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1. Introduction 

The introduction should briefly place the study in a broad context and highlight why it is important. 

It should define the purpose of the work and its significance. The current state of the research field 

should be reviewed carefully and key publications cited. Please highlight controversial and diverging 

hypotheses when necessary. Finally, briefly mention the main aim of the work and highlight the 

principal conclusions. As far as possible, please keep the introduction comprehensible to scientists 

outside your particular field of research. References should be numbered in order of appearance and 

indicated by a numeral or numerals in square brackets, e.g., [1] or [2,3], or [4–6]. See the end of the 

document for further details on references. The shortest path problem(SPP) is a fundamental concept 

Abstract: Efficiently determining optimal paths and calculating the least travel time within complex 

networks is of utmost importance in addressing transportation challenges. Several techniques have 

been developed to identify the most effective routes within graphs, with the Reversal Dijkstra 

algorithm serving as a notable variant of the classical Dijkstra’s algorithm. To accommodate 

uncertainty within the Reversal Dijkstra algorithm, Fermatean neutrosophic numbers are harnessed. 

The travel time associated with the edges, which represents the connection between two nodes, can 

be described using fermatean neutrosophic numbers. Furthermore, the edge weights in fermatean 

neutrosophic graphs can be subject to temporal variations, meaning they can change over time. In 

this study, an extended version of the Reversal Dijkstra algorithm is employed to discover the 

shortest path and compute the minimum travel time within a single-source time-dependent network, 

where the edges are weighted using fermatean neutrosophic representations. The proposed method 

is exemplified, and the outcomes affirm the effectiveness of the expanded algorithm. The primary 

aim of this article is to serve as a reference for forthcoming shortest path algorithms designed for 

time-dependent fuzzy graphs 
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that finds applications in a wide range of fields, from real-life scenarios to the domain of operations 

research and graph theory. At its core, this problem is concerned with determining the most efficient 

path between two points in a network, where efficiency is typically measured in terms of minimizing 

a certain cost or distance metric. In real life, the shortest path problem is encountered daily in 

numerous ways like a delivery company optimizing its delivery routes to minimize fuel consumption 

and time, or a telecommunication network seeking the most efficient way to transmit data between 

users. Therefore, the values can be uncertain in those scenarios, to handle that Zadeh [2] introduced 

Fuzzy set(FS) theory which is an excellent tool to cope up imprecise data. It can expressed in terms 

of membership values. The concept of convexity and its applications have been extended to interval-

valued fuzzy sets (IVFS) by Huidobro in their work [1]. In 1999, Atanassov introduced intuitionistic 

fuzzy numbers (IFN), which are defined in terms of membership and non-membership values. 

Additionally, Atanassov also extended the concept to interval-intuitionistic fuzzy (IVIFS) sets, which 

involve lower and upper bounds in relation to membership and non-membership values [3, 4]. 

Definitions for concentration, dilation, and characterization of Intuitionistic Fuzzy Sets (IFS) have 

been provided by another source [6]. The concept of interval-valued pythagorean neutrosophic sets, 

their operations and decision making apporach were introduced by Stephen [16] Both IFSs and IVIFS 

are widely applied in practical problem-solving. However, they may not adequately address 

situations where neutrality or a lack of knowledge is crucial. To address such cases, the concept of 

neutrosophic sets was introduced by Florentin Smarandache in their work [5]. Neutrosophic sets are 

specifically designed to handle problems that involve factors of neutrality or indeterminacy as 

significant components.To provide a comprehensive view of neutrosophic sets from a technical 

perspective, several distinct variants have been introduced in the literature. Notably, Single-valued 

neutrosophic fuzzy sets (SVNFS) have been proposed as a specific instance of Neutrosophic sets, 

which has been extensively discussed in academic works such as [11], [12], and [13]. In a parallel 

development, the concept of interval-valued neutrosophic fuzzy sets (IVNFS) has been put forward 

to represent sets within a unit interval. This innovation has led to the development of various 

operations and comparison techniques for interval-valued neutrosophic fuzzy sets, as extensively 

elaborated upon by Zhang et al. in [10]. Furthermore, Yen has contributed to the field by introducing 

the concept of trapezoidal neutrosophic fuzzy numbers, along with measures of similarity and 

operations related to them, as discussed in [14]. To expand the horizons of neutrosophic fuzzy sets, 

researchers have also focused on Pythagorean neutrosophic fuzzy numbers (PyNFN). The 

development of similarity measures for Pythagorean neutrosophic fuzzy numbers has been explored 

by Rajan in [31]. Fuzzy set theory has emerged as a valuable tool for managing data characterized by 

imprecision, inaccuracy, and vagueness. Among the challenges it addresses, one prominent problem 

is the Fuzzy Shortest Path Problem (FSPP), which entails finding optimal paths within a graph while 

optimizing an objective function in a fuzzy environment. This field has seen several significant 

contributions: In a pioneering effort, Dubois [17] introduced an algorithm to solve FSPP and 

determine optimal weights, laying the foundation for subsequent research in this domain. Klein [24] 

conducted an analysis of FSPP from the perspective of fuzzy mathematical programming, thereby 

opening the door for further exploration and extensions of the concept. Building upon this 

groundwork, Okada and Soper [21] introduced the Multiple Label Method tailored for large random 

networks, providing an effective solution for FSPP. To overcome the limitations of traditional non-
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interactive approaches, Okada [22] introduced the notion of the degree of possibility, a concept used 

to represent arc lengths using fuzzy numbers. Nayeem et al. [20] considered networks with interval-

number and triangular fuzzy numbers, developing an algorithm capable of accommodating both 

types of uncertain numbers. Recognizing the computational complexity of FSPP, Hernandes et al. 

[26] presented a method that relies on a generic index ranking function to compare fuzzy numbers. 

This approach also accounted for graphs with negative parameters. Kumar [19] extended the scope 

of FSPP by addressing interval-valued fuzzy numbers and introducing an algorithm that could solve 

both fuzzy shortest path length and crisp shortest path length problems. Vidhya et al. [25] conducted 

a comparative study between the Floyd-Warshall algorithm and the rectangular algorithm in a fuzzy 

environment, shedding light on their performance. In a different direction, Baba [18] introduced a 

technique for solving the Intuitionistic Fuzzy Shortest Path Problem (IFSPP). Mukherjee [23] 

implemented Dijkstra’s algorithm for finding the shortest path with intuitionistic fuzzy arc weights 

in a graph. A study on SVNF SPP was proposed Liu [28]. Broumi et al. [27] conducted a 

comprehensive comparative study of all existing approaches to FSPP, ultimately identifying the most 

suitable methods for handling uncertainty in various environments. Innovative techniques for 

solving the Pythagorean neutrosophic fuzzy shortest path problem have been put forth by Basha et 

al. in their work [30]. Additionally, Rahut’s research, as presented in [32], has concentrated on 

fermatean neutrosophicshortest path problems, employing a similarity-based approach that has 

yielded optimal results for the proposed methodology. Cakir et al. suggest the time-dependent 

shortest path problem with bipolar neutrosophic environment [29]. Broumi et al. have introduced a 

novel approach for addressing the interval-valued fermatean neutrosophic shortest path problem in 

a related domain, as outlined in their study [33]. This approach builds upon Dijkstra’s classical 

algorithm to navigate the complexities of this specific problem, offering valuable insights into its 

solution. The reversal dijikstra algorithm is a modification of standard dijikstra algorithm, which is 

used to find the shortest path in a weighted graph. Unlike standard Dijkstra’s, which focuses on 

finding the shortest paths from one source to all nodes, Reversed Dijkstra’s focuses on finding the 

shortest paths to a specific target from all nodes. To handle the fuzzy environment and time 

dependency, the reversal dijikstra algorithm is considered. This study extends the reversal dijkstra 

algorithm to find the shortest travel time along with time dependency in a fuzzy environment. In a 

time-dependent fuzzy graph, the concept of finding the shortest path is synonymous with identifying 

the shortest duration or travel time between two points in the graph. This paper combines the 

fermatean neutrosophic numbers with reversal dijikstra’s algorithm along with time dependency. 

The proposed algorithm can efficiently compute both the shortest path and the corresponding 

shortest travel time from a starting node to every other node in a graph (or digraph) in reverse 

methodolgy. This graph is characterized by edges that are represented using time-dependent 

fermatean neutrosophic values. This paper contributes (i)the fermatean neutrosophic arc values to 

handle uncertainty, (ii) further, an algorithm is proposed for the reversal dijikstra algorithm with 

time-dependent fermatean neutrosophic numbers. (iii)the numerical examples are tracked down to 

show the efficieny of the proposed method.  

The paper is structured as follows: Section 2 covers the essential concepts, definitions, and 

mathematical operations associated with fermatean neutrosophic numbers. Section 3 presents and 

elaborates on the algorithm proposed in this research. Section 4 provides a numerical example to 
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illustrate the application of the proposed algorithm. Section 5 discusses analyzing the results obtained 

from the numerical example, offering insights and implications. Finally, Section 6 serves as the 

concluding segment, summarizing the main findings and the paper’s overall conclusions. 

 

2. Preliminaries. 

 In this section, the definitions of fermatean sets, neutrosophic sets , fermatean neutrosophic sets and 

their arithmetic operations are discussed. 

Definition 1. [7] The Fermatean fuzzy Set (FFS) �̃�   in the universal set X is defined by  �̃� =

{⟨𝑥, 𝜇𝐹(𝑥), 𝜈𝐹(𝑥)⟩: 𝑥 ∈ 𝑋} where the membership function 𝜇𝐹(𝑥): X → [0, 1] and the non-membership 

function 𝜈𝐹(𝑥): X → [0, 1] satisfy the condition [𝜇�̃�(𝑥)]
3 + [𝜈𝐹(𝑥)]

3 ≤ 1 is said to be the degree of 

hesitation of x to �̃�. 

Definition 2. [8] Let X be the universe of discourse. Then 𝑁 = {⟨𝑥, 𝑇𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹𝑁(𝑥)⟩: 𝑥 ∈ 𝑋} is 

defined as Neutrosophic Fuzzy Set (NFS), where the truth-membership function is represented as 

𝑇𝑁(𝑥): 𝑋 → [0,1]  an interdeterminacy-membership function 𝐼𝑁(𝑥):𝑋 → [0,1]  and the  

falsitymembership function 𝐹𝑁(𝑥):𝑋 → [0,1]  which satisifes the conditions 0 ≤ 𝑇𝑁(𝑥) + 𝐼𝑁(𝑥) +

𝐹𝑁(𝑥) ≤ 3,∀𝑥 ∈ 𝑋. 

Definition 3. [8] A neutrosophic fuzzy set ℓ   in the universe X is the form of ℓ =

{⟨𝑢, 𝑇ℓ(𝑢), 𝐼ℓ(𝑢), 𝐹ℓ(𝑢)⟩: 𝑢 ∈ ℓ} represents the degree of truth, 

indeterminacy and falisty-membership of ℓ respectively. The mapping 𝑇ℓ(𝑢): ℓ → [0,1], 𝐼ℓ(𝑢): ℓ →

[0,1] , 𝐹ℓ(𝑢): ℓ → [0,1]  and 0 ≤ 𝑇ℓ(𝑢)
3 + 𝐼ℓ(𝑢)

3 + 𝐹ℓ(𝑢)
3 ≤ 2 . Here ℓ = (𝑇ℓ , 𝐼ℓ, 𝐹ℓ)  is denoted as 

fermatean neutrosophic number(FNN). 

Definition 4. [8] Let ℓ1 = (𝑇ℓ1 , 𝐼ℓ1 , 𝐹ℓ1) and ℓ2 = (𝑇ℓ2 , 𝐼ℓ2 , 𝐹ℓ2) be the two FNNs and λ ≥ 0, then the 

arithmetic operations are: 

1. ℓ1 + ℓ2 = ((√(𝑇ℓ1)
3 + (𝑇ℓ2)

3 − (𝑇ℓ1)
3(𝑇ℓ2)

33 ), 𝐼ℓ1𝐼ℓ2 , 𝐹ℓ1𝐹ℓ2) 

2. ℓ1 ⊗ℓ2 = (𝑇ℓ1𝑇ℓ2 , √(𝐼ℓ1)
3 + (𝐼ℓ2)

3 − (𝐼ℓ1)
3(𝐼ℓ2)

33 , √(𝐹ℓ1)
3 + (𝐹ℓ2)

3 − (𝐹ℓ1)
3(𝐹ℓ2)

33 ) 

3. ℓ1 ⊙ℓ2 = {(√
(𝑇ℓ1)

3−(𝑇ℓ2)
3

1−(𝑇ℓ2)
3

3
,
𝐼ℓ1

𝐼ℓ2
,
𝐹ℓ1

𝐹ℓ2
)  if 𝑇ℓ1 ≥ 𝑇ℓ2 , 𝐼ℓ1 ≤ 𝐼ℓ2 , 𝐹ℓ1 ≤ 𝐹ℓ2} 

4. 𝜆ℓ1 = (√1 − (1 − (𝑇ℓ1)
3)𝜆

3
, (𝐼ℓ1)

𝜆, (𝐹ℓ1)
𝜆) 

Definition 5. [9] Let ℓ = (𝑇ℓ, 𝐼ℓ, 𝐹ℓ) be the FNFS, then the score function ℑ(ℓ) is defined by  

ℑ(ℓ) =
𝑇ℓ+𝐼ℓ+1−𝐹ℓ

3
                  (1) 

2.1  Advantage and Limitations of different type of fuzzy sets 

The table 1 offers a detailed comparison of the advantages and limitations associated with various 

fuzzy set variations. 

 

Table 1. Advantages and Restrictions with existing Approaches. 

 

Types of Fuzzy Sets Advantages Restrictions 

Fuzzy sets  

 

It can employed when the weights 

are imprecise 

Only the membership degree 

associated with the edge 
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 or uncertain in a unclear situations. values can be utilized. It is 

significant for non-

membership grades. 

Intuitionistic Fuzzy 

Sets 

It can be adapted with imprecise 

edge weights 

that include both membership and 

nonmembership 

values. 

It becomes ineffective when 

the sum of membership and 

non-membership exceeds 

one. 

Neutrosophic 

Fuzzy Sets 

 

This set has indeterminacy as 

explicity quantified 

and truth-membership, 

indeterminacy 

membership and falsity-

membership are independent. 

Not applicable when the sum 

of truth, indeterminancy, 

falsity exceeds three. 

Pythagorean 

Fuzzy Sets 

 

 

It has the capability to manage 

imprecise arc 

weights, even when the 

combination of the 

acceptance grade and the rejection 

grade surpasses 

1, subject to certain constraints. 

When the sum of the squares 

of membership and non-

membership exceeds one, it 

is not suitable for 

application. Eg:(0.8)2 + (0.7)2 

≰1.13 

Pythaogrean 

Neutrosophic 

Fuzzy 

Sets(PNFS) 

It handle when the sum of the truth, 

falsity 

and indertermincancy of the 

membership 

exceeds one 

It becomes less ineffective 

when the sum of the sqaure 

of the truth,  

indeterminancy, falsity 

exceeds one. 

Fermatean 

neutrosophic sets 

It handles the situations better when 

the 

PNFS fails by cubing the turth, 

indeterminacny, 

falsity of the membership 

 

. 

3.Reversal Dijikstra’s Algorithm under fermatean neutrosophic Environment  

 

In contrast to existing techniques, the methodology proposed in this article proves to be more 

effective in identifying the Shortest Path (SP). The key advantage of utilizing Fuzzy number predicted 

values is their ability to yield a singular value. By eliminating the need for rating FN values, this 

approach streamlines the decision-making process. This computational efficiency is particularly 

advantageous when dealing with scenarios characterized by highly uncertain parameters, making it 

a valuable tool for addressing Shortest Path Problems (SPPs). We argue that there are clear benefits 

to utilizing fermatean neutrosophic numbers (FNNs). Their ability to explicitly represent 

indeterminacy and differentiate between various facets of uncertainty makes them a valuable and 

versatile tool in these applications. FNNs provide a more impartial and nuanced insight into the 

functional relationships within a system. Consequently, our approach is geared towards solving the 

SPP within a network with fermatean neutrosophic arc lengths, bridging the source node (SN) and 

target node (TN). The analysis for the shortest path in fermatean neutrosophic numbers(FNN) 
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operates as follows: We initially adapt the principles governing the prediction of values within FNNs, 

yielding novel and improved outcomes for predicted FNN values. We apply this modified prediction 

approach to solve a shortest path algorithm, such as the reversal Dijkstra algorithm. Here, the de-

neutrosophication of FNNs and time-dependent FNNs associated with network arcs is executed by 

computing their predicted values. To calculate the shortest distance (SD) value and time-dependent 

shortest time, we amalgamate FNNs through a scoring function derived from the predicted FNN 

values. This process directly yields a crisp numerical result. In comparison to other fuzzy shortest 

path methods, our approach is more logically structured, robust, and straightforward to implement 

when dealing with fermatean neutrosophic numbers. 

 

3.1 Proposed Algorithm. 

Step 1: Assign and label [ts,−] and permanent status to the destination node. 

Step 2: calculate the labels tj +wij to the reachable node (node i) from the permanent 

node (node j) and assign temporary stauts. 

Step 3: If node i is visited already with temporary status. choose the score function 

to choose the minimum node and label it as i. 

Step 4: If all the nodes have become permanent status then the algorithm terminates 

else then go to step 2. 

Step 5: Using the label information, find the shortest path by tracing it forward 

through the graph. 

The Pseudeocode for time-dependent fermatean neutrosophic reversal-dijikstra Algorithm is present 

in algorithm 1. 

 

Algorithm 1 Pseudeocode for time-dependent fermatean neutrosophic reversal dijikstra 

Algorithm 

 

function Reversal Dijkstra(graph, target): # Initialize data structures 

distance = {} # Dictionary to store the shortest distance from the target node. 

priority queue = MinHeap () # MinHeap to prioritize nodes to explore # Initialize 

distances 

for node in graph.nodes: 

distance[node] = INFINITY 

distance[target] = 0 # Add the target node to the priority queue 

priority queue.insert((target, 0)) 

while not priority queue.isEmpty(): 

current node, current distance = priority queue.extractMin() 

# Explore neighbors of the current node 

for neighbor in graph.neighbors(current node): 

edge weight = graph.getEdgeWeight(current node, neighbor) 

new distance = current distance + edge weight 

# Relaxation step 
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if new distance ≤ distance[neighbor]: 

distance[neighbor] = new distance 

      priority queue.insert((neighbor, new distance)) 

return distance. 

 

 

4.Numerical Example 

A numerical example is solved to validate the proposed algorithm’s efficiency. 

Example.  Consider a numerical example with a network graph 1 having six nodes and eight arcs 

with time-dependent fermatean neutrosophic graph. The arc values are represented in the table 2. 

The departure time ˜ts is set as (0.2, 0.4,0.5). 

 

          

         Fig .1. A Network with time-dependent fermatean neutrosophic weights 

 

                    Table 2. Weight of edges for example. 

 

Edges Time-dependent fermatean neutrosophic Arc 

Values 

1 → 2 (0.4, 0.6, 0.3) 

1 → 3 (0.3, 0.8, 0.6) 

3 → 2 (0.5,/’ 0.3, 0.2) − t 

2 → 5 (0.6, 0.8, 0.4) * t 

3 → 4 (0.5, 0.3, 0.7) 

3 → 5 (0.8, 0.3, 0.1) + t 

4 → 6 T 

5 → 6 (0.7, 0.6, 0.2) 

 

        Iteration 0: Assign the destination node (6) and label is as [ts,−] and make it Permanent table 

3. 

Iteration 1: Calculate the distances from the targeted node (Node 6), which is the most 

recently marked as ”Permanent”, to its neighboring nodes (predecessor node of 
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6), specifically Nodes 5 and 4. As a result, we have established the status of these nodes in 

terms of being either temporary or permanent in table 4. To compare (0.70,0.24,0.1). 

 

Table 3. Nodes that are reachable from nodes designated as ”Permanent” are assigned labels and 

temporary status. 

 

Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓 

 

 

Table 4. Nodes that are reachable from nodes designated as ”Permanent” are assigned labels and 

temporary status. 

 

Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓  

5 [(0.70, 0.24, 0.1), 6] 𝔗  

4 [(0.25, 0.16, 0.25), 6] 𝔗 

and (0.25,0.16,0.25), the definition 1 is used: 

S(0.70, 0.24, 0.1) = 0.613 

S(0.25, 0.16, 0.25) = 0.386 

Since S(0.70, 0.24, 0.1) ≤ S(0.25, 0.16, 0.25). Therefore, [(0.25, 0.16, 0.25), 6] is marked  

and labeled as Permanent (P) node. 

 

Iteration 2: Node 4 is marked as permanent node and the predecessor node for node 

4 is node 3. Therefore, we maintain lists of temporary and permanent nodes in table 5. To 

compare (0.95,0.52,0.49) and (0.94,0.57,0.52), the definition 1 is used: 

 

Table 5. Nodes that are reachable from nodes designated as ”Permanent” are assigned labels and 

temporary status. 

 

Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓  

5 [(0.70, 0.24, 0.1), 6] 𝔓 

4 [(0.25, 0.16, 0.25), 6] 𝔓 

      S(0.95, 0.52, 0.49) = 0.65 

S(0.94, 0.57, 0.52) = 0.663 

Since S(0.95, 0.52, 0.49) ≤ S(0.94, 0.57, 0.52). Therefore, [(0.95, 0.52, 0.49) is marked 

and labeled as Permanent  node. 

Iteration 3: The predecessor node 5 are node 3 and node 2. Therefore, we maintain lists of temporary 

and permanent nodes in table 7. 

Iteration 4: The predecessor of node 3 and node 2 is node 1. The list of temporary and permanent 

nodes are listed in table 7. 

 

Table 6. Nodes that are reachable from nodes designated as ”Permanent” are assigned labels and 

temporary status. 
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Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓   

5 [(0.70, 0.24, 0.1), 6] 𝔓   

4 [(0.25, 0.16, 0.25), 6] 𝔓   

3 [(0.52, 0.05, 0.18), 4] (or) [(0.88, 0.03, 0.005), 5] 𝔗 

2 [(0.70, 0.19, 0.06), 5] 𝔗 

 

 

Table 7. Nodes that are reachable from nodes designated as ”Permanent” are assigned labels and 

temporary status. 

 

Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓   

5 [(0.70, 0.24, 0.1), 6] 𝔓   

4 [(0.25, 0.16, 0.25), 6] 𝔓   

3 [(0.52, 0.05, 0.18), 4]  𝔓   

2 [(0.70, 0.19, 0.06), 5] 𝔗 

1 [(0.55, 0.04, 0.11), 3] (or) [(0.73, 0.11, 0.012), 2] 𝔗 

 

Iteration 5: The predecessor node for 2 is node 3 and node 1. Therefore node 1 as Permanent node. 

using the label information, the network is traced and the shortest travel time from destination node 

to source node is 1 → 3 → 4 → 6. The shortest path from 1 to 6 is shown in Figure 2. The table 10 has 

been created to illustrate the efficiency of the proposed algorithm in comparison to existing 

approaches. 

 

 

Table 8. Nodes that are reachable from nodes designated as ”Permanent” are assigned labels and 

temporary status. 

  

Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓   

5 [(0.70, 0.24, 0.1), 6] 𝔓 

4 [(0.25, 0.16, 0.25), 6] 𝔓 

3 [(0.52, 0.05, 0.18), 4] (or) [(0.62, 0.04, 0.07), 2] (or)  

[(0.88, 0.03, 0.005), 5] 

𝔗 

2 [(0.70, 0.19, 0.06), 5] 𝔓  

1 [(0.55, 0.04, 0.11), 3] (or) [(0.73, 0.11, 0.012), 2] 𝔗 

 

 

Table 9. Nodes from destination to source 

 

Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓   

5 [(0.70, 0.24, 0.1), 6] 𝔓   

4 [(0.25, 0.16, 0.25), 6] 𝔓   

3 [(0.52, 0.05, 0.18), 4]  𝔓   

2 [(0.70, 0.19, 0.06), 5] 𝔓   

1 [(0.55, 0.04, 0.11), 3]  𝔓   
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                           Fig .2. Shortest Path from node 1 to node 6 

 

      Table 10. Comparison with the Existing Approach 

 

Methods with 

Different 

Neutrosophic 

Environment 

SP Shortest Travel Time Score of travel 

time 

Time-Dependent 

Dijkstra 

Algorithm with 

Bipolar Neutrosophic 

Numbers [29] 

1 → 2 → 5 → 6 (0.901,0.122,0.15,-0.078,-

0.919,-0.912) 

0.92 

Proposed Method 1 → 3 → 4 → 6 (0.55,0.04,0.011) 0.493 

 

5. Results and Discussion 

The proposed time-dependent fuzzy reversal Dijkstra’s algorithm is designed to compute the 

shortest travel times in the context of a time-dependent fermatean neutrosophic graph. This 

algorithm leverages the principles of reversal Dijkstra’s algorithm. In each iteration, the algorithm 

identifies undiscovered nodes by exploring the paths connecting them to the permanent nodes. By 

repeating this process, it systematically calculates and updates the shortest travel times to the starting 

node, accounting for the complex characteristics of the time-dependent fermatean neutrosophic 

graph. In this specific example, a departure time, denoted as ˜ts, has been introduced with the values 

(0.2, 0.4, 0.5), which represents various departure time instances. Additionally, the arrival node, 

which serves as the destination node, is designated as a ”Permanent” node within the algorithm’s 

execution. This means that the algorithm will consider and process these departure times and ensure 

that the arrival node’s status remains permanent throughout the computation. Huang et al. [33] 

initially attempted to discover the shortest paths on time-dependent fuzzy networks by integrating 

the principles of fuzzy simulation and genetic optimization. In a related context, Liao et al. [34] 

introduced an algorithm for solving the fuzzy constrained shortest path problem, which addresses 
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the uncertainty in both time and cost information. They also demonstrated the feasibility of the fuzzy 

linear programming approach for solving their problem. These methodologies have undergone 

thorough testing and validation on fuzzy graphs. The application presented in this article draws 

inspiration from these prior studies. Consequently, the application of this study holds significance 

when compared to previous applications documented in the existing literature. The results of the 

provided example underscore the applicability of an extended version of reversal Dijkstra’s 

algorithm to time-dependent fuzzy graphs. By employing fermatean neutrosophic numbers to 

represent edge weights, the proposed methodology effectively addresses both the shortest path and 

travel time problems. 

6. Conclusion 

The shortest path problem plays a pivotal role and finds practical applications across a wide spectrum 

of fields. When dealing with uncertain situations, the vertex weights can be expressed as fuzzy 

numbers, enabling them to adapt to fluctuating values over time. This article focuses on the 

utilization of fermatean neutrosophic numbers to capture and represent uncertainty. It extends the 

Reversal-Dijkstra algorithm to handle time-dependent graphs with fermatean neutrosophic 

numbers. This extension involves the use of a scoring function to compare minimum values among 

the FNN and select the most favorable arc with the lowest values. In the context of a time-dependent 

fuzzy graph, the shortest path is defined in terms of the shortest travel time. The proposed algorithm 

addresses this specific scenario and includes a numerical example to demonstrate its effectiveness, 

ultimately yielding optimal results. For future research endeavors, we recommend the utilization of 

the time-dependent reversal Dijkstra’s algorithm within a fuzzy environment. This approach can be 

further enhanced by incorporating various fuzzy extensions, such as Pythagorean fuzzy sets, 

spherical fuzzy sets, and more. Additionally, it would be beneficial to integrate cost, saftey values 

and danger factors into the analysis along side time considerations. Beyond the technical 

developments, these methodologies hold promise for addressing a diverse array of real-life problems. 

Examples include applications in cable network optimization, telecommunication routing, route 

planning for transportation, social network analysis, database search optimization, and traffic 

management for taxi services, among others. 
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