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Abstract. The interval neutrosophic set (INS) can be 
easier to express the incomplete, indeterminate and 
inconsistent information, and TOPSIS is one of the most 
commonly used and effective method for multiple 
attribute decision making, however, in general, it can 
only process the attribute values with crisp numbers. In 
this paper, we have extended TOPSIS to INS, and with 
respect to the multiple attribute decision making 
problems in which the attribute weights are unknown and 

the attribute values take the form of INSs, we proposed 
an expanded TOPSIS method. Firstly, the definition of 
INS and the operational laws are given, and distance 
between INSs is defined. Then, the attribute weights are 
determined based on the Maximizing deviation method 
and an extended TOPSIS method is developed to rank the 
alternatives. Finally, an illustrative example is given to 
verify the developed approach and to demonstrate its 
practicality and effectiveness. 

Keywords: interval neutrosophic set; TOPSIS; multiple attribute decision making; Maximizing deviation method; Hamming 
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1 Introduction 

In real decision making, there exist many multi-criteria 
decision-making (MCDM) problems. Because of the 
ambiguity of people's thinking and the complexity of 
objective things, the attribute values of the MCDM 
problems cannot always be expressed by crisp numbers, 
and it maybe is easier to be described by fuzzy 
information. The fuzzy set (FS) theory, which is proposed 
by Zadeh [1], is one of the most effective tools for 
processing fuzzy information; however, its disadvantage is 
that it only has a membership, and is unable to express 
non-membership. On the basis of FS, Atanassov [2,3] 
proposed the intuitionistic fuzzy set (IFS) by adding a non-
membership function, i.e., there are membership (or called 
truth-membership) ( )AT x  and non-membership (or called 
falsity-membership) ( )AF x  in intuitionistic fuzzy sets, and 
they satisfy the conditions 

( ), ( ) [0,1]A AT x F x ∈ and 0 ( ) ( ) 1A AT x F x≤ + ≤ . Further, 
Atanassov and Gargov [4], Atanassov [5] proposed the 
interval-valued intuitionistic fuzzy set (IVIFS) by 
extending the truth-membership function and falsity-
membership function to interval numbers. IFSs and IVIFSs 
can only handle incomplete information not the 
indeterminate information and inconsistent information. In 
IFSs, the indeterminacy is 1- ( )- ( )A AT x F x  by default. 
However, in practice, the decision information is often 

incomplete, indeterminate and inconsistent information. In 
order to process this kind of information, Smarandache [6] 
further proposed the neutrosophic set (NS) by adding an 
independent indeterminacy-membership on the basis of 
IFS, which is a generalization of fuzzy set, interval valued 
fuzzy set, intuitionistic fuzzy set, and so on. In NS, the 
indeterminacy is quantified explicitly and truth-
membership, indeterminacy membership, and false-
membership are completely independent.  

   Recently, NSs have become an interesting research 
topic and attracted widely attentions. Wang et al. [7] 
proposed a single valued neutrosophic set (SVNS) from 
scientific or engineering point of view, which is an 
instance of the neutrosophic set. Ye [8] proposed the 
correlation coefficient and weighted correlation coefficient 
for SVNSs, and he have proved that the cosine similarity 
degree is a special case of the correlation coefficient in 
SVNS. Ye [8a] proposed Single valued neutrosophic cross-
entropy for multicriteria decision making problems. 
Similar to IVIFS, Wang et al. [9] proposed interval 
neutrosophic sets (INSs) in which the truth-membership, 
indeterminacy-membership, and false-membership were 
extended to interval numbers, and discussed some 
properties and comparing method of INSs. Ye [10] 
proposed the similarity measures between INSs based on 
the Hamming and Euclidean distances, and developed a 
multicriteria decision-making method based on the 
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similarity degree. However, so far, there has been no 
research on extending TOPSIS for INSs.  

TOPSIS (The Order Performance technique based on 
Similarity to Ideal Solution), which was proposed by 
Hwang and Yoon [11] is one of popular decision making 
methods. In last 20 years, many researchers have extended 
this method and proposed different modifications, and it 
has been applied usefully in the practice to solve many 
problems in different fields for decision makers.  
Chen [12] extended the TOPSIS for group decision making 
problems in which the importance weights of various 
criteria and ratings of alternatives with respect to these 
criteria take the form of linguistic variables. The key of the 
proposed method is that these variables are transformed 
into triangular fuzzy numbers. Jin et al. [13] extended 
TOPSIS method to MADM problems in which the 
attribute values are the intuitionistic fuzzy sets, and applied 
it to the evaluation of human resources. Wei and Liu [14] 
extended TOPSIS method to the uncertain linguistic 
variables, and applied it to the risk evaluation of High-
technology. Liu [15] proposed an extended TOPSIS 
method to resolve the multi-attribute decision-making 
problems in which the attribute weights and attribute 
values are all interval vague value. Firstly, the ideal and 
negative ideal solutions are calculated based on the score 
function. Then the distance between the interval Vague 
values is defined, and the distances between each 
alternative and the ideal and negative ideal solutions are 
calculated. The relative closeness degree is calculated by 
TOPSIS method, and then the ordering of the alternatives 
is confirmed according to the relative closeness degree. Liu 
and Su [16] proposed an extended TOPSIS based on 
trapezoid fuzzy linguistic variables, and gave the  method 
for determining attribute weights. Liu [17] proposed an 
extended TOPSIS method for multiple attribute group 
decision making based on generalized interval-valued 
trapezoidal fuzzy numbers. Mohammadi et al. [18] used 
fuzzy group TOPSIS method for selecting adequate 
security mechanisms in e-business processes. Verma et al. 
[19] proposed an interval-valued intuitionistic fuzzy 
TOPSIS method for solving a facility location problem.  
     Obviously, because TOPSIS is an important decision 
making method, and the interval neutrosophic set can be 
easier to express the incomplete, indeterminate and 
inconsistent information, it is important to establish an 
extended TOPSIS method based on  INS.  In this paper, we 
will establish an extended TOPSIS method for the multiple 
attribute decision making problems in which the attribute 
weights are unknown and attribute values take the form of 
INSs. In order to do so, the remainder of this paper is 
shown as follows. In section 2, we briefly review some 
basic concepts and operational rules of INS and propose 
the Hamming distance and the Euclidian distance between 
interval neutrosophic values (INVs) or interval 
neutrosophic sets, and give a proof of Hamming distance 

and a calcualtion example. In Section 3, we propose a 
method for determining the attribute weights based on the 
Maximizing deviation method and extend the TOPSIS 
method  to rank the alternatives, and give the detail 
decision steps. In Section 4, we give an example to 
illustrate the application of proposed method, and compare 
the developed method with the existing method. In Section 
5, we conclude the paper. 

2 The Interval Neutrosophic Set 

2.1 The Definition of the Interval Neutrosophic Set 

Definition 1 [6]. Let X be a universe of discourse, with a 
generic element in X denoted by x. A neutrosophic set 
(NS) A in X is  

{ ( ), ( ), ( ) }A A AA x T x I x F x x X= ∈( ) |     (1) 

where, AT , AI and AF are the truth-membership 

function, indeterminacy-membership function, and the 
falsity-membership function, respectively. 

( ), ( )A AT x I x and ( )AF x  are real standard or nonstandard 

subsets of 0 ,1− +   .  

There is no restriction on the sum of 

( ), ( )A AT x I x and ( )AF x , so

0 ( ) ( ) ( ) 3A A AT x I x F x− +≤ + + ≤ . 

The NS was presented from philosophical point of 
view. Obviously, it was difficult to use in the actual 
applications. Wang [7] further proposed the single valued 
neutrosophic set (SVNS) from scientific or engineering 
point of view, which is a generalization of the existing 
fuzzy sets, such as classical set, fuzzy set, intuitionistic 
fuzzy set and paraconsistent sets etc., and it was defined as 
follows. 
Definition 2 [7]. Let X be a universe of discourse, with a 
generic element in X denoted by x. A single valued 
neutrosophic set A in X is 

{ ( ), ( ), ( ) }A A AA x T x I x F x x X= ∈( ) |     (2) 

where, AT , AI and AF are the truth-membership 

function, indeterminacy-membership function, and the 
falsity-membership function, respectively. For each point x 
in X, we have ( ), ( ), ( ) [0,1]A A AT x I x F x ∈ , 

and 0 ( ) ( ) ( ) 3A A AT x I x F x≤ + + ≤ .  

In the actual applications, sometimes, it is not easy to 
express the truth-membership, indeterminacy-membership 
and falsity-membership by crisp values, and they may be 
easier to be expressed by interval numbers. Wang et al. [9] 
further defined interval neutrosophic sets (INSs) shown as 
follows. 
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Definition 3 [7]. Let X be a universe of discourse, with a 
generic element in X denoted by x. A interval neutrosophic 
set A in X is  

{ ( ), ( ), ( ) }A A AA x T x I x F x x X= ∈( ) |     (3) 

where, AT , AI and AF are the truth-membership function, 

indeterminacy-membership function, and the falsity-
membership function, respectively. For each point x in X, 
we have ( ), ( ), ( ) [0,1]A A AT x I x F x ⊆ , 

and 0 sup( ( )) sup( ( )) sup( ( )) 3A A AT x I x F x≤ + + ≤ .  

For convenience, we can
use ([ , ],[ , ],[ , ])L U L U L Ux T T I I F F=  to represent a value in 

INS, and call interval neutrosophic value (INV). 

2.2 The Operational Rules of the Interval 
Neutrosophic Values 

Definition 4. Let 1 1 1 1 1 1([ , ],[ , ],[ , ])L U L U L Ux T T I I F F= and 

2 2 2 2 2 2([ , ],[ , ],[ , ])L U L U L Uy T T I I F F= be two INVs, then the 

operational rules are defined as follows. 
(1) The complement of x  is  

1 1 1 1 1 1([ , ],[1 ,1 ],[ , ])L U U L L Ux F F I I T T= − −     (4) 

(2) 
(

)
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, ,

, , ,

L L L L U U U U

L L U U L L U U

x y T T T T T T T T

I I I I F F F F

 ⊕ = + − + − 

      
  (5) 

(3)
(

)
1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

[ , ],[ ,

], ,

L L U U L L L L U U

U U L L L L U U U U

x y T T T T I I I I I I

I I F F F F F F F F

⊗ = + − + −

       + − + − 
    (6) 

(4) 
(

)
1 1

1 1 1 1

1 (1 ) ,1 (1 ) ,

( ) , ( ) , ( ) , ( ) 0

L n U n

L n U n L n U n

nx T T

I I F F n

 = − − − − 

      >   
 (7) 

(5) 
(

)
1 1 1 1

1 1

( ) , ( ) , 1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) 0

n L n U n L n U n

L n U n

x T T I I

F F n

   = − − − −   

 − − − −    > 
   (8) 

2.2 The Distance between two INSs 

In the following, we will discuss the distance between 
two INSs. 
Definition 5. Let 1 1 1 1 1 1([ , ],[ , ],[ , ])L U L U L Ux T T I I F F= ,  

2 2 2 2 2 2([ , ],[ , ],[ , ])L U L U L Uy T T I I F F= and 

3 3 3 3 3 3([ , ],[ , ],[ , ])L U L U L Uz T T I I F F= be three INVs, S be a 

collection of all INVs, and f  be a mapping with 

ˆ ˆ:f S S R× → . If ( ),d x y meets the following

conditions. 

(1) ( )0 , 1d x y≤ ≤ , ( ), 0d x x =

(2) ( ) ( ), ,d x y d y x=

(3) ( ) ( ) ( ), , ,d x y d y z d x z+ ≥

Then we can call ( ),d x y  a distance between

twoINVs x and y . 

Definition 6. Let 1 1 1 1 1 1([ , ],[ , ],[ , ])L U L U L Ux T T I I F F= ,  

and 2 2 2 2 2 2([ , ],[ , ],[ , ])L U L U L Uy T T I I F F=  be two INVs, then  

(1) The Hamming distance between x  and y  is defined 

as follows 

( ) (
)

1 2 1 2 1 2 1 2

1 2 1 2

1
,

6
L L U U L L U U

H

L L U U

d x y T T T T I I I I

F F F F

= − + − + − + −

  + − + −

(9) 

Proof. 
Obviously, (9) can meet the above conditions (1) and 

(2) in Definiation 5. 
    In the following, we will prove (9) meets condition (3). 

For any an INV 3 3 3 3 3 3([ , ],[ , ],[ , ])L U L U L Uz T T I I F F= , we 

have 

( ) (
)

(

)

1 3 1 3 1 3 1 3

1 3 1 3

1 2 2 3 1 2 2 3

1 2 2 3 1 2 2 3

1 2 2 3 1 2 2 3

1 2 2 3

1
,

6

1

6

1

6

L L U U L L U U
H

L L U U

L L L L U U U U

L L L L U U U U

L L L L U U U U

L L L

d x z T T T T I I I I

F F F F

T T T T T T T T

I I I I I I I I

F F F F F F F F

T T T T

= − + − + − + −

 + − + −

= − + − + − + −

  + − + − + − + −

  + − + − + − + −

≤ − + −(

)

1 2 2 3

1 2 2 3 1 2 2 3

1 2 2 3 1 2 2 3

L U U U U

L L L L U U U U

L L L L U U U U

T T T T

I I I I I I I I

F F F F F F F F

+ − + −

  + − + − + − + −

  + − + − + − + −

and  
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(

)
(

)
(

1 2 2 3 1 2 2 3

1 2 2 3 1 2 2 3

1 2 2 3 1 2 2 3

1 2 1 2 1 2 1 2

1 2 1 2

2 3 2 3 2 3 2 3

1

6

1

6

1

6

L L L L U U U U

L L L L U U U U

L L L L U U U U

L L U U L L U U

L L U U

L L U U L L U

T T T T T T T T

I I I I I I I I

F F F F F F F F

T T T T I I I I

F F F F

T T T T I I I I

− + − + − + −

  + − + − + − + −

  + − + − + − + −

= − + − + − + −

  + − + −

  + − + − + − + −

)2 3 2 3

( , ) ( , )

U

L L U U

H H

F F F F

d x y d y z

  + − + −

= +

i.e., ( ) ( ) ( ), , ,H H Hd x y d y z d x z+ ≥ . 

 (2) The Euclidian distance between x  and is defined 
as follows. 

( )
( ) ( )( ( )
( ) ( ) ( ) )

2 2 2

1 2 1 2 1 2

2 2 2

1 2 1 2 1 2

1

6,

L L U U L L

E
U U L L U U

T T T T I I
d x y

I I F F F F

− + − + −
=

   + − + − + −
(10) 

The proof is similar to that of (9), it is omitted here. 
Further, we extend the distance between two INVs x  

and y to two INSs. 

Definition 7 Let
([ , ],[ , ],[ , ])L U L U L U

i i i i i iX T T I I F F= ( 1,2, , )i n= 

and ([ , ],[ , ],[ , ])L U L U L U
i i i i i iY T T I I F F=       ( 1,2, , )i n=  be two 

INSs, then  

(1) The Hamming distance between X  and Y  is defined as follows 

( ) ( )
1

1
,

6

n
L L U U L L U U L L U U

H i i i i i i i i i i i i
i

d X Y T T T T I I I I F F F F
n =

= − + − + − + − + − + −      

(11) 

(2) The Euclidian distance between X  and Y  is defined as follows 

( ) ( ) ( )( ( ) ( ) ( ) ( ) )2 2 2 2 2 2

1

1
,

6

n
L L U U L L U U L L U U

E i i i i i i i i i i i i
i

d X Y T T T T I I I I F F F F
n =

= − + − + − + − + − + −        (12) 

For example, if two INSs X  and Y are 
(([0.5,0.6],[0.2,0.3],[0.9,0.9]), 
([0.8,0.9],[0.4,0.4],[0.2,0.3]), ([0.3,0.4],[0.8,0.9],[0.7,0.8])) 
and (([0.7,0.8], 
[0.4,0.5],[0.2,0.3]),([0.5,0.6],[0.5,0.5],[0.3,0.4]),([0.1,0.2],[
0.2,0.4],[0.3,0.4])), then the distances of Hamming and 
Euclidian between X  and Y can be calculated as follows. 

( ) (

)

1
, 0.5 0.7 0.6 0.8 0.2 0.4

6 3
0.3 0.5 0.9 0.2 0.9 0.3 0.8 0.5 0.9 0.6

0.4 0.5 0.4 0.5 0.2 0.3 0.3 0.4 0.3 0.1

0.4 0.2 0.8 0.2 0.9 0.4 0.7 0.3 0.8 0.4

0.3

Hd X Y = − + − + −
×

+ − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + − + −

=

( ) ( 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2

1
, (0.5 0.7) (0.6 0.8)

6 3

(0.2 0.4) (0.3 0.5) (0.9 0.2) (0.9 0.3)

(0.8 0.5) (0.9 0.6) (0.4 0.5) (0.4 0.5)

(0.2 0.3) (0.3 0.4) (0.3 0.1) (0.4 0.2)

(0.8 0.2) (0.9 0.4) (0.7 0.

Ed X Y SQRT
= − + − ×

+ − + − + − + −
+ − + − + − + −
+ − + − + − + −

+ − + − + − )2 23) (0.8 0.4)

0.26

+ −

=

3 An extended TOPSIS Method for multiple 
attribute decision making based on INSs 

For a multiple attribute decision problem, let 

( )1 2, , , mA A A A=   be a discrete set of alternatives, 

1 2 n( , , , )C C C C=   be the set of attributes, 

1 2( , , , )T
nW w w w=   be the weighting vector of the 

attributes, and meents
1

1, 0
n

j j
j

w w
=

= ≥ . where jw  is 

unknown. Suppose that ij m n
X x

×
 =    is the decision 

matrix, where ([ , ],[ , ],[ , ])L U L U L U
ij ij ij ij ij ij ijx T T I I F F= takes 

the form of the INVs for alternative iA  with respect to 

attribute jC .  

The steps of the ranking the alternatives based on these 
conditions are shown as follows 
Step 1. Standardized decision matrix 

In general, there are two types in attributes, the more 
the attibute value is, the better the alternative is, this type is 
called benifit type; on the contrary, the more the attibute 
value is, the worse the alternative is, this type is called cost 
type.  
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In order to to eliminate the influence of the attribute 
types, we need convert the cost type to benifit type. 
Suppose the standardized matrix is expressed by 

ij m n
R r

×
 =   , where 

([ , ],[ , ],[ , ])L U L U L U
ij ij ij ij ij ij ijr T T I I F F=       , then we have 

cos

ij ij

ij ij

r x if the attrbute j is benifit type

r x if the attrbute j is t type

 =            


=            
 (13) 

 Where, x  is the complement of x .  
Step 2. Calculate attribute weights 

Because the attribute weights are completely unkown, 
we need to determine the attribute weights. The 
maximizing deviation method, which is proposed by Wang 
[20],  is a good tool to calculate the attribute weights for 
MADM problems with numerical information. The 
principle of this method is described as follows.  

For a MADM problem, if the attribute values for all 
alternatives have little differences, such an attribute will 
play a small important role in ranking the alternatives, 
especially, for an attribute, if the attribute values for all 
alternatives are equal, the attribute has no effect on the 
rankng results. Contrariwise, if attribute values for all 
alternatives under an attribute have obvious differences, 
such an attribute will play an important role in ranking the 
alternatives.  Based on this view, if the attribute values of 
all alternatives  for a given attribute have a little deviations, 
we can assign a little weight for thsi attribute; otherwise, 
the attribute which makes larger deviations should be set a 
bigger weight. Especially, if the attribute values of all 
alternatives are all equal with respect to a given attribute, 
then the weight of such an attribute may be set to 0.   

For a MADM problem, the deviation values of 

alternative iA  to all the other alternatives under the 

attribute jC  can be defined as
1

( ) ( , )
m

ij j ij lj j
l

D w d r r w
=

= , then 

1 1 1

( ) ( ) ( , )
m m m

j j ij j ij lj j
i i l

D w D w d r r w
= = =

= =   represents the 

total deviation values of all alternatives to the other 
alternatives for the attribute jC . 

1 1 1 1

( ) ( ) ( , )
n n m m

j j j ij lj j
j j i l

D w D w d r r w
= = = =

= =  represents the 

deviation of all attributes for all alternatives to the other 
alternatives. The optimize model is constructed as follows: 

    
1 1 1

2

1

max ( ) ( , )

. 1, 0, 1,2

n m m

j ij lj j
j i l

n

j j
j

D w d r r w

s t w w j n

= = =

=

 =


 = ≥ = ……




  (14) 

Then we can get 

    1 1

2

1 1 1

( , )

( , )

m m

ij lji l
j n m m

ij ljj i l

d r r
w

d r r

= =

= = =

=  
  

    (15) 

Furthermore, we can get the normalized attribute weight 
based on this model: 

   1 1

1 1 1

( , )

( , )

m m

ij lj
i l

j n m m

ij lj
j i l

d r r
w

d r r

= =

= = =

=



 (16) 

Step 3. Use the extended TOPSIS method to rank the 
alternatives  

The basic principle of TOPSIS is that the best 
alternative should have the shortest distance to the positive 
ideal solution and the farthest distance to the negative ideal 
solution. The positive ideal solution  (marked as V+ ) is a 
best solution in which each attribute value is the best one 
of all alternatives, and the negative ideal solution (marked 
as V- ) is another worst solution in which each attribute 
value is the worst value of all alternatives. The steps of 
ranking the alternatives by the extended TOPSIS are 
shown as follows. 

(1) calculate the weighted matrix  

  

1 11 2 12 1

1 21 2 22 2

1 1 2 2

( )

n n

n n
ij m n

m m n mn

w r w r w r

w r w r w r
Y y

w r w r w r

×

 
 
 = =
 
 
 





   



  (17) 

 Where ([ , ],[ , ],[ , ])L U L U L U
ij ij ij ij ij ij ijy T T I I F F=        

(2) Determine the positive ideal solution and negative ideal 
solution: 
   According to the definition of INV, we can define the 
absolute positive ideal solution and negative ideal solution 
shown as follows. 

  
([1,1],[0, 0],[0, 0]

1, 2, ,
([0, 0],[1,1],[1,1]

j

j

y
j n

y

+

−

 =      = ⋅ ⋅ ⋅
=

 (18) 
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  or we can select the virtual positive ideal solution and 
negative ideal solution by selecting the best values for each 
attribute from all alternatives. 

([max , max ],[min , min ],

[min , min ])

([min , min ],[max , max ],

[max , max ])

L U L U
j ij ij ij iji ii i

L U
ij ij

i i

L U L U
j ij ij ij ij

i i i i

L U
ij ij

i i

y T T I I

F F

y T T I I

F F

+

−

 =

     


=


    

   

 

   

 

  (19) 

1,2, ,j n= ⋅⋅⋅

 (3) Calculate the distance between the alternative iA  and 

positive ideal solution/ Negative ideal solution 

The distance between the alternative iA  and positive 

ideal solution/ negative ideal solution is: 

1

1

( , )

1, 2, ,

( , )

n

i ij j
j

n

i ij j
j

d d y y

i m

d d y y

+ +

=

− −

=

 =
    = ⋅⋅ ⋅
 =




    (20) 

(4) Calculate the relative closeness coefficient 

.( 1, 2, , )i
i

i i

d
RCC i m

d d

+

+ −= = ⋅⋅ ⋅
+

 (21) 

(5) Rank the alternatives 
Utilize the relative closeness coefficient to rank the 

alternatives. The smaller iRCC  is, the better alternative iA

is. 

4 An application example 

In order to demonstrate the application of the proposed 
method, we will cite an example about the investment 
selection of a company (adapted from [10]). There is a 
company, which wants to invest a sum of money to an 
industry. There are 4 alternatives which can be considered 
by a panel, including: (1) A1 is a car company; (2) A2 is a 
food company; (3) A3 is a computer company; (4) A4 is an 
arms company. The evaluation on the alternatives is based 
on three criteria: (1) C1 is the risk; (2) C2 is the growth; 
(3) C3 is the environmental impact. where C1 and C2 are 
benefit criteria, and C3 is a cost criterion. Suppose the 
criteria weights are unkown. The final decision 
information can be obtained by the INVs, and shown in 
table 1. 

Table 1 The evaluation values of four possible alternatives with respect to the three criteria 

1C 2C 3C

1A ([0.4,0.5],[0.2,0.3],[0.3,0.4]) ([0.4,0.6],[0.1,0.3],[0.2,0.4]) ([0.7,0.9],[0.2,0.3],[0.4,0.5])

2A ([0.6,0.7],[0.1,0.2],[0.2,0.3]) ([0.6,0.7],[0.1,0.2],[0.2,0.3]) ([0.3,0.6],[0.3,0.5],[0.8,0.9])

3A ([0.3,0.6],[0.2,0.3],[0.3,0.4]) ([0.5,0.6],[0.2,0.3],[0.3,0.4]) ([0.4,0.5],[0.2,0.4],[0.7,0.9])

4A ([0.7,0.8],[0.0,0.1],[0.1,0.2]) ([0.6,0.7],[0.1,0.2],[0.1,0.3]) ([0.6,0.7],[0.3,0.4],[0.8,0.9])

4.1 Ranking the alternatives in this example 

We adopt the proposed method to rank the 
alternatives. 
To get the best alternative(s), the following steps are 

involved: 
(1) Convert the cost criterion to benefit criterion. Since 

C3 is a cost criterion, we can replace 3 ( 1,2,3,4)ix i = with 

3 ( 1, 2,3, 4)ix i = , and get the decision matrix R : 

([0.4,0.5],[0.2,0.3],[0.3,0.4])  ([0.4,0.6],[0.1,0.3],[0.2,0.4])

([0.6,0.7],[0.1,0.2],[0.2,0.3])  ([0.6,0.7],[0.1,0.2],[0.2,0.3])

([0.3,0.6],[0.2,0.3],[0.3,0.4])  ([0.5,0.6],[0.2,0.3],[0.3,0.4])

([0.7,

R =

0.8],[0.0,0.1],[0.1,0.2])  ([0.6,0.7],[0.1,0.2],[0.1,0.3])








([0 .4 ,0 .5 ],[0 .7 ,0 .8 ],[0 .7 ,0 .9 ])

([0 .8 ,0 .9 ],[0 .5 ,0 .7 ],[0 .3 ,0 .6 ])

([0 .7 ,0 .9 ],[0 .6 ,0 .8 ],[0 .4 ,0 .5 ])

([0 .8 ,0 .9 ],[0 .6 ,0 .7 ],[0 .6 ,0 .7 ])








(2) Calculate attribute weights 
About the distance in formula (16), we can use the 

Hamming distance defined in (9), and get 
( , )ij ljd r r , 1, 2,3, 4; 1,2,3.i l j= =  

11 11 12 12 13 13( , ) ( , ) ( , ) 0d r r d r r d r r= = =  

21 11 22 12 23 13( , ) 0.133, ( , ) 0.083, ( , ) 0.300d r r d r r d r r= = =  

31 11 32 12 33 13( , ) 0.033, ( , ) 0.050, ( , ) 0.250d r r d r r d r r= = =

41 11 42 12 43 13( , ) 0.233, ( , ) 0.100, ( , ) 0.217d r r d r r d r r= = =  

11 21 12 22 13 23( , ) 0.133, ( , ) 0.083, ( , ) 0.300d r r d r r d r r= = =  

21 21 22 22 23 23( , ) ( , ) ( , ) 0d r r d r r d r r= = =  

68 



Neutrosophic Sets and Systems, Vol. 1, 2013 

Pingping Chi, and Peide Liu, An Extended TOPSIS Method Based on Interval Neutrosophic Set 

31 21 32 22 33 23( , ) 0.133, ( , ) 0.100, ( , ) 0.083d r r d r r d r r= = =  

41 21 42 22 43 23( , ) 0.100, ( , ) 0.017, ( , ) 0.083d r r d r r d r r= = =  

11 31 12 32 13 33( , ) 0.033, ( , ) 0.050, ( , ) 0.250d r r d r r d r r= = =

21 31 22 32 23 33( , ) 0.133, ( , ) 0.100, ( , ) 0.083d r r d r r d r r= = =  

31 31 32 32 33 33( , ) ( , ) ( , ) 0d r r d r r d r r= = =

41 31 42 32 43 33( , ) 0.233, ( , ) 0.117, ( , ) 0.100d r r d r r d r r= = =

11 41 12 42 13 43( , ) 0.233, ( , ) 0.100, ( , ) 0.217d r r d r r d r r= = =  

21 41 22 42 23 43( , ) 0.100, ( , ) 0.017, ( , ) 0.083d r r d r r d r r= = =  

31 41 32 42 33 43( , ) 0.233, ( , ) 0.117, ( , ) 0.100d r r d r r d r r= = =

41 41 42 42 43 43( , ) ( , ) ( , ) 0d r r d r r d r r= = =  

  Then according to (16), we can get the attribute 
weights shown as follows. 

1 2 30.366, 0.197, 0.437w w w= = =

(3) Use the extended TOPSIS method to rank the 
alternatives 

(i) calculate the weighted matrix  

  In formula (17), we can calculate 

j ijw r ( 1, 2,3, 4; 1,2,3)i j= = by formula (7). For 

example, we can calculate 

0.366 0.366 0.366 0.366
1 11

0.366 0.366

([1 (1 0.4) ,1 (1 0.5) ],[0.2 ,0.3 ]

,[0.3 ,0.4 ])

([0.171,0.224],[0.555,0.643],[0.643,0.715])

w r = − − − −

   
=

Then we can get the weighted matrix Y

([0 .171,0 .224],[0 .555 ,0 .643],[0 .643 ,0 .715])

([0 .285,0 .357],[0 .430 ,0 .555],[0 .555 ,0 .643])

([0 .122,0 .285],[0 .555 ,0 .643],[0 .643 ,0 .715])

([0 .357,0 .445],[0 .000 ,0 .430],[0 .430 ,0 .555])

Y



=




([0.096,0.165],[0.635,0.789],[0.728,0.835])

([0.165,0.211],[0.635,0.728],[0.728,0.789])

([0.128,0.165],[0.728,0.789],[0.789,0.835])

([0.165,0.211],[0.635,0.728],[0.635,0.789])

([0.200,0.261],[0.856,0.907],[0.856,0.955])

([0.505,0.634],[0.739,0.856],[0.591,0.800])

([0.409,0.634],[0.800,0.907],[0.670,0.739])

([0.505,0.634],[0.800,0.856],[0.800,0.856])








(ii) Determine the positive ideal solution and negative ideal 
solution. 
   According to (19), we can get the virtual positive ideal 
solution and negative ideal solution shown asa follows. 

(([0.357,0.445],[0.000,0.430],[0.430,0.555]) 

      ([0.165,0.211],[0.635,0.728],[0.635,0.789]) 

      ([0.505,0.634],[0.739,0.856],[0.591,0.739]))

y+ =

(([0.122,0.224],[0.555,0.643],[0.643,0.715])

       ([0.096,0.165],[0.728,0.789],[0.789,0.835])

       ([0.200,0.261],[0.856,0.907],[0.856,0.955]))

y − =

(iii) Calculate the distance between the alternative iA  and

positive ideal solution/ Negative ideal solution 
According to (19), we can get the distance between the 

alternative iA  and positive ideal solution/ negative ideal 

solution  shown as follows. 

1 2 3 40.532, 0.180, 0.377, 0.065d d d d+ + + += = = =  

1 2 3 40.034, 0.385, 0.189, 0.501d d d d− − − −= = = =  

(iv) Calculate the relative closeness coefficient 
  According to (21), we can calculate the the relative 
closeness coefficient shown as follows. 

1 2 3 40.941, 0.319, 0.666, 0.114RCC RCC RCC RCC= = = =  

  (v) Rank the alternatives 
According to the relative closeness coefficient, we can 

get the ranking from the best to worst. 

4 2 3 1A A A A  

4.2 Compare with the existing method 

In order to further illustrate the effectiveness of the 
proposed method in this paper, we compare with method 
proposed by Ye [10]. However, because the attribute 
weights and positive ideal solution/ Negative ideal solution 
are different from Ye [10], the ranking result is different; 
in addition, Ye [10] only consider the similarity measure 
between each alternative and positive ideal solution. If we 
adopt the same attribute weights and positive ideal solution 
ideal solution, and only consider the distance between each 
alternative and positive ideal solution, we can get the same 
ranking result from these two methods. Comparing with 
the method proposed by Ye [10], the method proposed in 
this paper can solve the multiple attribute problems with 
unknown weights, and can provide a compromise solution 
which considers the distances to positive ideal solution and 
Negative ideal solution. In addition, it is simpler in 
calculation process than Ye [10].   

5 Conclusions 
The interval neutrosophic set can be easier to express 

the incomplete, indeterminate and inconsistent 
information, and it is a generalization of fuzzy set, interval 
valued fuzzy set, intuitionistic fuzzy set, and so on. This 
paper proposed the operational laws of the interval 
neutrosophic set, and defined the Hamming distance and 
the Euclidian distance. Then Maximizing deviation method 
is used to determine the attribute weights and the TOPSIS 
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method is extended to interval neutrosophic set. Finally, an 
illustrative example has been given to show the steps of the 
developed method. It shows that this method is simple and 
easy to use and it constantly enriches and develops the 
theory and method of multiple attribute decision making, 
and proposed a new idea for solving the MADM problems. 
In the future, we shall continue working in the extension 
and application of the proposed method.  
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