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1. Introduction
C.L. Chang [3] was introduced fuzzy topological space by using .Zadeh’s L.A [18] (uncertain)

fuzzy sets. Further Coker [4] was developed the notion of Intuitionistic fuzzy topological spaces by
using Atanassov’s[1] Intuitionistic fuzzy set. Neutrality the degree of indeterminacy, as an
independent concept was introduced by Smarandache [7]. He also defined the Neutrosophic set of
three component Neutrosophic topological spaces (t, f, i) =(Truth, Falsehood, Indeterminacy),The
Neutrosophic crisp set concept converted to Neutrosophic topological spaces by A.A.Salama [13].
I.Arokiarani.[2] et al, introduced Neutrosophic « -closed sets. T Rajesh kannan[10] et.al
introduced and investigated a new class of continuous multivalued function is called
Neutrosophic a- continuous multivalued function in Neutrosophic topological spaces.

Aim of this present paper is, we define some new type of irresolute multifunction between the
two spaces. we obtain some characterization and some properties between such as Lower &
Upper a- irresolute multifunction.

2. PRELIMINARIES

In this section, we introduce the basic definition for Neutrosophic sets and its operations.
Throughout this presentation, (R®y,T r¢,) is namely as classical topological spaces on R¢,

(represent as CTSR®;) , (R",.T Ny ) is namely as an Neutrosophic topological spaces on
2

R",.(represent as NUTSR",,), The family of all open set in R®; (@ —Open inR®; , semi-openin R¢,
and pre-open in R®; respectively ) is denoted by O(CTSR®,)( ®O(CTSR¢;) , SO(CTSR¢;) and
PO(CTSRC,) respectively). The family of all Neutrosophic open set in RV, (@ —Open in R",,, semi-
open in RY,, and pre-open in RY,, respectively ) is denoted by O(NUTSR",,).( ®O(NUTSR",,) ,
SO(NUTSR",,) and PO(NUTSR",,) respectively). The family of all closed set in R®; (& —closed
inR¢; , semi-closed in R, and pre-Closed in R®; respectively ) is denoted by
C(CTSR®,).( ®C(CTSR®;) , SC(CTSR®;) and PS(CTSR®;) respectively). The family of all
Neutrosophic Closed in R",(a —closed in R",, , semi-closed in R",, and pre-closed in R",,
respectively ) is denoted by C(NUTSR",,).( @ C(NUTSR",,) , SC(NUTSR",,) and PC(NUTSR",,)
respectively)
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Definition 2.1 [7]

Let RN, be a non-empty fixed set. A Neutrosophic set Apn_ is an object having the formAn = {<¢,
Hag €0ay EVay € © & € RY)Where pugn, ©:R"; = [0,1] 050, €):RY, = [0,1],
,)/ARNI(E)):RN . — [0,1], are represent Neutrosophic of the degree of membership function, the

degree indeterminacy and the degree of non membership function respectively of each element ¢ €
R to the set Apc with0<p, . (f)+O'ARN (f)ﬂ/ARN () <1.This is called standard form
RN, 1 1

generalized fuzzy sets. But also Neutrsophic set may be 0 < 1, é)+o A (& ) *¥a é) <3
1 1 1
Remark 2.2[7]
we denotedpn = <& u Agn OAn Van > } for the Neutrosophic set
1 1 1
ARN1= {<€/ MARN1 (f)/O-ARNl (E),YARNl (€)> : EERcl}'

Example 2.3 [7]
Each Intuitionistic fuzzy set Agnv is a non-empty set in RM, is obviously on Neutrosophic set

having the form Apn = {<¢, .UARNl(f)r(l - (ﬂARNl + YARNl(f))) /YARN1(€)> :£eR%y)

Definition 2.4 [7]
We must introduce the Neutrosophic set 0y and 1y in RV as follows: :

0x=1{<§,0,0,1> ¢ € R";} & 1y=1{< §,1,0,0>: {€ RY,}
Definition 2.5 [7]
Let R, be a non-empty set and Neutrosophic sets Apv and Bpw in the form NS Agw = {<¢,

liARNl(f)/GARNl(E)/VARNl(f))> : $ER }&Byn = {<¢, ﬂBRNl(f)rUBRNl(f)rYBRNl(f)> : §€RC 1} defined as:
DA, € B, By O <ty €0, €20y, O and Vs, )2V, ©)
A, =18, Vo (§), Oy bty (§)>: 8 €R,)

(3)Agn,NBen  =(<, HARNI(E))/\.“BRNl(E)/ Ty, ENA UBRNl(f)/VARNl(f)V Yon, (§)>:§er™y
(D, VB, =1, EV iy, € Gy €V T,y (€Y () N €13 §ER™)

) ﬂAleC:{Qf/ A; #AjRNl(f); Aj UAjRNl(f): \7 VAjRNl(f)> :&erV, )

(6) Udjgn = (<€, V; .U'AjRNl(E)» V; UAjRNl(f), A )/AjRNl(f)> :£eRN ) for all E€RC,

Proposition 2.6 [9]
For all Agnv, andBgn are two Neutrosophic sets then the following condition are true:

1) (ARN1 N BRN1)C= (ARNI)CU(BRNl)C
(2) (ARN1 U BRN1)C= (ARNI)C n (BARNl)C
Definition 2.7 [10]
A Neutrosophic topology is a non -empty set RV is a family Ty RV, of Neutrosophic subsets in
RV, satisfying the following axioms:
(1) On, 1y € Twgn,
(ii) GRNlﬂHRN1 (S TNRNI for any GRNI,HRNl € TNRNl
(iii) U; Gign € Ty v forevery Gipn € TN/ Ie]
The pair (RY; 7y &N, ) s called a Neutrosophic topological space.
The element Neutrosophic topological spaces of Ty g are called Neutrosophic open sets.
A Neutrosophic set Apn_ is closed if and only if 4 szlc is Neutrosophic open.
Definition 2.8[10]
Let (RN, Ty RN1) be Neutrosophic topological spaces.
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Agn = {<E,MARN (f),UARN (f),)/ARN (£))>: £€RM,} be a Neutrosophic set in RV,
1 1 1
1.Neu-Cl(A4gn, ) =nf KARNI:K A, is a Neutrosophic closed set in RV;and Agn S KARN1}
2.Neu-Int(Apn ) = U{GARN1 :GARN1 is a Neutrosophic open set in RV, and GAszl Apn_ |
3.Neutrosophic Semi-open if Ay S Neu-Cl(Neu-Int(Agn ).
4.The complement of Neutrosophic Semi-open set is called Neutrosophic semi-closed.
5.Neu-sCl(Agxnv ) =N{K 4 , :K 4 , isaNeutrosophic Semi closed set in RV, and Apv CK 4 .
1 RN, RN, 1 RYq
6.Neu-sInt(4gn ) = U{GARN :G, . is a Neutrosophic Semi open set in R¢; and Gan CAgn ).
1 1
7 Neutrosophic a-open setif Agy € Neu-Int(Neu-Cl(Neu-Int(Agn . ))).
8.The complement of Neutrosophic a-open set is called Neutrosophic a-closed.
9.Neua- Cl(Agn,) =n{ KARN K Agn is a Neutrosophic « - closed set in RY, and Apn CK Agn }
1 1 1

RN1

10.Neu o -Int(Agnv ) =U {GARwl :GARN1 is a Neutrosophic « - open set in RV; and GARngARNl}.
11.Neutrosophicpre open set if Agv S Neu-Int(Neu-ClAgn ).
12.The complement of Neutrosophic Pre-open set is called Neutrosophic pre-closed.
13.Neu- pCl(Aszl) =n{ K Agn, K ARNliS a Neutrosophic P- closed set in RY, and ARNIQ{ARNl}
14.Neu- pInt(Agn ) = U{GARN1 Gy
Remark:2.9[11]

Let Apn  be an Neutrosophic topological space (RN, Ty Rcl).Then

(i) Neu a-Cl(Agn ) = Agn | U Neu-Cl(Neu-Int(Neu-Cl(Agn ) ))).

(if) Neu a-Int(Agn ) = Agnv, NNeu-Int(Neu-Cl(Neu-Int(Agn ))).
Definition 2.10[9]
Take ¢,,¢,,$, are belongs to real numbers 0 to 1 such that 0<§;+¢,+§,<1 .An Neutrosophic point
50(51, &, 63)15 Neutrosophic set defined by

0E, 555 ={E, 6 8)If =g

0,0,Dif & # ¢

Take 50(51, &y, 53) =<@¢, P¢, £¢,> Where g 0, §¢ are represent Neutrosophic the degree of

membership function, the degree indeterminacy and the degree of non-membership function

. . . N
Qv 18 @ Neutrosophic P - open set in R"; and GARng Agn ).

respectively of each element § € R, to the set Apn,
Definition:2.11
A Neutrosophic set Apnv in RV, is said to be quasi-coincident (g-coincident) with a
Neutrosophic set By denoted by Agn qBgn_ if and only if there exists § €RV; such that Agv (§) +
Bpn, ($)>1.
Remark: 2.12
Apn qBgn & Apn, Z BRNlc
Definition 2.13[9]
letRY, and R", be two finite sets. Define 1;:RY;—R",.
IfApn = {<6, ;LARNZ(H),O'ARN2 (9),]/ARN2(9))> : OER,}is an NS in RY,, then the inverse image( pre

image) Agnv, under 1, is an NS defined by ;™' (Agn_)=<¢, lpl-lﬂARNz ), ¢1‘10ARN2 é), ¢1‘1yARN2
(§) : §€R" >, Also define image NS U=<{, U, ($), 0y($), ¥, () : $€ RN > under Y, is an NS defined
by ¥, (U)=<6, (1, , () ¥, (@ (O Vs (O): 6ERY >
where 2

¢1(#ARN2(9)), ={ sup MARNZ(f), ify, ™" (0) %P, §€ ¥, (6)

0, elsewhere

¥y (04 O))=1{ supdy  (§)if Y1 (8) #p, SEY, T (O)
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0, elsewhere
Vi O 10k Gy ©169:70) 2, 8€ 7 6)
0, Elsewhere

Definition 2.14[2]
A mapping ¢13(RN1/TNRN1) —(RY,., ‘L'NRNZ) is called a
(1) Neutrosophic continuous(Neu-continuous ) if‘(/)l_l (A RNZ) € C(CTSRcl)whenever A RV, €
C(NUTSR",)
(2) Neutrosophic a-continuous(Neu «a - continuous) if 1/)1_1 (A RNZ) € aC(CTSRCI)
wheneverAgv, € C(NUTSRY,)
(3) Neutrosophic Semi-continuous(Neu Semi - continuous ) if 1/)1_1 (A RNZ) € SC(CTSRcl)
wheneverAgv, € C(NUTSRY,)
Definition 2.15.
Let (R¢,, Ty RC1) be a topological space in the classical sense and (R",.,Ty Rsze an Neutrosophic
topological space. ¥ : (R4, T RS, = (RN, Ty RNZ) is called a Neutrosophic multifunction if and only if
for each & € R®;, ¥ (£) is a Neutrosophic set in R",.
Definition 2.16
For a Neutrosophicmultifunction : ¥ : (R¢,,T RC,) — (RY,.,Ty RNZ),the upper inverse¥ *(I') and lower
inverse ¥~ (I') of a Neutrosophic set Iv, in R"; are defined as follows:

YH(Ipy,)={§ €RCL\ W (§) < [in, }and

Yo (Ign,)= {§ eR L\ ¥(§)q [en, 1.
Lemma 2.17.
For a Neutrosophicmultifunction ¥: (R, Tge ) — (RV2., Ty RNz)’
we have ¥~ (1- [v ) = R°1- W* ('), for any Neutrosophic set I'gy, in R";.
Lemma:2.18

Let [v, be a subset of Neutrosophic topology Ty RNZ.then

1.1, isa-closed inR" ,iffNeu-SInt (Neu-Cl(I3v,) < Iy,

2.Neu- SInt(Neu-Cl(I%v,) = Neu — Cl(Neu — Int(Neu — CI(Igx,))
Lemma:2.19
Let I';eN2 be a subset of Neutrosophic topology Ty RNZ.then below are equivalent

1w isNeu@-open inR",

2.Ugn, © Iy, © Neu — Int(Neu — Cl(URNZ)) for some Upn, of RY,.

3.Ugn, C Ign, © Neu — S(CL(Upn,)) for some Upn_of R",

4.Ipv, © Neu — SCl(Neu - Int(FRNZ))
Definition 2.19[6]
A Neutrosophicmultifunction :¥ : (Rcl,‘chl) — (RN, Ty RNz) is said to be 1.Neutrosophic upper semi
continuous at a point {€R; if for any Iv € O(NUTSR";), I'zn,. containing®(§) ,there exist § €
Ugc, € O(CTSR,) such that ¥ (Uxc,) € In,.
2.Neutrosophic lower semi continuous at a point §ER®, if for any T RN, E O(NUTSR",), with
¥ (§)ql gy, , there exist x € Upc, € O(CTSR®,) such that Y (Ugc,)al'gn,
3.Neutrosophic upper semi continuous (Neutrosophic lower semi continuous) if it is Neutrosophic
upper semi continuous (Neutrosophic lower semi continuous) at each point §€R®;.

4 Neutrosophic upper pre -continuous at a point §ER, if for any [, RN, E O(NUTSRM,), T' containing

T.RajeshKannan, and S.Chandrasekar, Neutrosophic a-Irresolute Multifunction In Neutrosophic Topological Spaces



Neutrosophic Sets and Systems, Vol. 32, 2020 394

¥(§) there exist § € Uzc, €PO(CTSR;) such that ¥ (Upc,) © Iy,
5.Neutrosophic lower pre- continuous at a point §€R®, if for anyl’ RV, E O(NUTSR",),
withW (§)qI'v, , there exist § € Upc €PO(CTSR®,) such that W(Ugc )qlgn,
6.Neutrosophic upper pre-continuous (Neutrosophic lower pre-continuous) if it is Neutrosophic
upper pre-continuous (Neutrosophic lower pre-continuous) at each point £€R®.
7 Neutrosophic upper a -continuous at a point §€RC if for any I, RN,E O(NUTSRY,), T' containing
¥(§) (thatis, F (§) € I), there exist § € Upc, € a O(CTSR¢;) such that ¥ (Uge,) € Ign,
8.Neutrosophic lower a - continuous at a point £€R®, if for anyl’ RN, E O(NUTSR",),
withW (£)ql'gv, , there exist x € Uge, € @ O(CTSR®;) such that ¥ (Ugc )qlgn,
9.Neutrosophic upper a -continuous (Neutrosophic lower a -continuous) if it is Neutrosophic
upper a -continuous (Neutrosophic lower a -continuous) at each point £ER® ;.
10.Neutrosophic upper quasi-continuous at a point §ER® if for any [, RN,E
O(NUTSRN2),FRNzcontaining ¥ ($) there exist§ € Upc €S O(CTSR¢;) such that ¥ (Uge,)
C Ign,
11.Neutrosophic lower quasi semi continuous at a point ¢ €R®, if for anyl'pn € O(NUTSR",), with
¥ (§)ql'gy, , there exist § € Upc €S O(CTSR®,) such that ¥Y(Ugc,)al'gy,
12.Neutrosophic upper quasi semi continuous (Neutrosophic lower quasi semi continuous) if it is
Neutrosophic upper quasi semi continuous (Neutrosophic lower quasi semi continuous) at each
point £ER® ;.
III. Lower a-Irresolute Neutrosophic Multifunctions
In this section, we introduce the Definition for Neutrosophic Lower «- irresolute
multifunction and its properties
Definition 3.1.
An Neutrosophic multifunction ¥ : (R;,Tgc ) — (RV., Ty RNZ) is said to be
(1) Neutrosophic lower a-irresolute at a point x, € R¢, , if for any I, xv, € aO(N UTSRY,) such
that ¥ (x,)q Ipn, there exists Upc, € aO(CTSR®;) containing x, such that ‘P({)qFRNZ, V¢ € Upe,
(2) Neutrosophic lower a-irresolute if it is Neutrosophic lower ar-irresolute at each point of R¢;.
Theorem 3.2
Every Neutrosophic lowera-irresolute multifunction is Neutrosophic lower a-continuous
multifunction.
Proof:
Lettingx, € Ry, W:(Ry,Tpe) — (RNZ.‘L'NRNZ) and Iv, € O(NUTSRY;)
such that ¥ (x,)q gy, But we know that, Everylin, ,Iv, € O(NUTSRY,) is
Iyn, € aO(NUTS RY,),.Therefore v, € aO(NUTS RY,).By our assumption ,Neutrosophic
lowera —irresolute multifunction, there exists Ugc, € aO(CTSR ¢,) containing x, such that

Y(&)qr gV, V¢ € Upc Hence? is Neutrosophic lower a-continuous multifunction at x,.
Theorem 3.3

Every Neutrosophic lowera — irresolute multifunction is Neutrosophic lower Pre continuous
multifunction.

Proof:

Lettingxg € Ry, ¥ @ (R°yTye) — (RNZ.,TNRNZ) and Tn, € O(NUTSRY;) such that
¥(x,)q Tgy,. But we know that, Everylpn ,Ipn, € O(NUTSRV,)is

v, € aO(NUTSRN;).Therefore Iin, € aO(NUTSR";).By our assumption ,Neutrosophic lower
a-irresolute multifunction, there exists Ugpc € aO(CTSR®,) containingx, such that
WY (xo)qlgn, Vx € Ugc .everyUgc ,Upc € aO(NUTSRY,)isUgc € PO(CTTSR")).

T.RajeshKannan, and S.Chandrasekar, Neutrosophic a-Irresolute Multifunction In Neutrosophic Topological Spaces



Neutrosophic Sets and Systems, Vol. 32, 2020 395

There  existsUpc, € PO(CTSR®;) containingx, such that Y(&gr gV, ¥ € Upc HenceV is
Neutrosophic lower Pre-continuous multifunction at x,.
Theorem 3.4
Every Neutrosophic lowera-irresolute multifunction is Neutrosophic lower quasi semi
continuous multifunction.
Proof:

Lettingxo € Ry, ¥ @ (R, Tpe) — (RNZ.,TNRNZ) and v, € O(NUTSR";) such that
W(xo)q I'gy,, But we know that, Everylin ,Ixn, € O(NUTSRM))is
Ipn, € aO(NUTSRY,),Thereforer, RN, € aO(NUTSR",).By our assumption ,Neutrosophic lower
a — irresolute multifunction, There  exists Ugc € aO(CTSR®,) containing x, such that
Y(&)qryn, V¢ € Ugc Here every Ugc ,Upc, € aO(NUTSRY,)isUgc € SO(CTTSRY,). Finally
we get , There exists U R, € SO(CTSR®,) containing x, such that Y(&gr RV, V§ €U Rclhence ¥is

Neutrosophic lower quasi semi continuous multifunction at x,.

Theorem 3.5

Let? : (R, The) > (RY, ,Tngn,), be an Neutrosophic multifunction and letting x, € R¢,.
Then the following statements are equivalent:

(a) ¥ is Neutrosophic lower a-irresolute at x,.

(b) For any v, Ipv, € aO(NUTSR" ) with (x0)qIxn, , = xo € sCl(Int(¥~(Iyn)))).

(c) For any Ugc , Uge, € SO(CTSUgc,) ,%o€Ugc, and for each [pn , Ipn, € aO(NUTSR" ) with
¥ (x)qlgv,, there exists a Vgc, € O(CTSR®;) , Vie, © Ugc, such that ’P(f)qVRcl,v § € Vi
Proof.
(a) = (b). Letx, € R®; andln, € aO(NUTSR";) such that W(xo)qI"RNz Then by our assumption
(a) , we get there exists Upc, € aO(CTSR®,) such that x, € Uge, and F(§)qlpn,, V § € Ugc .Thus
Xg € Upc, © BV‘(FRNZ) ...... (1) Here Upc, € aO(CTSR®;) .we know that for any set Apc , Agc, €
aO(CTSR¢ )= Apc, < sCl (Int(ARcl)). Therefore, Ugc, < sCl (Int(URcl)) .. (2). from(1) and(2),
we get x, € sCl (Intll"(FRNZ)).Hence (b).
(b) = (c). Let FR"’Z € a0(NUTSR",) such that (xo)qlﬁRN2 , then x, € sCl (Int‘l"(FRNZ)). Let Ugc, €
SO(CTSR®,) and x, € Ugc, Then Ugc, N Int (¥~ (In,)) # @ and Upc, 0 Int (¥~ (Iw,)) is semi-
open in R®y. Put Vic, = Int(Uge, NInt(¥~(Ixn, ), Then Vic is an open set of Ry, Vic <
Ugc,, Ve, # pand ’P(v)qI"RNZ YV € Vpe . (c) = (a).Let {Ug} be the system of the sO(CTSR;)
containing ¢.
Let Upc € SO(CTSR¢,) and x, € Ugc, and Any FR’VZ € a0(NUTSY) such that lI’(xo)qFsz2 , there
exists a nonempty open set By < Ugpc Such that lP(v)qI"RN2 Vv € By. Let Wipe, =UBy: U €
{Uxo}, then Wpe € O(CTSR;),and  x, € sCl(Wpgc, ) and W (v)qlgn,, Vv € Wee Put S pc =
Wee, Ufxo), then Wpye < Spe © sCl(Wge ). Thus Spc € aO(CTSR®1)),xo € S e, and
Y(v)ql'gy,, Vv € S gc . Hence Wis Neutrosophic lower a-irresolute at xo.
Theorem 3.6

LetW : (RC 1'TRC1) - (RN 2"TNRN2)' be an Neutrosophic multifunction. Then the following

statements are equivalent:
(a) ¥ is Neutrosophic lower a-irresolute.
(b)#~(Agv,) € aO(CTSR®,),for every Neutrosophic a-open set Agn, of RY;.
R4 (Bgn,) € aC(CTSR¢,),for every Neutrosophic a-closed set ﬁRNZ of RV,.
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(d) sint(CLCP* (Ign,))) © ¥*(Neu — aCl(In,)), for each Neutrosophic setlpv of R" ;.
e ¥ (s]nt (Cl(VRcl))) C Neu — aCl(¥(Vgc))),.for each subsetVyc, of RC,.

6H¥Y (aCl(VRcl)) C Neu — aCl(¥(Vge,)),for each subset Vic of R¢,,
() aCl(P*(I'gn,)) © P*(Neu — aCl(I'yn, ) for each Neutrosophic set [zv, of RY .

(h ¥ (Cl (Int (CI(ARcl)))> C Neu — aCl(¥(Agc,)).for each subset Apc of RE,.

Proof.
(@)=(b). LetAgv, € aO(NUTSR";) and x, € ‘P‘(ARNZ)suCh that¥(xg)qAgy,, since ¥ is
Neutrosophic lower a-irresolute, Applying previous theorem, it follows that x, €
sCL(Int (¥~ (Agn,)))- As x, is chosen arbitray in ¥ (Agn ), we have ¥ (Agn,) © sCI(Int¥~(Agn,))
and thus ¥~ (Av,) € aO(CTSR®;). Hence ¥~ (A,n,) is an @ —open in R¢;.(b)=¢a). Let x, € R®; and
Agv, € aO(NUTSRY,)such that ¥(x)qAgv,, so thatx, € P~ (Azn,). By hypothesis ’P—(ARNZ) €
aO(CTSR®;). We have x, € W~ (Agn,) © sCL(Int(¥~(Agn,))) and we get ¥ is Neutrosophic lower

a-irresolute at x,. As x, was arbitrarily chosen, ¥ is Neutrosophic lower a-irresolute.
(b)&(c). From the definition, both are equivalent.

(c)=> (d).Let I';gvz € (N uTrsr RNz)‘ taking closure , Neu- aCl(I; RNZ) is Neutrosophic a-closed set in
RY,. By our assumption, ¥ (Neu - (ZCI(FRNZ)) € aC(CTSR®)).
We know that sIntCl(Agc ) © Age, iff Ape € aC(CTSR,).

we obtain ¥* (Neu — aCl(Iw,)) > sint (Cl (lp+ (Neu - Cl(rRNZ))>) > sint (cz (w(rRNZ))).
(d) = (e) Suppose that (d) is satisfied and let V¢ be an arbitrary subset of R;. Let us Takelpv, =

Y(Vge, ), ThenVpe < ¥*(Ixn,). Therefore, by hypothesis, we have
sInt(Cl(Vge ) < sint(CLP T (Ipn,))) © PH(Neu — aCl(Ipn,)).

Therefore, ¥ (sInt (Cl(VRcl))) cvy (ll’+ (Neu - aCl(I"RNZ))) c Neu — aCl(FRNZ) = Neu —

acCl (w(chl)).

(e) =(c).Suppose that (e) is true. and let [y, € aC(NUTSR",). Put Vee, = ¥*(I),Then ¥ (Ve ) <
I'gy,. Therefore, by our hypothesis, we have b 4 (slnt (CZ(VRcl))> c Neu — aCl (W(VRcl)) c
New — aCl(I'gv,) = T'gy,.And YH (W (sint(Cl( Vee )))) © W (Ign,). Since we always have
Y (sint(Cl( Vee D)) 2 sint(CL(Vge ), Then must verify lJF’Jr(I"RNZ) D sint (Cl ('P*(FRNZ))). We

know that sIntClVpc < Ve iff Ve € aC(CTSRC,),Finally we get F*(Ign,) € aC(CTSRS,).

(A= (0. Here Ve, © PH(¥(Vie))), we have Vi, © W*(Neu — CL(¥(Vic,))). NowNeu-
aCl(¥(Vgc,)) is an Neutrosophic a-closed set in RV, and so by our assumption,'xl’+(Neu—
CI(W(Vge)))) € aC(CTSRCI).ThusaCl(VRcl) cY¥*t(Neu — aCl(¥ (Vge)))).

Consequently, ¥ (aCl(VRcl)) cy (‘l’+ (Neu — aCl (W(VRCI)))> C Neu — aCl(¥(Vge))).

()= (o).Let I, € aCO(NUTSR",). Replacing Vie, by P we get by(f), lzU(aCl(le+(I"RNZ))) c
Neu — aCl(lI’(lI’+(FRN2))) C Neu — aCl(I'gn,) = I'pv,.Consequently, aCl(¥¥(Ixn,)) © P*(Iin,).
But ¥ (Ipn,) © aCl(¥*(Iyn,)) and so, aCl(¥*(Iyn,)) = ¥*(Iyn,).

Thus ¥ (I;v,) € aC(CTSRE,).

T.RajeshKannan, and S.Chandrasekar, Neutrosophic a-Irresolute Multifunction In Neutrosophic Topological Spaces



Neutrosophic Sets and Systems, Vol. 32, 2020 397

(f) = (g). Letlv, be any Neutrosophic set of RY,. Replacing Vic by '1”+(FRNZ) we get by

), <aCl ('%’Jr(FRNz))) C NEU — aCl(W(¥" (I'gy,))) < Neu — aCl(Ign,).Therefore  we  get
aCl(P*(Ign,)) © P (Neu — aCl(Ign,)).
(8= (f). Replacing Ipv, by W(Vie ), where Vie is a subset of R®;, we get by our result
(8),aCl(Vee ) © aCl(PF (¥ (Vge))) = aCl(¥P*(Ixn,)) = P (aCl(Ixn,)) = PH(aCl(¥ (Vge)))). Thus
W (aCl(Vge))) © Y@ (aCl(¥(Vye,))) © New aCl(¥(Vge)).
(e)= (h).Clearly is true from the above result.
(h)=(a). Let { € R°;and [v, € aO(NUTSR" ))such that (& )qlgn, . Then & € W_(FRNZ).We shall
show that ¥ (Iv,) € aO(CTSR®;). By the hypothesis, We have W(Cl([nt(Cl(W+(FRNZC))))) c
Neu — aCl(lIJ(lIﬁ(FRNZC))) c (I'py,), Which  implies Cl(Int(Cl(‘If+(FRN2+))))) CYT (In,) ©
(Y~ (Ixn )¢ Therefore, we obtain ¥ (Ipn,) © Int(Cl(Int(¥~(Ixn,)))). Hence ¥ (Inv) €
aO(CTSR¢,). Put Uge, = ¥~ (Ixn,). Then ¢ € Uge, € aO(CTSR®,) and lP(u)qI“RNZ forevery u €
Upgc,- Therefore ¥ is Neutrosophic lower a-irresolute.
IV. Upper a-Irresolute Neutrosophic Multifunctions

In this section, we introduce the Definition for Neutrosophic upper @- irresolute multifunction
and its properties
Definition 4.1.

An Neutrosophicmultifunction ¥: (R¢;, T RS, = (RN,. Ty RNz)’ is called
(a) Neutrosophic upper a-irresolute at a point x , € R, , if for any Iy Iin, € aO(N UTSRY,.)
such that ¥ (x o) © Iy, there exists Uzc, € @0(CTSR®,) containing x gsuch that ¥ (Ugc ) < I,
(b) Neutrosophic upper a-irresolute if it is satisfied that property at each point of R¢;.
Theorem 4.2
Every Neutrosophic upper a-irresolute multifunction is Neutrosophic uppera-continuous
multifunction.
Proof:
Lettingxo € Ry, ¥ : (R€y,Tge ) — (RNZ.,TNRNZ) and Iv, € O(NUTSR";) such that ¥ (x,) © Iy,
But we know that , everylin ,Ixv, € O(NUTSRY;) is In, € aO(NUTSR",), Therefore Iyn, €
aO(NUTSRY,),By our assumption ,Neutrosophic lower a — irresolute multifunction, There exists
Uge, € aO(CTSR®;) containing x, such that ¥(§) c Ipy,, V¢ € Upc Hence ¥ is Neutrosophic
lower a-continuous multifunction at x,.
Theorem 4.3
Every Neutrosophic upper a-irresolute multifunction is Neutrosophic upper Pre-continuous
multifunction.
Proof:
Letting xo € R®;, ¥ @ (RC,,Tge)) — (RNZ.,TNRNZ) and Ipv, € O(NUTSR";) such that ¥(x,) c
Iy, But we know that , Everylpn ,Ipn, € O(NUTSR"p)is  Iin, € aO(NUTSRM,).Therefore
v, € aO(NUTSRY;).By our assumption ,Neutrosophic uppera —irresolute multifunction, There
exists Upc, € aO(CTSR®,) containing x, such that Y() c Ty, ¥ € Upc ,everyUpc Upc €
aO(NUTSR",) is Uge, € PO(CTTSRY,).There exists Uge, € PO(CTSR®,) containing x, such that
W(§) c gy, V& € Upge hence ¥ is Neutrosophic upperPre-continuous multifunction at xo.
Theorem 4.4
Every Neutrosophic  upper a-irresolute multifunction is Neutrosophic upper quasi semi
continuous multifunction.
Proof:
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Letting xo € Ry, ¥ 1 (R€y,Tye)) — (RNZ.,TNRNZ) and v, € O(NUTSR";) such that ¥(x,) c
gy, But we know that, Everylin ,In, € O(NUTSRY;)is v, € aO(NUTSRY,),

Therefore v, € aO(NUTSRY;), By our assumption ,Neutrosophic —uppera -irresolute
multifunction, there exists Ugc, € aO(CTSR®;) containingx, such that Y@ cr RN, VE €
Uge,.BveryUpc ,Ugc, € aO(NUTSR",)isUpc € SO(CTTSR",). Their exists Uge, €
SO(CTSR®,) containing x, such that ¥(§) c T rV,» V¢ € Upc Hence ¥is Neutrosophic upper

quasi semi continuous multifunction at x,.
Theorem 4.5
Let : (RCy,Tre,) — (RV2., Ty g¥,)» be an Neutrosophic multifunction and let & € R®,. Then the

following statements are equivalent:

(a) ¥is Neutrosophic Upper a-irresolute at ¢.

(b) For each I‘,’ezv2 € aO(NUTSR",) with (§) c Iin, , Implies & € sCl(Int(¥~(IN))).

(c) For any ¢, € Ugc, € SO(CTSR®,) and for any [;ezv2 € aO(NUTSRY,) with (§) c S

there exists a nonempty open set Voc, < Ugc suchthat ¥'(Vipe ) < Iy, .

Proof.
(@)= (b) Let§ € R®; and [pv, € aO(NUTSR",) Such that ¥ (§) c I'pv, Then by our assumption
(a), we get there exists Upc, € @O(CTSR®;) such that § € Ugc and F(Ugc ) < Iyn,, Thus § €
Ugc, € W*(Ixnv,). here Upc € aO(CTSR)) We know that for any set Agc, Apc €
aO(CTSR¢ ))& Agc, < sCl(Int(Agc ). Therefore, Uge, © sCl(Int(Ugc ). Finally we get & €
sCL(Int¥™ (I'gv))-hence(b).
(b)= (o). Let [3v, € aO(NUTSR" ) such that ¥ (§) c Tpy,, then & € sCI(Int¥™ (Ixn,)). Let Upc €
SO(CTSR®,) and € € Upc,.ThenUpc N Int(¥~(Ign,)) # ¢ and Ugc, N Int(¥~(Ixn,)) is semi-
open in R;.Put Ve, = Int(Uge, N Int(P~(Izn,)), Then Vic is an open set of Ry, Vie ©
Ugc, Vie, #@and W (Ve ) < Ty,
(c) =(a).Let {U;} be the system of the SO(CTSR®,) containing¢. Let Upc, € SO(CTSR®;) and § €
Uge, and Let [pv, € aO(NUTSR",) such that ¥ (§) C Iy, there exists a nonempty open set
By © Ugc, Such that W) cTlyw,Vv € By, Let Wpc =UBy: Ugc, € {Ug}, then
Wge, €O(CTSR®;) and & € sCl(Wge ) and ¥ (v) € I'pn,, Vv € Wye Put Spc, = Wye U
§Then Wpe, C Spc, © sCl(Wge, ). Thus Sgc, € aO(CTSR®})),§ € Spe, and ¥(v)
I'pv,, Vv € S. Hence ¥ is Neutrosophic Upper a-irresolute at £.

Theorem 4.6

For an Neutrosophicmultifunction : (R®y,T RS, — (RY,, Ty RNZ)the following statements are
equivalent:

(a) ¥ is Neutrosophic upper a-irresolute.

b)Y (T, xv,) € aO(CTS R€)),for every Neutrosophic a-open set I of RY,

(@ W (Agnv,) € aC(CTSR®,),for each Neutrosophic a-closed set Agn, of R",.

(d) For each point ¢ € R®, and for each a-neighborhood Vgn, of YE)inRY, F* (Vgn,) is an
a-neighborhood of €.

(e) For each point § € R®; and for each a-neighborhood Vv of ¥ (§) in RY,., there is an a-
neighborhood Upgc of § such that ¥ (Upe ) © Vin, .

(B) aCl(¥~(A4n,)) © ¥~ (Neu — aCl(4gn,)) for each Neutrosophic set /1RN2_of RV,.

(8) sint(CL(¥~ (Agn,))) © ¥~ (Neu — aCl(/lRNZ_))for any Neutrosophic set 2 of R",..
Proof.
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@)= (b). Let Iv e aO(NUTSR",.) and & € ‘P+(1}N2).Applying previous theorem, we get ¢ €
sCl(Int¥™ (I'gn)).Therefore, we obtain '1”+(1"sz2) c sCl (Int‘I“(FRNZ))., Finally we get ¥ (Ixn,) €
a0 (CTSRC,).

(b)= (a). Let &be arbitrarily point in R¢; and [v eaO(NUTSR",.) such that ¥ () c I'pv so €
¥*(Iyn,) - By hypothesis '1”+(1”sz2) € aO(CTSR®,), we get§ € W' (Ign,) < sCl(Int(¥" (I'gn,)))
and hence F is Neutrosophic upper a-irresolute at £.As ¢ is arbitrarily chosen, ¥ is Neutrosophic
upper a-irresolute.

(b)= (c). This implies easily get from that [~ (FRNZ)]C = [‘I“(I"RNZ)C].Where v, €aO(NUTSY)

()= (f).Let Agv, €aO(NUTSR";.) .Then by our assumption (c), ¥~ (Neu — aCl(Agn,)) is an a-
closed set in R“;. We have ¥ (Neu — aCl(An,)) 2 sInt(CL(¥~(Neu — Cl(Agn,)))) 2

sint(CL(¥Y~ (Agn,))) 2 P~ () U sint(CL(P™(Agn,))) 2 aCl(¥~ (Agn, )).Hence the result.
()=(g).Let Apv eaO(NUTSR,.). we have aCl(¥~(Agn,)) = ¥~ (Agn,) U sint(CL(P~(Agn,))) ©
¥~ (Neu — aCl(Agn, )). Hence (g).

(g)=(c).Let ARNZ_CG aC(NUTSR",.)Then by (g) we have,

sint (cz (w-(ARNZ_C))) c WA, ) U sint (cz (sv-(ARNz_C))) c v (aCl(gn, ) = ¥~ (Agn, ©).
Hence By our result, W‘(ARNZ_C) € aC(CTSR,).
(b)=(d).Let & € R, and Vgnv, be an a-neighborhood of Y(&) in RY,.Then there is an
Agn, €aO(NUTSRY;.) such that ¥(§) < Agn, < Vv, . Hence, & € WF(Apn,) © ¥7(Vgn,). Now
by hypothesis ¥ (Agv,) € @O(CTSR®;), and Thus pr (Vgn, ) is an a-neighborhood of §.
(d)=e). Let § € R°;and Vin_ be an a-neighborhood of ¥(§) in RY;.Put Upe, = W*(Viw_ ). Then
Ugc,is an a-neighborhood of and P (U) c Vgn,,
(e)=(a).Leté € R", andVyn be an Neutrosophic set in R, such that ¥ (§) c Vgn, .V, being an
Neutrosophic a-open set in R",. , is an a-neighborhood of ¥(¢) and according to the hypothesis
there is an a-neighborhood Ugc of ¢ such that W(URcl) C Vgn, Therefore Vv € aO(CTSR®,)

such that § € Apc C Uge, and hence W(4) c W(URcl) C Vgv, .Hence ¥ is Neutrosophic

upper a-irresolute at &.
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