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Abstract. This research is dedicated to exploring the relationships among neutrosophic automata, reverse

neutrosophic automata, and double neutrosophic automata. Through the utilization of these three automata,

we establish definitions for a neutrosophic subsystem, a reverse neutrosophic subsystem, and a double neutro-

sophic subsystem, delving into various properties associated with them. Additionally, we aim to introduce the

notion of categorical aspects concerning neutrosophic automata and reverse neutrosophic automata, along with

their functorial relationship.
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—————————————————————————————————————————-

1. Introduction

The field of automata theory has proven instrumental in addressing computational com-

plexity issues, finding applications across computer science and discrete mathematics. Fol-

lowing Zadeh’s [75] introduction of fuzzy set theory, scholars such as Wee [72] and San-

tos [52] initiated the exploration of fuzzy automata and languages to bridge the gap be-

tween the precision of computer languages and inherent vagueness. Malik and collabora-

tors [32, 38] introduced a simpler notion of a fuzzy finite state machine, laying the ground-

work for the algebraic study of fuzzy automata and languages. Numerous researchers (cf.,

e.g., [5–7,14–19,25,27,30,35–37,46–48,56–63,66,68,69,76]) have contributed to the development

of fuzzy automata theory, with diverse focuses. Among these works, Jin and colleagues [17]
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delved into the algebraic study of fuzzy automata based on po-monoids, while Kim, Kim, and

Cho [25] concentrated on the algebraic aspects of fuzzy automata theory. Moćkor [35–37] ex-

plored categorical concepts in fuzzy automata theory, and Abolpour and Zahedi [5–7] applied

categorical concepts to automata with membership values in various lattice structures. The

work of Qiu [46–48], Tiwari and their co-authors [62, 63, 66, 68, 69] pursued algebraic, topo-

logical, and categorical studies of fuzzy automata theory based on different lattice structures.

Ignjatovic and collaborators [14] investigated the notion of determinism in fuzzy automata,

while Anupam and co-authors [55–61, 64, 65] explored the topological, algebraic, and cate-

gorical aspects of more generalized fuzzy automata and fuzzy languages. These collective

contributions reflect the rich and diverse landscape of research in fuzzy automata theory.

Recent advancements in fuzzy automata theory are highlighted in various works, includ-

ing [7, 42, 61, 67]. Fuzzy automata find practical applications in engineering contexts, par-

ticularly in areas such as information representation, pattern recognition, and machine learn-

ing systems, as discussed in [38, 43, 44, 73]. Notably, [73] proposes a non-supervised learning

scheme for automatic control and pattern recognition, emphasizing the simplicity in design

and computation offered by fuzzy automata as a machine learning model.

In addressing computational uncertainty, alternative mathematical tools have emerged, such

as bipolar-valued fuzzy sets [31], vague sets [12], and cubic sets [20]. The generalization

trend of fuzzy sets has led to the development of neutrosophy, a philosophical branch intro-

duced and studied by Florientin Samrandache [53, 54]. Neutrosophy serves as a method for

handling the computational uncertainty inherent in real-life and scientific problems. Unlike

fuzzy sets, neutrosophic sets introduced by Samrandache have three independent components:

the degree of membership, the degree of non-membership, and the degree of indeterminacy.

Although neutrosophic sets may pose challenges in practical engineering and scientific applica-

tions, Wang et al. [70,71] have introduced the concepts of single-valued neutrosophic sets and

interval neutrosophic sets as a more manageable instance of neutrosophic sets. From a practical

perspective, neutrosophic set theory has demonstrated substantial success in various fields, in-

cluding topology [13,41], control theory [39,40], decision-making problems [1,3,26,50], medical

diagnosis [1,51,74], financial management [2], and smart product-service systems [4]. Neutro-

sophic automata, a more recent model stemming from fuzzy automata theory, has garnered

attention from numerous researchers who have extensively explored automata theory within a

neutrosophic framework [21–24, 33, 34]. Neutrosophic automata offer a valuable environment

for handling ambiguous computations and have demonstrated their significance in addressing

substantial challenges in learning management systems [49], topology [13, 41], and algebraic
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structures [21–24, 33], among other applications. The concept of category theory, initially in-

troduced by Eilenberg and Mac Lane [10], is widely recognized. Subsequent development by

various researchers [11,28,29] has showcased its utility in advancing theoretical computer sci-

ence aspects, such as the design of functional and imperative programming languages, semantic

models of programming languages, algorithm development, and polymorphism [45].

1.1. Motivation

Various researchers have integrated neutrosophic set theory into automata theory in differ-

ent ways. However, there is a notable gap in exploring the algebraic properties of automata

and reverse automata within a neutrosophic environment, particularly considering t-norm and

implication operators. Additionally, the application of category theory and functors between

neutrosophic automata and reverse neutrosophic automata remains unexplored. This paper

aims to fill these gaps by investigating and introducing the algebraic properties of neutrosophic

automata, incorporating a t-norm and implication operator. Furthermore, we present funda-

mental properties of category theory and explore functors connecting neutrosophic automata

with reverse neutrosophic automata.

The paper’s structure is outlined as follows:

Section 2: Provides an introduction to the paper’s content.

Section 3: Introduces and explores the concepts of neutrosophic automata, reverse neutro-

sophic automata, as well as subsystems (including reverse and double subsystems) for neutro-

sophic automata within a neutrosophic environment. This section also delves into presenting

various algebraic properties associated with neutrosophic automata.

Section 4: Focuses on the introduction and examination of homomorphism and strong homo-

morphism between neutrosophic automata, considering specific properties as their basis. Also,

proposes categorical and functorial properties of both neutrosophic automata and reverse neu-

trosophic automata.

Section 5: The article ends with conclusion.

2. Preliminaries

Within this section, we revisit fundamental notations and concepts associated with neutro-

sophic sets, including neutrosophic t-norms, implication operators, and category theory. The

foundation for understanding neutrosophic sets is drawn from the works of [53, 54], while the

principles of categories and functors are referenced from [8,9]. The discussion commences with

the following points.
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Definition 2.1. A neutrosophic set (NS, in short) A on a non-empty set X is an ob-

ject having the form A = {< b1, FA(b1), GA(b1), HA(b1) >: b1 ∈ X}, where the functions

FA, GA, HA : X →]0−, 1+[ define respectively the degree of membership (or truth), the de-

gree of indeterminacy and the degree of non-membership (or false) of each element b1 ∈ X

to the set A . As, the sum of FA(b1), GA(b1), HA(b1), have no restriction. So for each

b1 ∈ X, 0− ≤ FA(b1) +GA(b1) +HA(b1) ≤ 3+.

Remark 2.2. A Neutrosophic Set A = < b1, FA(b1), GA(b1), HA(b1) >: b1 ∈ X is typically

denoted as an ordered triple < FA, GA, HA > in the non-standard unit interval ]0−, 1+[ on X.

The neutrosophic sets (NSs, in short) 0N and 1N represent constant NSs inX and are defined

as 0N =< 0, 1, 1 > and 1N =< 1, 0, 0 >, where 0, 1 : X →]0−, 1+[ are defined respectively

by 0(b1) = 0 and 1(b1) = 1. The NS η = (σ, β, γ) such that η̂ = ̂(σ, β, γ) is expressed as

η̂(b1) = η for all b1 ∈ X, where σ, β, and γ are the σ-valued, β-valued, and γ-valued constant

neutrosophic sets in X respectively, with the condition 0− ≤ σ + β + γ ≤ 3+.

This paper opts for the interval [0, 1] instead of the notation ]0−, 1+[ in considera-

tion of practical applications, as the latter might pose challenges in real-world scenarios.

Also, NS(X) will denote the family of all neutrosophic sets in X and I∗ denotes the set

{(b1, b2, b3) : ((b1, b2, b3) ∈ [0, 1] × [0, 1] × [0, 1], 0 ≤ b1 + b2 + b3 ≤ 3}. A neutrosophic set

A =< FA, GA, HA > in X will frequently be viewed as a function A : X → I∗, given by

A(b1) = {FA(b1), GA(b1), HA(b1) : b1 ∈ X}.

Firstly, we recall some basic properties of NS in X.

Definition 2.3. For NSs A =< FA, GA, HA >,B =< FB, GB, HB > and Ai =<

FAi , GAi , HAi >, i ∈ J in b1 ∈ X. We have

(1) A ≤ B if FA(b1) ≤ FB(b1), GA(b1) ≥ GB(b1) and HA(b1) ≥ HB(b1);

(2) ∨i∈JAi(b1) = (∨i∈JFAi(b1),∧i∈JGAi(b1),∧i∈JHAi(b1));

(3) ∧i∈JAi(b1) = (∧i∈JFAi(b1),∨i∈JGAi(b1),∨i∈JHAi(b1));

(4) Ac = (1− FA, 1−GA, 1−HA);

(5) 0N ⊆ A ⊆ 1N ; 0
c
N = 1N and 1cN = 0N ;

(6) A ∪ 0N = A,A ∪ 1N = 1N and A ∩ 0N = 0N , A ∩ 1N = A.

Example 2.4. Let X = {b1, b2}, A = {< b1, 0.2, 1, 0.3 >,< b2, 0.4, 0.5, 0.6 >} and B = {<
b1, 0.1, 0.3, 0.8 >,< b2, 0, 0, 0.9 >} are two NSs on X. Then A ∪ B = {< b1, 0.2, 0.3, 0.3 >,<

b2, 0.4, 0, 0.6 >}, A ∩ B = {< b1, 0.1, 1, 0.8 >,< b2, 0, 0.5, 0.9 >}, Ac = {< b1, 0.8, 0, 0.7 >,<

b2, 0.6, 0.5, 0.4 >}, A∪1N = (1, 0, 0) = 1N , A∩0N = (0, 1, 1) = 0N and B∩1N = (0.1, 0.3, 0.8) =

B.
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Definition 2.5. (1) A neutrosophic t-norm ⊗ : I∗ × I∗ −→ I∗ be a mapping such for all

σN = (σ1, σ2, σ3), βN = (β1, β2, β3), γN = (γ1, γ2, γ3), δN = (δ1, δ2, δ3) ∈ I∗ which satisfies

(i) σN ⊗ 1N = σN (border condition);

(ii) σN ⊗ βN = βN ⊗ σN , (commutativity);

(iii) σN ⊗ (βN ⊗ γN ) = (σN ⊗ βN )⊗ γN , (associativity);
(iv) σN ≤ βN and γN ≤ δN ⇒ σN ⊗ γN ≤ βN ⊗ δN , (monotonicity).

(2) The neutrosophic precomplement on I∗ is the mapping ¬ : I∗ −→ I∗ such that

¬(b1, b2, b3) = (b1, b2, b3)→ 0N = (b1, b2, b3)→ (0, 1, 1) = (b1 → 0, b2 ← 1, b3 ← 1),∀b1, b2, b3 ∈
X.

(3) The implication operator −→: I∗ −→ I∗ is defined as;

σN → βN = ∨{γN = (γ1, γ2, γ3) ∈ I∗ : σN ⊗ γN ≤ βN},∀σN = (σ1, σ2, σ3), βN = (β1, β2, β3) ∈
I∗ with respect to ⊗.

For σN = (σ1, σ2, σ3) ∈ I∗ and A = (FA, GA, HA) ∈ NS(X), the NS σN → A = (σ1 →
FA, σ2 ← GA, σ3 ← HA) in X is defined as

(σ1 → FA)(b1) =

{
1 if σ1(b1) ≤ FA(b1)
FA(b1) if σ1(b1) > FA(b1)

(σ2 ← GA)(b1) =

{
0 if σ2(b1) ≥ GA(b1)
GA(b1) if σ2(b1) < GA(b1)

and

(σ3 ← HA)(b1) =

{
0 if σ3(b1) ≥ HA(b1)

HA(b1) if σ3(b1) < HA(b1)

∀b1 ∈ X.

Proposition 2.6. Let A = (FA, GA, HA) ∈ NS(X) and σN = (σ1, σ2, σ3), βN

= (β1, β2, β3), γN = (γ1, γ2, γ3) ∈ I∗. Then

(i) 1N → A = (1, 0, 0)→ (FA, GA, HA) = (FA, GA, HA) = A;

(ii) σN ⊗ βN ≤ γN ⇔ σN ≤ βN → γN ;

(iii) (σN ⊗ βN )→ γN = σN → (βN → γN );

(iv) (σN → βN )⊗ (βN → γN ) ≤ σN → γN ;

(v) σN ⊗ (∨i∈IβNi) = ∨i∈I(σN ⊗ βNi);

(vi) (σN → βN )⊗ σN ≤ βN ;
(vii) (σN ⊗ βN )→ γN = (βN ⊗ σN )→ γN ;

(viii) if σN ≤ βN ⇒ ¬βN ≤ ¬σN .
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Definition 2.7. The key component of a category thoery T contains:

(i) a T- objects;

(ii) For any pair of objects X and Y within the category T, there exists a set denoted as

T(X,Y). The members of this set are referred to as morphisms (or T- morphisms),

where each morphism ψ in T(X,Y) is represented as ψ : X → Y . These morphisms

have a specified domain X and codomain Y ;

(iii) For every object X within the category T, a morphism denoted as idX : X → X is

termed the identity morphism on X; and

(iv) There exists a ”composition law” linked to each pair of T-morphisms ψ : X → Y and

χ : Y → Z, a T-morphism denoted as χ ◦ ψ : X → Z is termed the composition of

ψ and χ, adhering to the following properties:

(a) for any T-morphisms ψ : X → Y, χ : Y → Z, and Φ : Z → W , the composition

follows the associativity property: Φ ◦ (χ ◦ ψ) = (Φ ◦ χ) ◦ ψ.
(b) for any T-morphism ψ : X → Y , the identity morphism idY satisfies the properties:

idY ◦ ψ = ψ and ψ ◦ idX = ψ.

For simplicity, we represent the object-class of the category T by T itself.

Definition 2.8. A functor K : T → E is a mapping that assigns each T-object X to a

E-object K(X) and every T-morphism ψ : X → Y to a E-morphism K(ψ) : K(X) → K(Y )

follows the conditions that:

(a) For all T-morphisms ψ : X → Y and χ : Y → Z, K(χ ◦ ψ) = K(χ) ◦K(ψ), and

(b) For all X ∈ T, K(idX) = idK(X).

3. Neutrosophic automata

In this section, we present the concept of neutrosophic automata and reverse neutrosophic

automata. The introduction of neutrosophic automata naturally leads to the development of

neutrosophic subsystems, including reverse neutrosophic subsystems and double neutrosophic

subsystems. Throughout this exploration, we delve into various properties, such as order-

preserving maps, involution and some more, associated with these neutrosophic automata and

subsystems. The discussion commences with the following points.

Definition 3.1. A neutrosophic automaton, (NA, in short) is a triple L = (Q,X, δ),

where Q and X are non-empty sets referred to as the set of states and the set of inputs (with

the identity denoted as e), respectively. The neutrosophic transition function is denoted as

δ = (Fδ, Gδ, Hδ) and is a neutrosophic subset of Q ×X ×Q. In other words, δ is a mapping

δ : Q×X ×Q→ I∗.
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Remark 3.2. (i) Let X∗ as the free monoid generated by the set X, with e being its identity.

The extension of δ is denoted as δ∗ = (Fδ∗ , Gδ∗ , Hδ∗) : Q ×X∗ × Q → I∗. This extension is

characterized by the property that for any q1, q2 ∈ Q, u ∈ X∗, and b1 ∈ X, the following holds:

Fδ∗(q1, e, q2) =

{
1 if q1 = q2

0 if q1 ̸= q2,
Gδ∗(q1, e, q2) = Hδ∗(q1, e, q2) =

{
0 if q1 = q2

1 if q1 ̸= q2

Fδ∗(q1, ub1, q2) = ∨{Fδ∗(q1, u, q3)⊗Fδ(q3, b1, q2) : q3 ∈ Q}, Gδ∗(q1, ub1, q2) = ∧{Gδ∗(q1, u, q3)⊗
Gδ(q3, b1, q2) : q3 ∈ Q}, and Hδ∗(q1, ub1, q2) = ∧{Hδ∗(q1, u, q3)⊗Hδ(q3, b1, q2) : q3 ∈ Q}.

(ii) For u ∈ X∗, we can establish a mapping δu = (Fδu , Gδu , Hδu) : Q × Q → I∗ such

that ∀q1, q2 ∈ Q,Fδu(q1, q2) = Fδ∗(q1, u, q2), Gδu(q1, q2) = Gδ∗(q1, u, q2) and Hδu(q1, q2) =

Hδ∗(q1, u, q2).

Definition 3.3. A reverse neutrosophic automaton (RNA, in short) of a NA L =

(Q,X, δ) is a NA L = (Q,X, δ), where δ : Q×X×Q→ I∗ is a mapping such that δ(q1, b1, q2) =

δ(q2, b1, q1),∀q1, q2 ∈ Q and ∀b1 ∈ X.

Definition 3.4. Let L = (Q,X, δ) be a NA. Then A = (FA, GA, HA) ∈ NS(S) is called

(i) neutrosophic subsystem, (NSS, in short) of L if FA(q1) ⊗ Fδ(q1, b1, q2) ≤
FA(q2), GA(q1)⊗Gδ(q1, b1, q2) ≥ GA(q2) andHA(q1)⊗Hδ(q1, b1, q2) ≥ HA(q2),∀q1, q2 ∈
Q and ∀b1 ∈ X.

(ii) reverse neutrosophic subsystem, (RNSS, in short) of L if FA(q2) ⊗
Fδ(q1, b1, q2) ≤ FA(q1), GA(q2)⊗Gδ(q1, b1, q2) ≥ GA(q1) and HA(q2)⊗Hδ(q1, b1, q2) ≥
HA(q1), ∀q1, q2 ∈ Q and ∀b1 ∈ X.

(iii) double neutrosophic subsystem, (DNSS, in short) of L if it is both NSS and

RNSS of L.

Proposition 3.5. If A is a NSS in a NA L = (Q,X, δ), then A is a RNSS in a RNA

L = (Q,X, δ).

Proof: Let A = (FA, GA, HA) be a NSS in L. Then ∀q1, q2 ∈ Q and ∀b1 ∈ X,FA(q1) ⊗
Fδ(q1, b1, q2) ≤ FA(q2), GA(q1) ⊗ Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1) ⊗ Hδ(q1, b1, q2) ≥
HA(q2) ⇒ FA(q1) ⊗ Fδ(q2, b1, q1) ≤ FA(q2), GA(q1) ⊗ Gδ((q2, b1, q1) ≥ GA(q2) and HA(q1) ⊗
Hδ((q2, b1, q1) ≥ HA(q2). Hence A is a RNSS in a RNA L.

Proposition 3.6. Let L = (Q,X, δ) be a NA and A ∈ NS(S). Then

(i) A = (FA, GA, HA) is a NSS of L if and only if A : (Q,X, δ) −→ (I∗,→) is an order

preserving map.

(ii) A = (FA, GA, HA) is a RNSS of L if and only if A : (Q,X, δ) −→ (I∗,→) is an order

preserving map.
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(iii) A = (FA, GA, HA) is a DNSS of L if and only if A : (Q,X, δ) −→ (I∗,→) is an order

preserving map.

Proof: (i) Let A = (FA, GA, HA) ∈ NS(S) be a NSS of L. Then ∀q1, q2 ∈ Q and

b1 ∈ X,FA(q1) ⊗ Fδ(q1, b1, q2) ≤ FA(q2), GA(q1) ⊗ Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1) ⊗
Hδ(q1, b1, q2) ≥ HA(q2), then Fδ(q1, b1, q2) ≤ FA(q1) → FA(q2), Gδ(q1, b1, q2) ≥ GA(q1) ←
GA(q2) and Hδ(q1, b1, q2) ≥ HA(q1) ← HA(q2) (cf., Proposition 2.6). Hence A : (Q,X, δ) −→
(I∗,→) preserve order. Converse follows similarly.

(ii) Similar to (i).

(iii) Derives from (i) and (ii).

Proposition 3.7. Let L = (Q,X, δ) be a NA and q1, q3 ∈ Q, b1 ∈ X. Then

(i) [q3]
δb1 = (F

[q3]
δb1
, G

[q3]
δb1
, H

[q3]
δb1

) ∈ NS(Q) such that

F
[q3]

δb1
(q1) = Fδb1 (q3, q1), G[q3]

δb1
(q1) = Gδb1 (q3, q1) and H

[q3]
δb1

(q1) = Hδb1
(q3, q1) is a

NSS of L,

(ii) [q3]δb1 = (F[q3]δb1
, G[q3]δb1

, H[q3]δb1
) ∈ NS(Q) such that

F[q3]δb1
(q1) = Fδb1 (q1, q3), G[q3]δb1

(q1) = Gδb1 (q1, q3) and H[q3]δb1
(q1) = Hδb1

(q1, q3) is a

RNSS of L , and

(iii) [q3]
δb1 and [q3]δb1 is a DNSS of L.

Proof: (i) Let F
[q3]

δb1
(q1) = Fδb1 (q3, q1), G[q3]

δb1
(q1) = Gδb1 (q3, q1) and H

[q3]
δb1

(q1) =

Hδb1
(q3, q1). Then F

[q3]
δb1

(q1) ⊗ Fδ(q1, b1, q2) = Fδb1 (q3, q1) ⊗ Fδ(q1, b1, q2) = Fδ(q3, b1, q1) ⊗
Fδ(q1, b1, q2) ≤ Fδ(q3, b1, q2) = Fδb1 (q3, q2) = F

[q3]
δb1

(q2), G[q3]
δb1

(q1) ⊗ Gδ(q1, b1, q2) =

Gδb1 (q3, q1) ⊗ Gδ(q1, b1, q2) = Gδ(q3, b1, q1) ⊗ Gδ(q1, b1, q2) ≥ Gδ(q3, b1, q2) = Gδb1 (q3, q2) =

G
[q3]

δb1
(q2) and H

[q3]
δb1

(q1) ⊗ Hδ(q1, b1, q2) = Hδb1
(q3, q1) ⊗ Hδ(q1, b1, q2) = Hδ(q3, a, q1) ⊗

Hδ(q1, b1, q2) ≥ Hδ(q3, b1, q2) = Hδb1
(q3, q2) = H

[q3]
δb1

(q2), as δb1 is transitive. Hence

F
[q3]

δb1
(q1) ⊗ Fδ(q1, b1, q2) ≤ F

[q3]
δb1

(q2), G[q3]
δb1

(q1) ⊗ Gδ(q1, b1, q2) ≥ G
[q3]

δb1
(q2) and

H
[q3]

δb1
(q1)⊗Hδ(q1, b1, q2) ≥ H[q3]

δb1
(q2). Thus [q3]

δb1 is a NSS of L.

(ii) Derives from (i) and the transitivity of δb1 .

(iii) Derives from (i) and (ii).

Proposition 3.8. Let L = (Q,X, δ) be a NA and A ∈ NS(Q). Then

(i) if A = (FA, GA, HA) is a NSS of a NA L, then for each η ∈ I∗, A → η̂ is a RNSS of

L.

(ii) if A = (FA, GA, HA) is a RNSS of a NA L, then for each η ∈ I∗, A → η̂ is a NSS of

L.

Proof: Let A = (FA, GA, HA) is a NSS of a NA L , i.e., ∀q1, q2 ∈ Q and b1 ∈ X,FA(q1) ⊗
Fδ(q1, b1, q2) ≤ FA(q2), GA(q1) ⊗ Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1) ⊗ Hδ(q1, b1, q2) ≥
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HA(q2). Then, we have to show that A → η̂ is a RNSS of L, or that ∀q1, q2 ∈ Q and

b1 ∈ X, (FA(q2) → σ) ⊗ Fδ(q1, b1, q2) ≤ (FA(q1) → σ), (GA(q2) ← β) ⊗ Gδ(q1, b1, q2) ≥
(GA(q1) ← β) and (HA(q2) ← γ) ⊗ Hδ(q1, b1, q2) ≥ (HA(q1) ← γ) which implies that

(FA(q2) → σ) ⊗ Fδ(q1, b1, q2) ⊗ FA(q1) ≤ σ, (GA(q2) ← β) ⊗ Gδ(q1, b1, q2) ⊗ GA(q1) ≥ β

and (HA(q2)← γ)⊗Hδ(q1, b1, q2)⊗ (HA(q1) ≥ γ. So (FA(q2)→ σ)⊗Fδ(q1, b1, q2)⊗FA(q1) ≤
(FA(q2)→ σ)⊗FA(q2) ≤ σ, (GA(q2)← β)⊗Gδ(q1, b1, q2)⊗GA(q1) ≥ (GA(q2)← β)⊗GA(q2) ≥
β and (HA(q2)← γ)⊗Hδ(q1, b1, q2)⊗(HA(q1) ≥ (HA(q2)← γ)⊗(HA(q2) ≥ γ (cf., Proposition

2.6). Hence A→ η̂ is a RNSS of L.

(ii) In a similar manner, it can be prove that if A = (FA, GA, HA) is a RNSS of a NA L, then

for each η ∈ I∗, A→ η̂ is a NSS of L.

Proposition 3.9. Let L = (Q,X, δ) be a NA and A ∈ NS(Q). Then

(i) if A = (FA, GA, HA) is a NSS of a NA L, then for each η ∈ I∗, η̂ ⊗A is a NSS of L.

(ii) if A = (FA, GA, HA) is a RNSS of a NA L, then for each η ∈ I∗, η̂ ⊗ A is a RNSS of

L.

Proof: (i) Let A = (FA, GA, HA) is a NSS of a NA L and η ∈ I∗. Then ∀q1, q2 ∈ Q

and b1 ∈ X,FA(q1) ⊗ Fδ(q1, b1, q2) ≤ FA(q2), GA(q1) ⊗ Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1) ⊗
Hδ(q1, b1, q2) ≥ HA(q2) which implies that ∀q1, q2 ∈ Q and b1 ∈ X, (σ⊗FA(q1))⊗Fδ(q1, b1, q2) ≤
(σ⊗FA(q2)), (β ⊗GA(q1))⊗Gδ(q1, b1, q2) ≥ (β ⊗GA(q2)) and (γ ⊗HA(q1))⊗Hδ(q1, b1, q2) ≥
(γ ⊗HA(q2)). Hence η̂ ⊗A is a NSS of L.

(ii) In a similar manner, one can demonstrate that if A = (FA, GA, HA) is a RNSS of a

NA L, then for each η ∈ I∗, η̂ ⊗A is a RNSS of L.

The following provides a characterization of the neutrosophic transition function of a NA

based on its NSS.

Proposition 3.10. For given a NA L = (Q,X, δ). We have

(1) let E be the family of all NSS. Then ∀q1, q2 ∈ Q and b1 ∈ X,Fδb1 (q1, q2) = ∧{FA(q1)→
FA(q2) : FA ∈ E};Gδb1 (q1, q2) = ∨{GA(q1) ← GA(q2) : GA ∈ E};Hδb1

(q1, q2) =

∨{HA(q1)← HA(q2) : HA ∈ E}.
(2) let E’ be the family of all RNSS. Then ∀q1, q2 ∈ Q and b1 ∈ X,Fδb1 (q1, q2) =

∧{FA(q2) → FA(q1) : FA ∈ E’};Gδb1 (q1, q2) = ∨{GA(q2) ← GA(q1) : GA ∈
E’};Hδb1

(q1, q2) = ∨{HA(q2)← HA(q1) : HA ∈ E’}.

Proof: We only prove here for NSS of L. The RNSS of L can be proved in a similar way.

(i) Let A be a NSS of a NA L. Then ∀q1, q2 ∈ Q, b1 ∈ X,FA(q1) ⊗ Fδ(q1, b1, q2) ≤
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FA(q2), GA(q1) ⊗ Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1) ⊗Hδ(q1, b1, q2) ≥ HA(q2), i.e. FA(q1) ⊗
Fδb1 (q1, q2) ≤ FA(q2), GA(q1) ⊗ Gδb1 (q1, q2) ≥ GA(q2) and HA(q1) ⊗ Hδb1

(q1, q2) ≥ HA(q2),

or that Fδb1 (q1, q2) ≤ FA(q1) → FA(q2), Gδb1 (q1, q2) ≥ GA(q1) ← GA(q2) and Hδb1
(q1, q2) ≥

HA(q1)← HA(q2)⇒ Fδb1 (q1, q2) ≤ ∧{FA(q1)→ FA(q2) : FA ∈ E}, Gδb1 (q1, q2) ≥ ∨{GA(q1)←
GA(q2) : GA ∈ E} and Hδb1

(q1, q2) ≥ ∨{HA(q1) ← HA(q2) : HA ∈ E}. Next for

q3 ∈ Q, b1 ∈ X, as [q3]
δb1 (q1) = (F

[q3]
δb1

(q1), G[q3]
δb1

(q1), H[q3]
δb1

(q1)) is a NSS of M . Then

∧{F
[q3]

δb1
(q1) → F

[q3]
δb1

(q2) : q3 ∈ Q} ≤ {Fδe(q1, q1) → Fδb1 (q1, q2)} = 1 → Fδb1 (q1, q2) =

Fδb1 (q1, q2),∨{G[q3]
δb1

(q1) ← G
[q3]

δb1
(q2) : q3 ∈ Q} ≥ {Gδe(q1, q1) ← Gδb1 (q1, q2)} = 0 ←

Gδb1 (q1, q2) = Gδb1 (q1, q2) and ∨{H
[q3]

δb1
(q1) ← H

[q3]
δb1

(q2) : q3 ∈ Q} ≥ {Hδe(q1, q1) ←
Hδb1

(q1, q2)} = 0 ← Hδb1
(q1, q2) = Hδb1

(q1, q2) (cf., Proposition 2.6). Thus ∀q1, q2 ∈ Q and

b1 ∈ X,Fδb1 (q1, q2) = ∧{FA(q1) → FA(q2) : FA ∈ E};Gδb1 (q1, q2) = ∨{GA(q1) ← GA(q2) :

GA ∈ E};Hδb1
(q1, q2) = ∨{HA(q1)← HA(q2) : HA ∈ E}.

Proposition 3.11. Let L = (Q,X, δ) be a NA and A ∈ NS(Q). Then

(1) if A = (FA, GA, HA) is a NSS of L, so for each η ∈ I∗, η̂ → A is a NSS of L.

(2) if A = (FA, GA, HA) is a RNSS of L, so for each η ∈ I∗, η̂ → A is a RNSS of L.

Proof: We only prove here for NSS of L. The RNSS of L can be proved in a similar way.

(i) Let A = (FA, GA, HA) be a NSS of a NA L and η ∈ I∗. Then ∀q1, q2 ∈ Q and b1 ∈ X, (σ →
FA(q1)) ⊗ (FA(q1) → FA(q2)) ≤ (σ → FA(q2)), (β ← GA(q1)) ⊗ (GA(q1) ← GA(q2)) ≥ (β ←
GA(q2)) and (γ ← HA(q1)) ⊗ (HA(q1) ← HA(q2)) ≥ (γ ← HA(q2)) (cf., Proposition 2.6).

So that (FA(q1) → FA(q2)) ≤ (σ → FA(q1)) → (σ → FA(q2)), (GA(q1) ← GA(q2)) ≥ (β ←
GA(q1)) ← (β ← GA(q2)) and (HA(q1) ← HA(q2)) ≥ (γ ← HA(q1)) ← (γ ← HA(q2)), or

that Fδ(q1, q2) ≤ (σ → FA(q1)) → (σ → FA(q2)), Gδ(q1, q2) ≥ (β ← GA(q1)) ← (β ← GA(q2))

and Hδ(q1, q2) ≥ (γ ← HA(q1)) ← (γ ← HA(q2)) (cf., Proposition 2.6), which implies that

(σ → FA(q1)) ⊗ Fδ(q1, q2) ≤ (σ → FA(q2)), (β ← GA(q1)) ⊗ Gδ(q1, q2) ≥ (β ← GA(q2)) and

(γ ← HA(q1))⊗Hδ(q1, q2) ≥ (γ ← HA(q2)). Thus η̂ → A is a NSS of L.

Proposition 3.12. Let L = (Q,X, δ) be a NA and A ∈ NS(Q) is a RNSS of L if and only if

it is a NSS of the RNA L = (Q,X, δ).

Proof: Let A is a NSS of the RNA L = (Q,X, δ), then ∀q1, q2 ∈ Q and b1 ∈ X,FA(q1) ⊗
Fδ(q1, b1, q2) ≤ FA(q2);GA(q1)⊗Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1)⊗Hδ(q1, b1, q2) ≥ HA(q2)

if and only if FA(q1)⊗ Fδ(q2, b1, q1) ≤ FA(q2);GA(q1)⊗Gδ(q2, b1, q1) ≥ GA(q2) and HA(q1)⊗
Hδ(q2, b1, q1) ≥ HA(q2). Thus A is a RNSS of L. Converse is trivial.

Proposition 3.13. Let L = (Q,X, δ) be a NA with A ∈ NS(Q) and let ¬ be involutive. Then

(i) If A is a NSS, then ¬A = (¬FA,¬GA,¬HA) is a RNSS, and

(ii) if A is a RNSS, then ¬A = (¬FA,¬GA,¬HA) is a NSS.
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(iii) if A is a DNSS, then ¬A = (¬FA,¬GA,¬HA) is also a DNSS.

Proof: (i) Let A = (FA, GA, HA) is a NSS of L, then ∀q1, q2 ∈ Q and b1 ∈ X,FA(q1) ⊗
Fδ(q1, b1, q2) ≤ FA(q2), GA(q1)⊗Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1)⊗Hδ(q1, b1, q2) ≥ HA(q2),

or that ¬(FA(q1) ⊗ Fδ(q1, b1, q2)) ≥ ¬FA(q2);¬(GA(q1) ⊗ Gδ(q1, b1, q2)) ≤ ¬GA(q2) and

¬(HA(q1) ⊗ Hδ(q1, b1, q2)) ≤ ¬HA(q2) which implies that (FA(q1) ⊗ Fδ(q1, b1, q2)) → 0 ≥
¬FA(q2); (GA(q1) ⊗ Gδ(q1, b1, q2)) ← 1 ≤ ¬GA(q2) and (HA(q1) ⊗ Hδ(q1, b1, q2)) ← 1 ≤
¬HA(q2)⇒ (Fδ(q1, b1, q2)⊗ FA(q1))→ 0 ≥ ¬FA(q2); (Gδ(q1, b1, q2)⊗GA(q1))← 1 ≤ ¬GA(q2)
and (Hδ(q1, b1, q2) ⊗ HA(q1)) ← 1 ≤ ¬HA(q2) ⇒ Fδ(q1, b1, q2) → (FA(q1) → 0) ≥
¬FA(q2);Gδ(q1, b1, q2) ← (GA(11) ← 1) ≤ ¬GA(q2) and Hδ(q1, b1, q2) ← (HA(q1) ← 1) ≤
¬HA(q2) ⇒ Fδ(q1, b1, q2) → ¬FA(q1) ≥ ¬FA(q2);Gδ(q1, b1, q2) ← ¬GA(q1) ≤ ¬GA(q2) and

Hδ(q1, b1, q2) ← ¬HA(q1) ≤ ¬HA(q2) ⇒ ¬FA(q2) ⊗ Fδ(q1, b1, q2) ≤ ¬FA(q1);¬GA(q2) ⊗
Gδ(q1, b1, q2) ≥ ¬GA(q1) and ¬HA(q2)⊗Hδ(q1, b1, q2) ≥ ¬HA(q1) (cf., Proposition 2.6). Hence

¬A is a RNSS of L.

(ii) Let A = (FA, GA, HA) is a RNSS of L, then ∀q1, q2 ∈ Q and b1 ∈ X,FA(q2) ⊗
Fδ(q1, b1, q2) ≤ FA(q1);GA(q2)⊗Gδ(q1, b1, q2) ≥ GA(q1) and HA(q2)⊗Hδ(q1, b1, q2) ≥ HA(q1),

or that ¬(FA(q2) ⊗ Fδ(q1, b1, q2)) ≥ ¬FA(q1);¬(GA(q2) ⊗ Gδ(q1, b1, q2)) ≤ ¬GA(q1) and

¬(HA(q2) ⊗ Hδ(q1, b1, q2)) ≤ ¬HA(q1) which implies that (FA(q2) ⊗ Fδ(q1, b1, q2)) → 0 ≥
¬FA(q1); (GA(q2) ⊗ Gδ(q1, b1, q2)) ← 1 ≤ ¬GA(q1) and (HA(q2) ⊗ Hδ(q1, b1, q2)) ← 1 ≤
¬HA(q1)⇒ (Fδ(q1, b1, q2)⊗ FA(q2))→ 0 ≥ ¬FA(q1); (Gδ(q1, b1, q2)⊗GA(q2))← 1 ≤ ¬GA(q1)
and (Hδ(q1, b1, q2) ⊗ HA(q2)) ← 1 ≤ ¬HA(q1) ⇒ Fδ(q1, b1, q2) → (FA(q2) → 0) ≥
¬FA(q1);Gδ(q1, b1, q2) ← (GA(q2) ← 1) ≤ ¬GA(q1) and Hδ(q1, b1, q2) ← (HA(q2) ← 1) ≤
¬HA(q1) ⇒ Fδ(q1, b1, q2) → ¬FA(q2) ≥ ¬FA(q1);Gδ(q1, b1, q2) ← ¬GA(q2) ≤ ¬GA(q1) and

Hδ(q1, b1, q2) ← ¬HA(q2) ≤ ¬HA(q1) ⇒ ¬FA(q1) ⊗ Fδ(q1, b1, q2) ≤ ¬FA(q2);¬GA(q1) ⊗
Gδ(q1, b1, q2) ≥ ¬GA(q2) and ¬HA(q1)⊗Hδ(q1, b1, q2) ≥ ¬HA(q2) (cf., Proposition 2.6). Hence

¬A is a NSS of L.

(iii) Derives from (i) and (ii).

4. Neutrosophic automata and reverse neutrosophic automata: a categorical ap-

proach

In this section, we initially demonstrate that an isomorphism among neutrosophic automata

(NA) establishes an equivalence relation. Additionally, we present the categorical character-

istics of both neutrosophic automata and reverse neutrosophic automata. Furthermore, we

identify the functorial relationship that exists between the categories of neutrosophic automata

and reverse neutrosophic automata. The discussion begins with the following points.
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(Fig.1)Homomorphism between L and N

Definition 4.1. Let L = (Q, δ) and N = (R, λ) are two NA over X. A homomorphism from

L to N is a function ψ : Q → R such that, for each element b1 ∈ X, the diagram depicted in

Figure 1 remains consistent.

Remark 4.2. (i) In Figure 1, the commutativity

of a diagram signifies (Fλb1o(ψ,ψ))(q1, q2) = Fδb1 (q1, q2); (Gλb1o(ψ,ψ))(q1, q2) = Gδb1 (q1, q2)

and (Hλb1
o(ψ,ψ))(q1, q2) = Hδb1

(q1, q2),∀q1, q2 ∈ Q.

(ii) Throughout, we will use the notation FA|GA|HA diagrams to denote a neutrosophic set

A. Furthermore, the commutativity of these diagrams remains consistent with the discussion

in part (i).

Remark 4.3. (i). The pair (ψ1, ψ2) is known as a strong homomorphism if,

∀(q1, b1, q2) ∈ Q × X × Q,Fλ(ψ1(q1), ψ2(b1), ψ1(q2)) = ∨{Fδ(q1, b1, q3) : q3 ∈ Q,ψ1(q3) =

ψ1(q2)}, Gλ(ψ1(q3), ψ2(b1), ψ1(q2)) = ∧{Gδ(q1, b1, q3) : q3 ∈ Q,ψ1(q3) = ψ1(q2)} and

Hλ(ψ1(q1), ψ2(b1), ψ1(q2)) = ∧{Hδ(q1, b1, q3) : q3 ∈ Q,ψ1(q3) = ψ1(q2)}.

(ii). A bijective homomorphism

(strong homomorphism) with the property λ(ψ1(q1), ψ2(b1), ψ1(q2)) = δ(q1, b1, q2) is called

an isomorphism (strong isomorphism).

Definition 4.4. Let L = (Q,X, δ) and N = (R,X, λ) be two NA and ψ : L −→ N be a

homomorphism. Then for A ∈ NS(Q), the neutrosophic subset ψ(A) ∈ NS(R) can be defined

as

Fψ(A)(q3) =

{
∨(FA(q1) : q1 ∈ Q,ψ(q1) = q3) if ψ−1(q3) ̸= ϕ

0 if ψ−1(q3) = ϕ

Gψ(A)(q3) =

{
∧(GA(q1) : q1 ∈ Q,ψ(q1) = q3) if ψ−1(q3) ̸= ϕ

1 if ψ−1(q3) = ϕ and
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Hψ(A)(q3) =

{
∧(HA(q1) : q1 ∈ Q,ψ(q1) = q3) if ψ−1(q3) ̸= ϕ

1 if ψ−1(q3) = ϕ,

In this context, we explore the properties of NSS under strong homomorphism.

Proposition 4.5. Let L = (Q,X, δ) and N = (R,X, λ) be two NA and ψ : L −→ N be an

onto strong homomorphism. Then for a NSS A of L,ψ(A) is a NSS of N .

Proof: Let q1, q2 ∈ Q and r1, r2 ∈ R such that f(q1) = r1 and f(q2) = r2. If A is a NSS of

L, then ∀r1, r2 ∈ R and b1 ∈ X, we have Fψ(A)(r1)⊗ Fλ(r1, b1, r2) = FA(r1)⊗ Fλ(r1, b1, r2) =
FA(q1) ⊗ Fλ(f(q1), b1, f(q2)) (where f(q1) = r1,∀q1 ∈ Q) = FA(q1) ⊗ ∨{Fδ(q1, b1, q3) :

q3 ∈ Q,ψ(q3) = ψ(q2) = r2} = ∨{FA(q1) ⊗ Fδ(q1, b1, q3) : q3 ∈ Q,ψ(q3) = ψ(q2) =

r2} ≤ ∨{FA(q3) : q3 ∈ Q,ψ(q3) = ψ(q2) = r2} = Fψ(A)(r2). Similarly, we can show that

Gψ(A)(r1) ⊗ Gλ(r1, b1, r2) ≥ Gψ(A)(r2) and Hψ(A)(r1) ⊗ Hλ(r1, b1, r2) ≥ Hψ(A)(r2). Hence

ψ(A) is a NSS of N .

The proposition mentioned above holds true solely for NSS and does not apply to RNSS.

Proposition 4.6. An isomorphism among NA establishes an equivalence relation.

Proof:-The reflexivity and symmetry are evident. To establish transitivity, we let

(ψ1, ψ2) : L1 −→ L2 and (χ1, χ2) : L2 −→ L3 where ψ1 : Q1 −→ Q2 , χ1 :

Q2 −→ Q3 and ψ2, χ2 : X −→ X be the isomorphism of L1 onto L2 and L2 onto

L3 respectively. Then (χ1, χ2)o(ψ1, ψ2) : L1 −→ L3 is bijective map from L1 to L3,

where((χ1, χ2)o(ψ1, ψ2))(q1, b1, q
′
1) = (χ1, χ2)((ψ1, ψ2)(q1, b1, q

′
1)), ∀(q1, b1, q′1) ∈ Q1 ×X ×Q1.

Since a map (ψ1, ψ2) : L1 → L2 defined as ψ1(q1) = q2, ψ1(q
′
1) = q′2, ψ2(b1) = b1 is

an isomorphism. So, we have Fδ1(q1, b1, q
′
1) = Fδ2(ψ1(q1), ψ2(b1), ψ1(q

′
1)) = Fδ2(q2, b1, q

′
2).

Similarly,Gδ1(q1, b1, q
′
1) = Gδ2(q2, b1, q

′
2) and Hδ1(q1, b1, q

′
1) = Hδ2(q2, b1, q

′
2), ∀(q1, b1, q′1) ∈

Q1 ×X ×Q1 and ∀(q2, b1, q′2) ∈ Q2 ×X ×Q2.

.....(1)

Next, since a map (χ1, χ2) : L2 → L3 defined as χ1(q2) = q3, χ1(q
′
2) = q′3 and χ2(b1) = b1 is

an isomorphism. So, we have Fδ2(q2, b1, q
′
2) = Fδ3(χ1(q2), χ2(b1), χ1(q

′
2)) = Fδ3(q3, b1, q

′
3).

Similarly Gδ2(q2, b1, q
′
2) = Gδ3(q3, b1, q

′
3) and Hδ2(q2, b1, q

′
2) = Hδ3(q3, b1, q

′
3), ∀(q2, b1, q′2) ∈

Q2 ×X ×Q2 and (q3, b1, q
′
3) ∈ Q3 ×X ×Q3.

.........(2)

Thus from expressions (1), (2) andψ1(q1) = q2, ψ1(q
′
1) = q′2, ψ2(b1) = b1, ∀(q1, b1, q′1) ∈

Q1 × X × Q1, we have Fδ1(q1, b1, q
′
1) = Fδ2(ψ1(q1), ψ2(b1), ψ1(q

′
1)) = Fδ2(q2, b1, q

′
2) =

Fδ3(χ1(q2), χ2(b1), χ1(q
′
2)) = Fδ3((χ1, χ2)(q2, b1, q

′
2)) = Fδ3((χ1, χ2)((ψ1, ψ2)(q1, b1, q

′
1)) =
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(Fig.2)Homomorphism between N and P

Fδ3((χ1, χ2)o(ψ1, ψ2))(q1, b1, q
′
1). Similarly Gδ1(q1, b1, q

′
1) = Gδ3((χ1, χ2)o(ψ1, ψ2))(q1, b1, q

′
1)

and Hδ1(q1, b1, q
′
1) = Hδ3((χ1, χ2)o(ψ1, ψ2))(q1, b1, q

′
1),∀(q1, b1, q′1) ∈ Q1 × X × Q1. Hence

(χ1, χ2)o(ψ1, ψ2) is an isomorphism between L1 and L3.

Proposition 4.7. An isomorphism among RNA establishes an equivalence relation.

Proof:- A direct consequence of the proposition 4.6.

Proposition 4.8. An isomorphism among DNA establishes an equivalence relation.

Proof:- This is a direct consequence of the propositions 4.6 and 4.7.

We will represent the category of NA over X as NeA(X) and the category of NA over X∗

as NeA(X∗). Additionally, the object-class of the categories NeA(X) and NeA(X∗) will be

denoted as NeA(X) and NeA(X∗), respectively. Now, we proceed with the following.

Proposition 4.9. The class of NA over X and their homomorphisms constitute a category.

Proof: We demonstrate solely that the composition of two homomorphisms is again a ho-

momorphism, as follows, let L = (Q, δ), N = (R, λ) and P = (S, µ) be NA over X and

ψ : L → N,χ : N → P be homomorphisms, i.e., ψ : Q → R,χ : R → S are the

maps such that for all b1 ∈ X, the diagrams in Fig.1 and Fig. 2 holds. Then the fol-

lowing shows that for all b1 ∈ X, the diagram in Fig. 3 also hold. So, let q1, q2 ∈ Q.

Then (Fµb1o(χoψ, χoψ))(q1, q2) = Fµb1 (χ(ψ(q1)), χ(ψ(q2))) = (Fµb1o(χ, χ))(ψ(q1), ψ(q2)) =

Fλb1 (ψ(q1), ψ(q2)) = (Fλb1o(ψ,ψ))(q1, q2) = Fδb1 (q1, q2). Hence Fδb1 = Fµb1o(χoψ, χoψ).

Similarly, we can show that Gδb1 = Gµb1o(χoψ, χoψ) and Hδb1
= Hµb1

o(χoψ, χoψ). Thus

χoψ : L→ P is a homomorphism.

We will represent the category of RNA over X as RNeA(X) and the category of RNA over
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(Fig.3) Homomorphism between L and P

(Fig.4) Homomorphism between L and N

X∗ as RNeA(X∗). Additionally, the object-class of the categories RNeA(X) and RNeA(X∗)

will be denoted as RNeA(X) and RNeA(X∗), respectively.

Definition 4.10. Let L=(Q, δ) and N=(R, λ) be RNA over X. A homomorphism from L to

N is a map ψ : Q→ R such that for all b1 ∈ X, the diagram in Fig.4 hold.

Now, we present the introduction of functors between the categories of NA as described

earlier.

Proposition 4.11. From NeA(X) to NeA(X∗), there exists a functor.

Proof:- Let L = (Q,X, δ) ∈ NeA(X). We establish a mapping K : NeA(X) → NeA(X∗)

such that K(L) = (Q,X∗, δ∗), then K(L) ∈ NeA(X∗). Also, for a NeA(X)-morphism ψ :

L = (Q,X, δ) → N = (R,X, λ), let K(ψ) : K(L) → K(N) ,i.e., K(ψ) = ψ∗. Subsequently, it

can be demonstrated that ψ∗ is a NeA(X∗)-morphism from K(L) to K(N), i.e., the depicted

diagram in Figure 5 is valid, indicating that the diagram in Figure 6 also holds. Consequently,

based on Figure 5, we obtain

Fδ = Fλo(ψ × IX × ψ), Gδ = Gλo(ψ × IX × ψ) and Hδ = Hλo(ψ × IX × ψ)
Anil Kumar Ram; Anupam K. Singh; Bikky Kumar. Neutrosophic Automata and Reverse
Neutrosophic Automata

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                              233



(Fig.5) Morphism between L and N

(Fig.6) Morphism between K(L)and

K(N)

Now, K(Fδ) = Fδ∗ = K[Fλo(ψ × IX × ψ)] = Fλ∗o(ψ
∗ × IX∗ × ψ∗). In a similar manner

K(Gδ) = Gδ∗ = K[Gλo(ψ× IX ×ψ)] = Gλ∗o(ψ
∗× IX∗ ×ψ∗) and K(Hδ) = Hδ∗ = K[Hλo(ψ×

IX×ψ)] = Hλ∗o(ψ
∗×IX∗×ψ∗). This implies the validity of Figure 6. Additionally, the identity

and composition properties of maps K are evident. Therefore, the mapping K : NeA(X) →
NeA(X∗) is a functor.

Proposition 4.12. From NeA(X∗) to NeA(X), there exists a functor.

Proof:- Define a mapping β : NeA(X∗) → NeA(X) such that β(L) = (Q,X, δ),∀L ∈
NeA(X∗). Then β(L) ∈ NeA(X). Therefore, based on proposition 4.11, we demonstrate that

β operates as a functor.

In this context, we present the functor between the category of RNA, as defined earlier.

Proposition 4.13. From RNeA(X) to RNeA(X∗), there exists a functor.

Proof:- This is a direct consequence of the proposition 4.11.

Proposition 4.14. From RNeA(X∗) to RNeA(X), there exists a functor.
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Proof:-This is a direct consequence of the proposition 4.12.

5. Conclusions

This paper has introduced the novel concepts of neutrosophic automata and reverse neutro-

sophic automata, extending the groundwork laid by fuzzy automata. The exploration includes

the introduction of neutrosophic subsystems, reverse neutrosophic subsystems, and double

neutrosophic subsystems linked to these automata, with an investigation into algebraic results

derived from these concepts. Additionally, the categorical properties of neutrosophic automata

and their functorial relationships have been examined. In future work, the focus will extend

to exploring the topological properties of neutrosophic automata based on the aforementioned

concepts.

Conflicts of Interest: The authors assert that there are no conflicts of interest..

References

1. Abdel-Basset, M.; Manogaran, G.; Gamal, A.; Smarandache, F. A group decision making framework based

on neutrosophic TOPSIS approach for smart medical device selection. Journal of Medical Systems (2019),

43, 38-45.

2. Abdel-Basset, M; Ding, W.; Mohamed, R.; Metawa, N. An integrated plithogenic MCDM approach for

financial performance evaluation of manufacturing industries. Risk Management (2020), 22(3), 192-218.

3. Abdel-Basset, M; Mohamed, R.; Sallam, K.; Elhosemy, M. A novel decision-making model for sustainable

supply chain finance under certainty environment. Journal of Cleaner Production (2020), 269, 122-324.

4. Abdel-Basset, M; Mohamed, R.; Sallam, K.; Elhosemy, M. A novel framework to evaluate innovation value

proposition for smart product- service systems. Environmental Technology and Innovation (2020), 20, 10-36.

5. Abolpour, K.; Zahedi, M.M. Isomorphism between two BL-general fuzzy automata. Soft Computing (2012),

16, 729-736.

6. Abolpour, K.; Zahedi, M.M. BL-general fuzzy automata and accept behavior. Journal of Applied Mathe-

matics and Computing (2012), 38, 103-118.

7. Abolpour, K.; Zahedi, M.M. General fuzzy automata based on complete residuated lattice-valued. Iranian

Journal of Fuzzy Systems (2017), 14, 103-121.

8. Adamek, J.; Trnkova, V. Automata and Algebras in Category. Kluwer (1990).

9. Arbib, M.A.; Manes, E.G. Arrows, Structures, and Functors: The Categorical Imperative. Academic Press,

New York (1975).

10. Eilenberg, S.; Mac Lane, S. General theory of natural equivalences. Transaction of American Mathematical

Society (1945), 58, 231-294.

11. Freyd, P.J. Abelian Categories, Harper and Row. New York (1964).

12. Gau, W.L.; Buehrer, D.J. Vague sets. IEEE Transactions on Systems, Man, and Cybernetics (1993), 23(2),

610-614.

Anil Kumar Ram; Anupam K. Singh; Bikky Kumar. Neutrosophic Automata and Reverse
Neutrosophic Automata

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                              235



13. Hashmi, M.R.; Riaz, M.; Smarandache, F. m-Polar neutrosophic topology with applications to multi-

criteria decision-making in medical Diagnosis and clustering Analysis. International Journal of Fuzzy Sys-

tems (2020), 22, 273-292.
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