows from (4). 

(6) Assume that 𝑁  neutrosophic Φ -condensed and neutrosophic non Φ• -condensed. Then, 

Φ(𝑁•) = Φ(𝑁) and Φ(𝑁•) = ∅̃, which implies that Φ(𝑁) = ∅̃. Thus, [Φ(𝑁)]𝑐 = 𝑋̃ and by equation 

(2) of Table 1, it follows that (𝑁𝑐)• = 𝑋̃. Therefore, 𝑁𝑐 is neutrosophic •-densed. 

(7) The proof follows from (2) and (6). 

(8) Suppose that 𝑁 is neutrosophic non Φ•-condensed and neutrosophic •-perfect. Then, Φ(𝑁•) =

∅̃ and 𝑁• = 𝑁, which implies that Φ(𝑁) = Φ(𝑁•) = ∅̃. By equation (2) of Table 1 , we deduce that 

(𝑁𝑐)• = [Φ(𝑁)]𝑐 = 𝑋̃ and so, 𝑁𝑐 is neutrosophic •-dense. 

Proposition 3.2.6. Let 𝑁 ∈ 𝒩 ′(𝑋) and 𝑁𝑐  be a neutrosophic •-perfect set. Then, the following 

properties are equivalent: 

(1) 𝑁 is neutrosophic Φ-congruent 

(2) 𝑁 is neutrosophic Φ-condensed. 

Proof. (1) ⟹ (2) Suppose that 𝑁  is neutrosophic Φ-congruent. Then, Φ(𝑁•) = 𝑁 . Since 𝑁𝑐  is 

neutrosophic •-perfect, (𝑁𝑐)• = 𝑁𝑐 , which implies that Φ(𝑁•) = 𝑁 = (𝑁𝑐)𝑐 = ((𝑁𝑐)•)𝑐 = Φ(𝑁) , 

which shows that 𝑁 is neutrosophic Φ-condensed. 

(2) ⟹ (1)  Assume that 𝑁  is neutrosophic Φ -condensed. Then, Φ(𝑁•) = Φ(𝑁) . Since 𝑁𝑐  is 

neutrosophic •-perfect, (𝑁𝑐)• = 𝑁𝑐 and by equation (2) of Table 1, it follows that [Φ(𝑁)]𝑐 = 𝑁𝑐 , 

which implies that Φ(𝑁) = 𝑁 . Therefore, Φ(𝑁•) = Φ(𝑁) = 𝑁  and so, 𝑁  is neutrosophic Φ 

congruent 

Corollary 3.2.7. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

If 𝑁 ∈ 𝒩 ′(𝑋) is neutrosophic ∙-perfect, then the following properties are equivalent: 

(1) 𝑁 is neutrosophic •-congruent 

(2) 𝑁 is neutrosophic •-condensed. 

Proof. It is deduced from Proposition 3.2.6 by using parts (2) and (4) of Proposition 3.2.5. 

Proposition 3.2.8. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. For 𝑁 ∈ 𝒩 ′(𝑋), we have the following properties: 

(1) If 𝑁  is neutrosophic non Φ• -condensed and 𝑀 ⊑ 𝑁 , then 𝑀  is neutrosophic non 

Φ•-condensed. 

(2) If 𝑁  is neutrosophic non Φ• -condensed and 𝑀 ∈ 𝒩 ′(𝑋) , then 𝑁 ⊓ 𝑀  is neutrosophic non 

Φ•-condensed. 
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(3) If 𝑁  is neutrosophic non Φ• -condensed and 𝐿 ∈ ℒ , then 𝑁 ⊔ 𝐿  is neutrosophic non 

Φ•-condensed. 

(4) If 𝑁 is neutrosophic non Φ•-condensed, then 𝑁• is neutrosophic non Φ•-condensed. 

(5) If 𝑁 is neutrosophic non Φ•-condensed, then for every 𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋) and every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐), 

Φ(𝑁𝑐) ⊓ 𝐹 ≠ ∅̃. 

(6) If 𝒥 is a neutrosophic ideal on 𝑋 such that 𝒥 ⊆ ℒ and 𝑁 is neutrosophic non Φ•-condensed, 

with respect to 𝒥, then 𝑁 is neutrosophic non Φ•-condensed with respect to ℒ. 

Proof. (1) Suppose that 𝑁 is neutrosophic non Φ•-condensed and 𝑀 ⊑ 𝑁. Then Φ(𝑁•) = ∅̃ and 

𝑀• ⊑ 𝑁•. Thus, Φ(𝑀•) ⊑ Φ(𝑁•) = ∅̃, which means that Φ(𝑀•) = ∅̃ and hence, 𝑀 is neutrosophic 

non Φ•-condensed. 

(2) Since 𝑁 ⊓ 𝑀 ⊑ 𝑁 for each 𝑀 ∈ 𝒩 ′(𝑋), the result follows from part (1). 

(3) Assume that 𝑁 is neutrosophic non Φ•-condensed and 𝐿 ∈ ℒ. Then Φ(𝑁•) = ∅̃ and 𝐿• = ∅̃, 

which implies that (𝑁 ⊔ 𝐿)• = 𝑁• ⊔ 𝐿• = 𝑁•  and Φ((𝑁 ⊔ 𝐿)•) = Φ(𝑁•) = ∅̃. Therefore, 𝑁 ⊔ 𝐿  is 

neutrosophic non Φ•-condensed. 

(4) Suppose that 𝑁 is neutrosophic non Φ•-condensed. Then Φ(𝑁•) = ∅̃ and (𝑁•)• ⊑ 𝑁•. Hence 

Φ((𝑁•)•) ⊑ Φ(𝑁•) = ∅̃ and so 𝑁• is neutrosophic non Φ•-condensed. 

(5) Assume that 𝑁 is neutrosophic non Φ•-condensed, i.e. Φ(𝑁•) = ∅̃. Then [Φ(𝑁•)]𝑐 = 𝑋̃ and so, 

by Remark 3.2.2, [Φ(𝑁𝑐)]• = 𝑋̃. Therefore, for every 𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋) and every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐), 𝐹 ⊓

Φ(𝑁𝑐) ∉ ℒ, which implies that 𝐹 ⊓ Φ(𝑁𝑐) ≠ ∅, for every 𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋) and every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐).  

(6) Let 𝒥  be a neutrosophic ideal on 𝑋  such that 𝒥 ⊑ ℒ  and 𝑁  be a neutrosophic non 

Φ•-condensed set with respect to 𝒥. Then Φ(𝑁•(𝒥)) = ∅̃ and by part (2) of Lemma 3.1.4, we have 

𝑁•(ℒ) ⊑ 𝑁•(𝒥), which implies that Φ(𝑁•(ℒ)) ⊑ Φ(𝑁•(𝒥)) = ∅̃. Therefore, Φ(𝑁•(ℒ)) = ∅̃ and so, 

𝑁 is neutrosophic non Φ•-condensed with respect to ℒ. 

Proposition 3.2.9. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. For 𝑁 ∈ 𝒩 ′(𝑋), we have the following properties: 

(1) 𝑁 is neutrosophic non Φ•-condensed if and only if (𝑁•)𝑐 is neutrosophic •-dense. 

(2) 𝑁 is neutrosophic non Φ•-condensed if and only if Φ(𝑁𝑐) is neutrosophic •-dense. 

(3) 𝑁𝑐 is neutrosophic non Φ•-condensed if and only if Φ(𝑁) is neutrosophic •-dense. 

Proof. The proofs of (1) and (2) are obtained from Definition 3.2.4 and equation (8) of Table 1 as 

follows: 

𝑁 is neutrosophic non Φ•-condensed  ⟺ Φ(𝑁•) = ∅̃

 ⟺ [Φ(𝑁•)]𝑐 = 𝑋̃

 ⟺ ((𝑁•)𝑐)• = 𝑋̃

 ⟺ (𝑁•)𝑐 is neutrosophic • -dense 

 ⟺ Φ(𝑁𝑐) is neutrosophic • -dense. 

 

(3) The proof follows from (2) by changing 𝑁 to 𝑁𝑐. 

Corollary 3.2.10. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

If 𝑋̃ is a neutrosophic •-dense in itself set, then every 𝐿 ∈ ℒ is a neutrosophic non Φ•-condensed 

set. 
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Proof. Since 𝐿 ∈ ℒ, we have 𝐿• = ∅̃ and hence, (𝐿•)𝑐 = 𝑋̃. According to equation (4) of Table 1, 

Φ(𝐿𝑐) = 𝑋̃ and as 𝑋̃ is neutrosophic •-dense in itself, it follows that [Φ(𝐿𝑐)]• = 𝑋̃• = 𝑋̃ and so, 

Φ(𝐿𝑐) is neutrosophic •-dense. Now, by Theorem 3.2.9, we conclude that 𝐿 is neutrosophic non 

Φ•-condensed. 

Definition 3.2.11. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋 . For every 𝑁 ∈ 𝒩 ′(𝑋) , the neutrosophic •-frontier of 𝑁 , denoted by 𝐹𝑟•(𝑁) , is defined as 

𝐹𝑟• (𝑁) = 𝑁• ⊓ (𝑁𝑐)•. 

Proposition 3.2.12. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋 . If 𝑁 ∈ 𝒩 ′(𝑋)  is neutrosophic • -dense and Φ(𝐹𝑟•(𝑁)) = ∅̃ , then 𝑁𝑐  is neutrosophic non 

Φ•-condensed. 

Proof. Suppose that 𝑁 ∈ 𝒩 ′(𝑋) is neutrosophic •-dense and Φ(𝐹𝑟•(𝑁)) = ∅̃. Then, 𝑁• = 𝑋̃ and 

Φ(𝑁• ⊓ (𝑁𝑐)•) = ∅̃. Hence, by parts (2) and (4) of Proposition 3.2.3, we have Φ(𝑁•) ⊓ Φ((𝑁𝑐)•) = ∅̃ 

and Φ(𝑁•) = Φ(𝑋̃) = 𝑋̃ , respectively. Thus, Φ((𝑁𝑐)•) = 𝑋̃ ⊓ Φ((𝑁𝑐)•) = ∅̃  and therefore, 𝑁𝑐  is 

neutrosophic non Φ•-condensed. 

5. Conclusions 

Neutrosophic topology is one of the most useful notions in neutrosophic set theory, because 

many of the topics studied in this branch of mathematics are done in the context of a neutrosophic 

topological space. In this work, we have used the notions of neutrosophic point and neutrosophic 

ideal to introduce and study the concepts of neutrosophic co-local function and neutrosophic 

complement co-local function of a subset of a neutrosophic topological space. We have established 

the most relevant properties of the concepts introduced and we have explored new classes of 

neutrosophic sets defined in terms of these concepts. Since various modifications of topology in 

neutrosophic set theory have recently been addressed, we consider that the notions and results given 

in this paper can be extended to the contexts of Refined Neutrosophic Topology, Refined 

Neutrosophic Crisp Topology, SuperHyperNeutrosophic Topology and Single-Valued Duplet 

Neutrosophic Topology, Single-Valued Neutrosophic Triplet Weak Topology and others 

highlighted in [10], which leave open a prominent field for future research. 
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