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Abstract. This paper introduces the idea of a neutrosophic vague subbisemiring (NSVSBS), level sets of
NSVSBS, and (p, o)-neutrosophic vague subbisemiring ((p, 0)-NSVSBS) of a bisemiring. NSVSBSs are gener-
alizations of neutrosophic subbisemirings and SBS based on bisemirings. Let A be a neutrosophic vague subset
in B, we show that V = ([T, T 1, [Zx, ZX 1, [Fr s FX1) is a NSVSBS of B if and only if all non empty level set
Ytista:s) g a SBS of B for t1,t2,s € [0,1]. In the case that A is a NSVSBS of a bisemiring B and V is the
strongest neutrosophic vague relation of B, we prove that A is a NSVSBS of B x B. Let A be any NSVSBS of
B, prove that pseudo neutrosophic vague coset (7A)P is a NSVSBS of B, for every 7 € B. Let A1, Ao, ..., A,
be the family of NSV SBS® of B1, B, ..., By, respectively. We show that A1 X Az X ... X A,, is a NSVSBS of
B1 X Bz X ... X Bp. The homomorphic image of every NSVSBS is a NSVSBS. The homomorphic pre-image of
every NSVSBS is a NSVSBS. Examples are provided to strengthen our results.

Keywords: subbisemiring; neutrosophic subbisemiring; neutrosophic vague bisemiring; homomorphism

1. Introduction

Due to the limitations of classical mathematics, such as fuzzy set (F'S) [1] and vague set
(VS) [2], mathematical theories have been developed to address uncertainty and fuzziness. In
the case of uncertain or vague situations, FS introduced by Zadeh [1] is the most appropriate
technique. In recent years, many hybrid fuzzy models have been developed based on FS. A
generalization of F'S, intuitionistic fuzzy set (IFS) incorporate hesitation levels into the notion

of FS, which were first proposed by Attanasov [3] in 1983. The neutrosophic set (NSS) was
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proposed in 1999 by Smarandache [4]. In NSS; each proposition is estimated to have a degree
of truth, an indeterminacy degree, and a falsity degree. As a result of Smarandache [5], he
further generalised and expanded the theory of IFSs to include the neutrosophic model as
well. A study of fuzzy semirings was initiated by Ahsan et al. [6]. Palanikumar et al. [?,?]
discussed tri-quasi-ideals and bi-quasi-ideals are natural generalizations of rings such that they
constitute a natural generalization of ternary semirings, semirings and ordered semirings. In
2004, Sen et al. |[17] extended the study of semirings and proposed the concept of bisemiring
to further develop them. The study of vague algebra was initiated by Biswas |18] through the
introduction of vague groups, vague cuts and vague normal groups. In their work, Arulmozhi
et al. |[19] focus on the interaction between semirings, ternary semirings and other algebraic
structures. A semiring (5, +,-) is a non-empty set in which (S,+) and (.5, -) are semigroups
such that “” is distributive over “+” [20]. In 1993, Ahsan et al. [6] introduced the notion of
fuzzy semirings.

An introduction to bisemirings was made in 2001 by Sen et al. [21]. A bisemiring (B, 0, ®, X)
is an algebraic structure in which (B,0,®) and (B, ®,X) are semirings in which (B,0), (B,®)
and (B,X) are semigroups such that (a) ( ® (397) = (R© I)O(R© 7), (b) (SO7) ©@ R =
(SeR)PO(TOR), (c) RX(So7) = (RHI)© (RK7) and (d) (Se7)XR = (IXR)e (TXR)
for all ®, 3,7 € B [17]. A non-empty subset A of a bisemiring (8,0, ®,X) is a subbisemiring
(SBS) if and only if RO € A, RO I € A and RXJ € A for all R, & € A [21]. Palanikumar et
al. discussed the various ideal structures of SBS theory and its applications [7]- [16]. However,
numerous algebraic concepts had been generalized using F'S theory. Fuzzy algebraic structures
of semirings have been extensively investigated by Vandiver [22]. These are generalizations of
rings requiring only a monoid, rather than a group, to achieve a particular additive structure
and have been shown to be useful for a wide range of problems. Golan [20] and Glazek [23]
have both extensively studied the application of semirings.

Bipolar fuzzy information has been applied to various algebraic structures over the past few
years, like semigroups [?,/14,/15] and BCK/BCI algebras [24-27]. An application of bipolar
fuzzy metric spaces was discussed by Zararsz et al. [28]. A vague soft hyperring and a vague
soft hyper ideal were introduced by Selvachandran [29]. The bipolar fuzzy translation was
introduced by Jun et al. [30] and BCK/BCI-algebra and its properties were investigated. A
bipolar fuzzy regularity, bipolar fuzzy regular sub-algebra, a bipolar fuzzy filter, and a bipolar
fuzzy closed quasi filter have been introduced into BCH algebras in [31]. In 2004, Sen et
al. [17] contributed to the field of semirings by proposing bisemiring as a concept. Hussain et
al. [32] defined the congruence relation between bisemirings and bisemiring homomorphisms. In

addition to bisemiring, Hussain et al. [21,|32] described an algebraic structure called semiring
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and congruence relations between homomorphisms and n-semirings based on this algebraic
structure.

Neutosophic vague subbisemirings (NSVSBS) are discussed here, as well as their level sets.
Subbisemirings are a generalization of bisemirings, and NSVSBSs are a generalization of sub-
bisemirings. A number of illustrative examples are provided to illustrate the theory for (£, 7)-
NSVSBS over bisemiring theory. Following is an outline of the preliminary definitions and
results presented in Section |2l The concept of a NSVSBS is introduced in Section |3} There is
more information about (&, 7)-NSVSBS in Section [4

2. Basic concepts

For our future studies, we will quickly review some fundamental terms in this section.

Definition 2.1. |4 A neutrosophic set (NSS) A in a universal set U is A =
{(R, TA(R),ZA(R), FAR)) : R e U}, where Tp,Za, Fp : U — [0,1] denotes the truth, inde-
terminacy and the falsity membership function, respectively. For (Tx,Zx, Fa) is used for the
NSS A ={(R, TaA(R),ZA(R), FA(R)) : R e U}.

Definition 2.2. [4] Let A = (Ta,Zp, Fa) and ¥ = (Ty, Zy, Fy) be the two NSS of ¢. Then

(1) AN = {(R, min{TA(R), Te(R)}, min{Zx (R), Zo (R) }, max{Fr(R), Fu(R)}) : R € U},
(2) AU = {(R, max{Ta(R), Tu (W)}, max{Zx(R), Ly (R) }, min{ FA(R), Fu (R)}) : R € U},

Definition 2.3. [4] For any NSS A = (Tx,Za, Fa) of U, we defined a (p, o)-cut of as the crisp
subset {R €U : TA(R) > p,ZA(R) > p, FA(R) < o} of U.

Definition 2.4. [4] Let A and ¥ be two neutrosophic subsets of S. The Cartesian product
of A and U is defined as A x ¥ = {((R,]), Taxw (R, ), Zaxw (R, ), Faxw (R, F)) : R, €
S}, where Taxw(R,S) = min{Ta(R), Te ()}, Zaxw (R, S) = OO 4ng 70 (R,S) =
max{Fa(R), Fu(3)}.

Definition 2.5. [18] A vague set (VS) A = (Ta, Fa) of B is said to be vague semiring if

{77\(51 +£2) > min{Tx(¢1), 77\(52)}}
Ta(ly - b2) = min{Tx(¢1), Ta(l2)}
and
{ 1 —Fa(ly +¥€3) > min{l — Fp(¢1),1 — fA(fz)}}
1— Fa(lr - €2) > min{l — Fa(f1),1 — Falla)} |
for all /1,45 € B.

Definition 2.6. [18] A VS A in ¢/. Then
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(1) A VS A = (Ta, Fa), where Ty : U — [0,1],Fp : U — [0,1] are mappings such that
TaA(R)+Fa(R) < 1, for all R € U where Ty and Fp are called true and false membership

function, respectively.
(2) The interval [TA(R),1 — Fa(R)] is called the vague value of R in A and it is denoted
by VA(R), i.e., VA(R) = [TA(R), 1 — Fa(R)].

Definition 2.7. [18] Let A and ¥ be the two VSs of #. Then

(1) A is contained in ¥ as A C ¥ if and only if VA(R) < Vg (R), i.e. TA(R) < Ty(R) and
1—-FA(R) <1—-Fy(R) forall R e U,

(2) the union of A and ¥ as A = AUV, Ta = max{7x, Ty} and 1 — FA = max{l — F),1—
Fy} =1 —min{Fy, Fy},

(3) the intersection of A and ¥ as A = AN Y, Ta = min{7x, Tv} and 1 — FAo = min{l —
Fa, 1 — Fyg} =1—max{Fp, Fo}.

Definition 2.8. [18] Let A and ¥ be any two VSs in /. Then

(1) AN = {(R, min{7A(R), To(R)}, min{l — FA(R),1 — Fu(R)}) : R e U},
(2) AUT = {(R, max{Ta(R), Te(R)}, max{l — FA(R),1 — Fu(R)}) : R € U},
(3) OA = {(R, Ta(R),1 = Ta(R)) : R e U},
(4) OA={(R,1 - FA(R), FA(R)) : R U}.

3. Neutrosophic vague subbisemirings

In all cases, assume that 3 represents a bisemiring.

Definition 3.1. A neutrosophic VS A of B is represent a NSVSBS of B if

VIRO,S) > AREE)

VI(RO1S) > min{ V] (R), V] (3)} OR
VI (R0:8) > min{V] (R), V] (3)} VE(R0,S) > AR
VI (R033) > min{V](R), V] (3)} OR

Vi(%<>3%) > V/%(%);Vf(g)

)

VI (RO1S) < max{V{(R), V{ ()}

VI (RO3S) < max{V{(R), VI ()}
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That is,

I (ROLS) > W7
Ty (RO13) > min{T, (R), T, (S)}, Ty (RO1SQ) > w

1 —F, (RO1SQ) > min{l — F (R),1 — Fo (I)} OR
Th (R029) > min{ T, (R), Ty ()}, T (R0,S) > LLEHIIE)
1—Fy(RO2T) > min{l — Fy (R),1 — F, ()} Ty (RO2S) > w

Ty (R039) 2 min{ 7 (R), T3 ()}, O
1 —Fy (ROsQ) > min{l — Fy (R), 1 — FL ()} I} (RO5S) > w’
Ty (R0O3S) > w

Fr (R01S) < max{Fy (R), Fy ()},

1= Ty (RO1S) < max{l - Ty (), 1 - T4 ()}
Fr (R029) < max{Fy (R), F5 (3)},

1= T (R029) < max{1 — Ty (). 1 - T4 ()}
Fi (R033) < max{Fy (R), Fy (3)}.

1= T3 (R053) < max{l — Ty (), 1 - Ty (3))

for all R, S € B.

Example 3.2. Let B = {a,d,a,d} be the bisemiring.

<>1 alalalad <>2 alalala <>3 alalala
alalalala alalalal|d a lalalala
alalalala alala|d|d i laldalalad
alalalala al|laldl|lalad a |d|dld|a
alalalalad alaladlalad al|dlaladla
[Ta (9)s Ta ()] | [Z5 (9). ZX ()] | [F4 (9), Fi ()]
p=al| [0.75,0.8] [0.85,0.9] 0.2,0.25]
p=a [0.65,0.75] [0.8,0.85] [0.25,0.35]
po=a [0.50, 0.55] [0.65,0.70] [0.45,0.50]
o=a| [0.55,0.65] [0.75, 0.80] [0.35, 0.45]

Clearly, A is a NSVSBS of B.

Theorem 3.3. The intersection of a family of every NSV.SBS® of B is a NSVSBS of B.
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Proof. Let {V; : i € I} be a collection of NSV SBS?® of B and A = ﬂVi.
iel
Let ®, & in B. Then

Ty (RO1S) = inf T, (R019)
> inf min{7; (R), Ty, (3)}

— min {inf Ty, (R), inf TV‘.(%)}

el 4 el H

= min{7," (R), Ty (I)}-

L= Fy (RO19) = inf 1 - Fy, (RO:9)

> inf min{1 — Fy, (1), 1 - Fy,(3))
1€ v ¢

— min {inf 1 - 7,

; T (X
iel l(%)’igl ]:Vi(\s)}

=min{l — F, (N),1 - F, (I)}.

Thus V] (RO13) > min{VA(R), Va(I)}. Similarly, VI (R023) > min{VA(R), Va(S)} and
V{(R03S3) > min{VA(R), Va(S)}. Now,

Ty (RO1S) = inf T, (ROIS)

I{(R019) = inf T (RO1S)
LR+ L)
> inf C L
iel+ 2

inf Z)} (R) + inf I3} (S
2t D0+ Bl B S)

2
CIER) + T
F L)

Thus V(RO13) > min{Vx(R), Va(I)}. Similarly, VE(RO2S) > min{Va(R), Va(I)} and
VE(RO33) > min{Va(R), Va(S)}.

G. Manikandan, M. Palanikumar, P. Vijayalakshmi, G. Shanmugam and A. lampan,
Extension for neutrosophic vague subbisemirings of bisemirings




Neutrosophic Sets and Systems, Vol. 63, 2024 @

Now,
Fy (RO1Q) = Su? Fp, (RO19)

i€

< sup max{F, (R), F, ()}
el

= max {sup 7, (R), sup 7, (3) }

el iel
= max{F, (R), F (¥)}.

1—=Ty RO13) =sup 1 — 7}:(3?01%)

el
< sup max{l — Ty, (R),1— TV_Z(%)}
i€l
= max {sup 1 =T, (R),sup 1 — 7;,:(%)}

el el

= max{1 — Ty (R). 1~ Ty (3)}.

Thus Vf(?ROl%) < max{VA(R), Va(S)}. Similarly, Vf(%(}g%) < max{VA(R), VA(¥)} and
VI (RO33) < max{Vx(R), Va(S)}. Hence, A is a NSVSBS of B.

Theorem 3.4. If A and ¥ are the NSV SBS® of By and By respectively, then A x ¥ is a
NSVSBS of By x Bs.

Proof. Let A and ¥ be the NSV SBS?® of By and B, respectively. Let R1, Ry € By and
4, 2 € Ba. Then (R, 31), (R, S2) belong to By x By. Now
Tasew (1, 31)01(R2, F2)] = Thyp R10O1R2, 10132)
=min{7, (R101R2), Ty (S10132)}
> min{min{ 7Ty (%), Ty (R2)}, min{ Ty (31), Ty (32)})
— min{min{ Ty (%), Ty ($1)}, min{T; (R2), Ty (32)}}

= min{,];\_x‘ll(%h %1)’ 7;\_><\I/(§R27 %2)}

1= Frgl(Re,81)01(R2, S2)] = 1 = Fy g (R101%2, 810192)
=min{l — F, (R101N2),1 — Fi (310132)}
> min{min{l — Fy (%), 1 — Fy (R2)}, min{l — Fy (1), 1 = Fy (I2)}}
= min{min{l — F (R1),1 — Fy (S1)}, min{l — F (R2),1 — Fy (I2)}}
= min{l — Fj, o (R, 31), 1 = Fy g (N2, S2) -

Thus Viw(RO1D) > min{V{, 4 (®), V. 4(3)}. Simi-

larly, VKXW(%OQQ) 2 min{V[xxp(%)»Vqu/(%)} and VZX‘II(%O?’%) > min{VX—X\I!(%)v V;(X‘l/(%)}
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Now,

IKX\I/[(%]J %1)01(%27 %2)] = IXX\I,(%1<>1§R2, %101%2)
_ Ty (Ri01 ) + 7y (S10132)

2
Tyo(®) +Z(R)

>

N Ty (1) + 75 (S2)

| =

2

Iy (R1) +Zy(S)

N Ty (R2) + 75 (S2)

2

|

2

|

2

N = N =

_ngq,(a%l, 1) + Ty g (R2, I2)

I o (R, 31)01(Ra, S2)] = ZX o (R101R2, $10132)
_ Iy (Ri01R2) + T3 (310132)

2
[TH(R)) + I (Ry)

>

| =

2

[THR) + T (S)

N I3 (S1) + I3 (S2)

2

|

Iy (R2) + I3 (S2)

2

2

|

N = N

I/TX\II(%L C‘xgl) + IXX‘I/GRZ’ %2)} .

Thus VE, o (R01S) > 3 VE (R, S1) + VEg(R2,92)].  Similarly, VE,,(R0:9) >
LV (R, S1) + Vo (R, 2) | and VE, g (R059) = 3[VE,q (R1, S1) +VE g (B2, 9)] . Now

Frwl(R1,31)01(Re, S2)] = Fy ¢ (R101R2, $10132)
= max{Fy (R101R2), Fy (310132)}
< max{max{Fy (R1), Fy (R2) }, max{Fy (S1), Fy (S2)}}
= max{max{F, (R1), Fy (1)}, max{F (Ra), Fy (32)}}

= maX{]:XX\IJ(‘SRl’%1)“7:1;011(%2’%2)}'

L= Thopl(R1, 31)01(R2, 32)] = 1 — Ty g (R10O1R2, 310132)

=max{l — T, (R101M2),1 — Ty (I10132) }

< max{max{l — T (%1), 1 — Ty~ (R2)}, max{l — Ty (S1), 1 = Ty (S2)}}
max{max{1 — 7" (R1),1 = Ty (S1)}, max{l — T"(R2),1 - Ty (S2)}}
max{l — Ty, g (R1,31), 1 = Ty, g (R2, S2) }-

Thus Vi g (RO1S) < max{ V¥, ¢(R), Vi, ¢ ()}
foq,(%‘%oz%) < max{Vqu,(%),Vqu,(%)} and V{XW(%Qgc\\Y) < max{Vqu,(%),VfX\l,(%)}.
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Corollary 3.5. If Ay, Ao, ..., Ay, are the families of NSV SBS® of B1,Bo, ..., B, respectively,
then Ay X Ay X ... x Ay, is a NSVSBS of By x By X ... X B,,.

Definition 3.6. Let A be a neutrosophic VS in B, the strongest neutrosophic vague relation
(SNSVR) on B, that is a NSVR on A is defined as

VI (R, 3) = min{V{ (R), V{(3)}
VI(R, Q) = V,{(%R)-;—Vf(%)

Theorem 3.7. Let A be the NSVSBS of B and V' be the SNSVR of B. Then A is a NSVSBS
of B if and only if V is a NSVSBS of B x B.

Proof. Let A be the NSVSBS of B and V' be the SNSVR of B. Then for any R = (R, R2)

and & = (31, S2) are in B x B. Now,

Ty (RO19) = Ty [(R1, R2) 01(S1, S2)]
=Ty (R101931, R20132)
= min{7, (R10151), Ty (R20192)}
> min{min{7,"(%1), Ty (S1)}, min{7 (R2), Ty (32)}}
= min{min{7," (%), T (R2)}, min{7, (31), Ty (S2)}}
= min{ 7, (R, R2), T, (S1,32)}
= min{7;, (R), Ty, (3)}-

1= Fy (RO19) =1 = Fy [(Re, R2) 01(S1, S2)]
— 1 Fr(R101S1, Ra0130)
=min{l — F, (R10131),1 — F, (R20132) }
> min{min{1 — Fy (R1), 1 — Fy (S1)}, min{l — Fy (R2),1 — F (32)}}
= min{min{1 — Fa (R1),1— Fa (R2)}, min{1 — .7:/:(%1), 1-— f/{(%g)}}
= min{l — Fy (R, R2), 1 — F (S, )}
— min{l — F;(R),1 - Fi (3)).
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Thus V] (R01S) > min{V] (R), V/(S)}. Similarly, V) (R02S) > min{V] (R), V/(S)} and
VI (RO3S) > min{ V] (R), V] (3)}. Now,

Ly, (RO1S) = Iy, [(R1, R2)01(S1, S2))]
=T, (R101S1, R20132)
Ty (R101S1) + Iy (R20132)

2
o LIy () + 25 (S1) +IA(§R2)+ZA(<32)]
=2 2 2
:1%@M+%mﬂ+%®ﬁ%ﬁﬁﬂ

2 2 2
_ T, (R, o) + 7, (S1, $2)

2
Zy(R) + Z,(S)

I (RO1S) = I [(R1, R2) 01(S1, o)
= I, (R10131, R20192)
_ Ty (R0181) + I (R20132)

2
LIZE(R) + ZH(S1) I (Ro) + I (S9)

> - +

=2 2 2
L[ZER) + T (R2) T (Sy) +IA+<$2)]

== +
2 2 2

B I{/’_(%l, %2) —I—I{;(%l, %2)

- 2

IR+ IH(S)

— . ,

Thus VI(RO,S) > WEIWE) - gimilarly, VI(R0,S) > WEIVE) o4q VI(RO:S) >
YRV (Q)

Similarly, V{7 (R0:1Q) < max{V{(R), V] (3)}, Vf(R02Q) < max{V{ (R), V] (I)} and
W (R059) < max{V{ (R), W (3)}.
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Conversely let us assume that V' is a NSVSBS of B x B, then for any ® = (R, R2) and

I = (8,82) are in B x B. Now,

min{7," (R10191), Ty (R20192)} = Ty (R10191, R20132)
= Ty [(R1, R2)01(S1, S2)]
=Ty (RO1S)
= min{7y (R), Ty (3)}
= min{7;; (R1,R2)}, Ty (31, 92)}
= min{min{ 7 (R1), Ty (R2) }, min{ T (31), T (S2)}}-

If Ty R101S1) < T (R20132), then T, (R1) < Ty Ne) and T (S1) < Ty (S2). We get
Ty R10181) > min{7, (R1), T, (1)} for all $1,31 € B, and

min{ 7" (R10231), Ty (R20292)} = min{min{7," (R1), Ty (R2) }, min{ T (1), Ty (S2)}}

If T (R10291) < Ty (R20232), then Ty (R10231) > min{7, (R1), Ty (S1)}-
min{7,"(R10331), Ty (R20332)} = min{min{T," (R1), T (R2) }, min{T7,"(31), Ty (S2)}}.

If Ty (R10331) < Ty (R20332), then Ty (R10331) > min{ T, (R1), T, (S1)}-

min{l — F, (R10151),1 = F) (R201F2)}

=1 — Fy (R101S1, R2013)

=1—=F,[(Re, R2)01(S1, B2)]

= 1- F(ROIS)

> min{l — 7, (R), 1 — Fy,(I)}

= min{1 — F; (R, %)} 1 — Fyr (31,39)}

= min{min{1 — F'(R1),1 = Fy (R2) }, min{1 — F((S1), 1 — Fy (S2)}}-

If1—-F (MO1S1) <1 —=Fy (Re0132), then 1 — Fy () <1 —-Fy (Re) and 1 — F, (Fq) <
1 — Fy(S2). We get 1 — Fy (R101S1) > min{l — Fy (®1),1 — F, (S1)} for all 8,3 € B,
and min{l — Fy (R10231),1 — Fy (R20292)} > min{min{l — F, (R1),1 — Fy (R2)}, min{l —
Fu(S1), 1= Fy(S2)}}-

If1— Fy (R102S1) < 1 Fy (Ra0232), then 1— Fy (R10231) > min{1—Fy (R1), 1 Fy (31)}.
min{l — Fy (R10331),1 — Fy (R20332)} > min{min{l — F (R1),1 — F, (R2)}, min{l —
Fr(S1),1 = Fr(So)}}. I 1 — Fr(Ri0sS1) < 1 — Fy (R203F2), then 1 — Fy (R10331) >
minf{1 — Fy (R),1 - Fy (1)),

Thus V] (RO1S) > min{V] (R), V/(S)}. Similarly, V) (R02S) > min{V] (R), V/(S)} and
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W (R039) > min{V] (R), V] (3)}. Now,

N | =

T3 (R10191) + Ty (R20192)| = Ty (R1 0191, 201 9)
Ly [(R1, R2)01(S1, B2)]
7, (RO19)
ST (%);Iv(%)
I, (R, R2) + 1, (1, S2)
2
Iy () + I, (R) +IX(%1)+IX(92)]_

<] <

2

2 2

If IA (%10101) (%201\3“2) then IX(%I) < IX(?RQ) and IX(Sl) < ZX( )
We get Tp(R101S1) > ABHEIOU - gipilarly, Ty (R10087) > a@HGD 49
Ty (R105S7) > M'

Also, % IX(%1<>1%1) +I/J\r(%2<>1%2)] > % (9‘31)+I+(§R2) i +(01);—I+(02) )

If Z) (R10191) < I (R20192), then Z (Ry) < I (R2) and I3 (I1) < I (I2).

We get Z (R10131) > w and Z (R10291) > w and Ty (R105S1) >
5 .

Thus VL(RO1S) >

WERIWE) - gimilarly, VE(RO,S) > WEHEWE) ang VI (R053) > WOIWE) - gimilarly,

max{]-"g (%101%1),}}((%201%2)} < max{max{}"g (5&1),]:X(Wg)},max{fg(gl),}"l\ (\92)}}

If Fy (R10181) > Fy (R201D2), then Fy (R1) > Fy (R2) and Fy (I1) > F (S2).

We get ]:X (%101%1) < max{]-"&(?ﬁl) ]:X (%1)}

Also, Similarly to prove that max{l — 7, (R10131),1 — T, (?Rg(}l\m)} < max{max{l —
Ty R1), 1 =Ty (M)}, max{1 — Ty (S1),1 = Ty (S2)}}-

F1-7Ty (ROi1S1) > 1 =T (R2012), then 1 =T, (R1) > 1 —T, (R2) and 1 — T, (1) >
1 =Ty (S2).

We get 1 — T, (R10:131) <max{l —T, (R1),1-T, (S1)}

max{l — T, (R10231),1 — Ty (N20232)} < max{max{l — T, (Ry),1 — T, (N2)}, max{l —
To (S0, 1-Ti (32}

IfF1-T, (R10251) > 1 =T, (R20232), then 1 -7, (R10231) < max{1-T, (R1),1-T, (31)}.
max{l — T, (R10331),1 — Ty (R20332)} < max{max{l — T (R1),1 — T, (N2)}, max{l —
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Ty (S1),1 =Ty (S2)}}-

F1-T, (Ri0331) > 1=T, (R20332), then 1 =T, (R10331) < max{1-T, (1), 1-T, (S1)}.
Hence, V{(RO1S) < max{V{(R), V{7 (9)}, VI(ROS) < max{V{(R), V7 ()} and
VI (RO3S) < max{V{; (R), V{7 (I)}. Hence, A is a NSVSBS of B.

Theorem 3.8. Let A be a NSV subset in B. Then V = ([T, Ty, 1Zx Zh ) [Fr, Fil) is a
NSVSBS of B if and only if all non empty level set V\1t25) s o SBS of B for ti,ts,s € [0, 1].

Proof. Assume that V is a NSVSBS of B. For ty,ts,5 € [0,1] and &, & € V##29) . We have
Ty (€1) 211, Ty (§2) > trand 1=F, (&) > 5, 1= F, (&2) > sand T, (§1) > t2, L, (§2) > t2 and
Iy (&1) > b2, Ty (&2) > b2, 1= Ty (&1) < t1,1 =Ty (&) < t1 and Fy (&) < 5, F; (&) < s. Now,
Ty (£101€2) 2 min{T,"(£1), Ty (§2)} = t1, 1 = F (&0182) = min{l — F (&), 1 - Fy (&2)} = s
and Ty (6016) > DO >y 7 (g,016,) > BEOHIE) 5 4 and Fr(g018) <
max{ Fy (€), Fy (€2)) < s and 1~ Ty (€:016) < max{l — Ty (61),1 — Ty (€2)) < 1. This
implies that £ 01& € P(tista,s), Similarly, £ 028, € Y(tit2,5) and £1038 € VY(t1t2,:8)  Therefore
V(titas) i a SBS of B, where t1, 2,5 € [0,1].

Conversely, assume that V(1129 is a SBS of B, where ti,t5,s € [0,1]. Suppose if
there exist &1,§2 € B such that T, (£101&2) < min{T7, (&), 7T, (&)}, 1 — Fo(&0162) <
min{l — Fy (61).1 ~ Fy (&)}, Ty (60i&) < SO 7h(60,6) < HEONTE) 4
Fy (£101&2) > max{F, (&), F, (&2)}. 1 =T (£&101&2) > max{1l — T, (&), 1 — T, (&2)}. Select
t1,t2,s € [0,1] such that T, (£&101&2) < t1 < min{T, (&), T, (§2)} and 1 — Fy (§01&2) <
f < min{l - Fy (&),1 = Fy (&)} and T3 (§016) < tp < 2T and 71(6,016) <
t < BENEE) and Fr@016) > 5 > max{F; (€), Fy (@)} 1 - Ty (@0i&) > s >
max{l — T, (&),1 =T, (&)}. Then &, & € V(tl’tQ’s), but £ 0182 ¢ VY(t1t2:5)  This contradicts
to that V(1:#29) is a SBS of B. Hence, T, (£10162) > min{T, (&1), Ty (&)}, 1 — Fy (€10182) >
min{l — Fy (6).1 — Fy (&)}, Iy (@01&) > BENIE) 7h(6,0,6) > BENIE) 4q
Fp (6101€2) < max{F, (&), Fy (&)} and 1 — T (£101&2) < max{l — Ty (&), 1 — Ty (&)}
Similarly, 02 and O3 cases. Hence, V = ([Tx, T ], [Zx - Zx ), [Fx, Fi ) is a NSVSBS of B.

Definition 3.9. Let A be any NSVSBS of B and 7 € B. Then the pseudo NSV coset (TA)P
is defined by

That is,
(TTx )P(R) =p(1)Ty (), 1= (7F4)P(R) = p(7)(1 = Fy)(R),
(TZy)P(R) = p(T)Zx (R), (TZy)P(R) = p(1)Zy (R),
(TFA)PR) =p(r)Fy (R), 1= (7T )P(R) = p(r)(1 = T )(R)
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each ! € B and for any non-empty set p € P.

Theorem 3.10. Let A be any NSVSBS of B, then the pseudo NSV coset (TA)P is a NSVSBS
of B.

Proof. Let A be any NSVSBS of B and for each ®,3 € B. Now, (77, )P(R0:13) =

p(r) Ty ROS) = p(r) min{Ty (R), Ty (¥)} = min{p(r) Ty (R),p(7) Ty (S )} =
min{(r7,)P(R), (7Ty)P(3)}. Thus (777 )P(RO1S) > min{(77,)*(R), (r7,)"(I)} and
L= (rFY)PROIS) = p(r) (1 = Fy(RO1T)) = p(r) min{l — Fy(R),1 — Fy(¥)} =

min{p(r) (1 = Fx(R)),p(r) (1 = F5 ()} = min{l — (7F)P(RN), 1 — (7Fy)?(3)}. Thus
1 — (rF)P(RO1S) > min{l — (7F;y)P(R),1 — (rFL)P(S)}.  Now, (7Z,)P(R01S) =

p(7) Tr(RO1S) > p(r) [I;(@;I;(%)] _ ML®BOLE) LWL
Thus (rZ;)P(RO,S) > TVOHERIO) g (7Z2HP(ROIS) = p(r) If (RO1S) >
p(7) [IX(%);IX(S)] _ @0 Q) CLP®ICINQ)  phug (T (RS) >

(rZ)PR)HETHP(S)
2

. Now, (TFy)P(R01S) = p(1) Fy (RO1S) < p(7) max{Fy (R), F; (S)} =
max{p(7) Fy (R),p(7) Fy ()} = max{(rF)P(R), (tF)P(I)}. Thus (7F)P(RO1T) <
max{(7Fy )P (R), (7Fy)P(3)} and 1— (T )P (RO13) = p(7) (1-Ty (RO13)) < p(

Ty ), 1 =Ty ()} = max{p(r) (1 =Ty (N)),p(r) (1 =T (I))} = max{l — (77, )"(R),1 -
(TTA )P(Q)}. Thus 1 — (77, )P(RO1Y) < max{l — (77, )P(R),1 — (77, )?(I)}. Similarly, O
and O3 cases. Hence, (TA)P is a NSVSBS of 5.

7) max{1l—

Definition 3.11. Let (B1, @1, @9, @3) and (Ba, 01,02, 03) be the bisemirings. Let T : By — By
and A be an NSVSBS in By, V be an NSVSBS in Y (B;) = Ba, the image of VS is defined
as V(v) (b2) = [T35, B(V) (£2),1 ZS(V) (62)], (L5, oV )(62)’ oV )(£2)] [Fo50 (V) (62),1 — Tz;(v) (£2)] where
TZ}(V)(EQ) =Ty, U(ba), I oV )(82) = 1,,0({y), U(V)(fg) L70(4s) and FU(V)(EQ) = F,U(42).

Definition 3.12. Let (B;, 91, @2, @3) and (Bg, 01,02, 03) be the bisemirings. Let U : By — By
be any function. Let V be a VS in U(1) = B2. Then the inverse image of V, 57! is the VS in
By by Vis-1v)(61) = [Ti5-1yy(61), 1 = Fis- 1(\/)(51)] 510y (1) I 1(\/)(51)] [F5s- 1(‘/)(51),1

5- -1y )(El)L where T 1(V)(£1) =Ty (O~ (ﬁl)) 1(V)(£1) = Iy (G- (51))7 U, (V)(Zl) =
LG ), By gy (6) = Fy (571(0).

Theorem 3.13. Every homomorphic image of NSVSBS of By is a NSVSBS of Bs.

Proof. Let O : By — By be a homomorphism. Now, U(/1214y) =
U(01)010(l2),0(01@202) =  Ul1)020(l2) and U(1@3ls) = U(£1)030(f2) for all
li,le € Bi. Let V.= U(A), A is a NSVSBS of By. Let U(¢),0(f2) € B,
Ty (0(0)010(62)) = Ty (bi@ily) = min{T (), Ty (62)} = min{Ty, O(6), Ty, O(f2) }
and 1 — F,(0({1)010(l2)) > 1 — Fy((1@1lz) > min{l — Fy (€1),1 — Fy ({2)} =
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min{l — F;0(f1),1 — F;0(62)}.  Thus VI (O(61)018(6)) > min{V]0(41), VFU(£2)}.
Similarly, V[ (0(€1)020(¢2)) > min{V]/U(£1), V[ O(f2)} and VI (U(41)030(62)) >
min{VI (), VIO(t)}.  Now, I (B(0)D10(6)) = Iy (Lienfe) > ALl
WOOHOE) g [(05(0)0,0(62)) > IF (1216y) > WEHLER) _ TOEHLOE) - pyyg
VE(0(£1)010(6)) > WO - ginitarly, VE(0(£1)0:0(8)) > min{VEG(£y), VEG(£y)}
and VE(0(£1)030(£s)) > min{VEU((1), VIB(£y)}. Now, Fy, (5(£1)D10(f2)) < Fy ((12162) <
max{Fy (1), Fy ()} = max{F;5(f)), F;0(l2)} and 1 — Ty (O()D10(62)) < 1 —
Ty (6i@1l2) < max{l — T, (¢1),1 — Ty (f2)} = max{l — T,,0({1),1 — Ty, 0(¢2)}.
Thus V{(5(61)010(62)) < max{V{O(4), VF0(6)}.  Similarly, V{7 (U(£1)020(6)) <
max{V{; O(41), V{yU(£2)} and V{7 (U(41)930(f2)) < max{V{7U(¢1),V{U(f2)}. Hence, V is a
NSVSBS of Bs.

Theorem 3.14. Every homomorphic pre-image of NSVSBS of By is a NSVSBS of B;.

Proof. Let U : By — B2 and U(R2:3J) = G(R)010(F), B(RD2Y) = U(RN)020(Y) and
UO(R@3S) = O(R)030(Y) for all N,S € By. Let V= U(A), where V is any NSVSBS
of By. Let R, € By. Now, Ty (R2:1S) = T, (0(R219)) = Ty, (B(R)010(F)) >
min{7,, O(N), T}, O(I)} = min{T, (R), T (I)}. Thus Ty (R2:13) > min{T, (RN), T, (I)}
and 1 — Fy (R&19) = 1 — F, (0(R@19)) = 1 — F, (O(R)0,0(Y)) > min{l — F,6(RN),1 -
F,06(9)} = min{l - Fy (R),1-F, (I)}. Thus 1 - F (Ro1¥) > min{l - F (N),1-F, (I)}.
Hence, V[, (R21S) > min{V] (R), V[ (S)}. Similarly, V] (R223) > min{V{ (R), V[ (I)} and
VI (R253) > min{V (R), V(3)}. Now, I; (R213) = I; (5(R1S)) = I (BRDT(S)) >
I;U(%);I;U(%) _ 1;(%);1 ( ). Thus Iy(R&1S) > w and If(R21Q) =
H(OR213) = LHOMD0(Q)) > BORELOO) _ LOHLE) Ty i (Re,S) >
w. Hence, VZ(ER®1 ) > w. Similarly, V‘%(%QQ%) > w and
VI(R@33) > w. Now, Fy (R2:3) = F, (O(R19)) = FV(U(%)DlU(%)) <
max{F,, O(R), F,,0(3)} = max{F, (R), Fy (3)}. Thus Fy (R2:1Y) < max{F, (R), Fy (I)}
and 1 — T, (R21Q) = 1 - T, (O(R219)) = 1 = T, (B(N)016(F)) < max{l — T, 0(RN),1
T, 0(3)} =max{1-T, (R),1-T, (I)}. Thus 1 -T, (R&:3) < max{1-T, (R),1-T, (I)}.
Hence, V{ (R2:13) < max{V{ (R), V7 (S)}. Similarly, V{7 (R92S) < max{V{; (R), V{7 (3)} and
V7 (R3S) < max{V{; (R), Vi (I)}. Hence, A is a NSVSBS of B;.

Theorem 3.15. If U : By — By is a homomorphism, then U(A, 1,.5) is a level SBS of
NSVSBSV of Bs.

Proof. Let U : By — Ba be a homomorphism and U(R2;3J) = U(R)010(3), B(RD:2S) =
U(R)0206(F) and U(RD33) = U(R)030(Y) for all R, S € By. Let V =0T(A), A is a NSVSBS
of B;. By Theorem V' is a NSVSBS of By. Let Ay, 4, ) be any level SBS of A. Suppose
that %, € Ay, 1,,5)- Then B(RD:13), 5(RD2Y) and B(RT3S) € Ay, 4,,6)- Now, Ty, (B(R)) =
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Ty(®R) > t1, T, (6(S)) = T, (I) > ti. Thus Ty, (B(R)010(F)) > Ty (RD:13) > t1 and
1-F,(B(R) =1-F, (R) > 5,1-F,(0()) =1-F, () > s. Thus 1 - F, (O(R)2V(I)) >
1 — Fy(R&1S) > s. Now, I,(O(R)) = I, (R) > t2,I,,(0(S)) = I,(I) > ta. Thus
L, (B(R)210(])) > I, (R21S) > to and L[S (O(R)) = If (R) > to, I )

Thus I;; (D(R)010(Y)) > Iy (R213) > to. Now, Fy, (U(R)) = Fy
Fy () <'s. Thus F, (G(R)016(Q)) < Fy N21¥) < sand 1 — T, (GR)) =1 -T, (R) <
t1,1 =T, (0(3) =1 =T, (S) < t1. Thus 1 — T, (G(R)2V(Y)) < 1 - T, (R 3) < ¢y, for all
U(R), () € By. Similarly to prove other operations. Hence proved.

Theorem 3.16. If U : By — By is any homomorphism, then Ay, 4, 5) is a level SBS of
NSVSBS A of B;.

Proof. Let U : By — Bz be a homomorphism and U(R2:S) = G(R)010(S), B(RDY) =
U(R)020(F) and U(R@3F) = ORN)030(Y) for all N, € By. Let V.= T(A), V is
a NSVSBS of B;. By Theorem A is a NSVSBS of By. Let U(Ag,,,6) be a
level SBS of V. Suppose that O(R),5(S) € UO(Ay, 1,,5))- Then U(R13), 5(RG2S) and

ORa33) € B(A, 15,5)) Now, Ty (R) = Ty, (O(R)) > 1, T, (I) = Ty, (5(S)) > t1. Thus
TA (?R@bs) > min{T, (R), T, ()} >ty and 1 — F (R) =1 - F,(G(R)) >

F,;(0(3%)) > s. Thus 1 — Fy (R1¥) > min{l — Fy (N),1 — F (S
I; (B(S) 2

1
Iy (R) = I, (B(R) > t2, Iy (S) = I, (B(S)) > ty. Thus Iy (ReyS) > WOILE) > 4 and
IHR) = IE(OR) > ta, IH(S) = IH(B(S)) > ta. Thus I (R2,S) > AOHEE) 5 4 Now,
Fy(R) = F,; (B(R)) < s,FA_(%) = F—(U(s)) < 5. Thus Fy (R21S) = Fj, (B(R)D10(S)) <
max{F, (R), Fy (¥} <sand 1-T, (R) = 1-T7, (ORN)) < t1,1-T (I) = 1-T,, (O(Y)) < 1.
Thus 1 — Ty (R21S) = 1 — Ty (B(R)D10(S)) < max{l — Ty (R),1 — Ty (I)} < t1, for all

R, S € By. Similarly to prove other two operations. Hence proved.

4. (p,o0)-Neutrosophic vague SBSs

We discuss about (p, 0)-NSVSBS and (p, o) € [0,1] be such that 0 < p <o < 1.

Definition 4.1. Let A be any NSVS of B is called a (p,0)-NSVSBS of B if

max{V] (R013), p} > min{V{(R), V] (S),0} OR
max{V{ (R023), p} > min{V{ (1), V[ (9),0} o { max{VE(R029), p} > min { AEAE) o}
max{V] (R039), p} = min{V{(R), V] (), 0} OR

G. Manikandan, M. Palanikumar, P. Vijayalakshmi, G. Shanmugam and A. lampan,
Extension for neutrosophic vague subbisemirings of bisemirings

(max(VE(R0:9). p} > min { KOO ;1

max{VE(R033), p} > min {w U})



Neutrosophic Sets and Systems, Vol. 63, 2024

min{Vf(?R(}l%),
min{V{ (RO23),
&

min{Vf(?R(}g ),

p} < max{V{(R), V{(
p} < max{V{(R), V{(
p} < max{V{(R), V{(

& \(:,2 o0
9
—

That is,
max{7, (RO:13),p} > min{7, (R), T, (I),0},
max{l — F, (RO19), p} > min{l — Fy (R),1 — F; (Y),0}
max{7, (R023), p} = min{7 (R), T, (I),0},
max{1l — F, (R023), p} > min{l — F, (R),1 — F, (I),0}

max{7y" (R033), p} > min{Ty" (R), 7?((%)7 o},

max{l — F, (R039), p} > min{l — F, (R),1 - F, (%), o}
maX{Ij{(?R()l ), p} > min { +I+(d) , U
max{Z, (RO:1Y), p} > min{ ER) NG ,U

OR
(maX{I+( 029), 0} 2 min{ NGRSO )
max{Z; (R0-3), p} > mm{
OR
(max{IX(?Rogg), p} = min { BN ENCIRENC) ,0}
max{Zy (ROs3), p} > mln{ LWL ® ,0
min{Fy (R0:1S), p} < max{Fy (R), F
min{1 - Ty (R019), p} < max{1 — Ty (R ), 1- Tm),o}
min{F, (R029), p} < max{F, (R), F, (3),0},
min{1 — T (R029), p} < max{1 — T (R), 1 - Ty (9), 0}
min{F, (R039), p} < max{F, (R), F5 (3),0},
min{l — Ty (R033), p} < max{l — T~ (R),1 - T, (3),0}

for all R, S € B.

Example 4.2. By Example

[Tx (2), 75 ()]

[Z3 (), ZX ()]

ENGENG]

o=al| [0.65,0.70] [0.55,0.65] [0.3,0.35]
o=i| [0.6,0.65] [0.50, 0.60] [0.35,0.40]
o= [0.35,0.40] [0.25,0.30] [0.60, 0.65]
o= [0.40, 0.50] [0.45,0.55]

a
@| [0.45,0.55]
Clearly, A is a (0.25,0.85) NSVSBS of B.

Theorem 4.3. The intersection of a family of every (p,0)- NSVSBS?® is a (p,0)-NSVSBS.
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Proof. The proof is similar to Theorem

Theorem 4.4. If A and ¥ are any two (p,0)- NSVSBS*® of By and By respectively, then
A XV isa (p,o)-NSVSBS of By x Bs.

Proof. The proof is similar to Theorem

Corollary 4.5. If A1, As, ..., Ay, are the families of (p,0)-NSV SBS*® of By, Ba, ..., B, respec-
tively, then A1 X Ao X ... X Ay, is a (p,0)-NSVSBS of By x By X ... x B,,.

Definition 4.6. Let A be a (p,0)- NSVS in B, the (p,0)-SNSVR on B. ie) (p,o)- NSVR on

A is V given by
max{V{ (R, ), p} = min{V{ (R), V] (), 0}

max{VE(R, ), p} = min { AOUEE 51
min{V{ (R, ), p} = max(V{(R),V{ (3), 7}

Theorem 4.7. Let A be a (p,0)-NSVSBS of B and V be the (p,0)-SNSVR of B. Then A is
a (p,0)-NSVSBS of B if and only if V is a (p,0)-NSVSBS of B x B.

Proof. A similar proof is given in Theorem

Theorem 4.8. A homomorphic image of (p,o)-NSVSBS of By is a (p,0)-NSVSBS of Bs.
Proof. A similar proof is given in Theorem

Theorem 4.9. A homomorphic pre-image of (p,c)-NSVSBS of By is a (p,0)-NSVSBS of B .
Proof. A similar proof is given in Theorem
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