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Abstract. In this article, the adjoint of symbolic 2-plithogenic square matrices are defined and the inverse of

symbolic 2-plithogenic square matrices are studied in terms of symbolic 2-plithogenic determinant and symbolic

2-plithogenic adjoint. We have introduced the concept of symbolic 2-plithogenic characteristic polynomial of

symbolic 2-plithogenic square matrices and the symbolic 2-plithogenic version of Cayley-Hamilton theorem.

Also, provided enough examples to enhance understanding.
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1. Introduction

The concept of refined neutrosophic structure was studied by many authors in [1–4]. Sym-

bolic plithogenic algebraic structures are introduced by Smarandache, that are very similar

to refined neutrosophic structures with some differences in the definition of the multiplication

operation [15].

In [12], the algebraic properties of symbolic 2-plithogenic rings generated from the fusion of

symbolic plithogenic sets with algebraic rings are studied. In [8], some more algebraic proper-

ties of symbolic 2-plithogenic rings are studied. Further, Taffach [17,18] studied the concepts
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of symbolic 2-plithogenic vector spaces and modules.

Recently, in [7], the concept of symbolic 2-plithogenic matrices with symbolic 2-plithogenic

entries, determinants, eigen values and vectors, exponents, and diagonalization are studied.

Hamiyet Merkepci et.al [13], studied the the symbolic 2-plithogenic number theory and inte-

gers. Ahmad Khaldi et.al [11], studied the different types of algebraic symbolic 2-plithogenic

equations and its solutions.

As a continuation of the previous study of symbolic 2-plithogenic matrices, this work dis-

cusses the symbolic 2-plithogenic adjoint, where the inverse of symbolic 2-plithogenic matri-

ces will be defined in terms of the symbolic 2-plithogenic adjoint. We present the symbolic

2-plithogenic characteristic polynomials and the symbolic 2-plithogenic version of the Cayley-

Hamilton theorem. Also, we illustrate many examples to clarify the validity of our work.

2. Preliminaries

Definition 2.1. [12] Let R be a ring, the symbolic 2-plithogenic ring is defined as follows:

2− SPR =
{
a0 + a1P1 + a2P2; ai ∈ R,P 2

j = Pj , P1 × P2 = Pmax(1,2) = P2

}
Smarandache has defined algebraic operations on 2− SPR as follows:

Addition:

[a0 + a1P1 + a2P2] + [b0 + b1P1 + b2P2] = (a0 + b0) + (a1 + b1)P1 + (a2 + b2)P2

Multiplication:

[a0 +a1P1 +a2P2].[b0 + b1P1 + b2P2] = a0b0 +a0b1P1 +a0b2P2 +a1b0P
2
1 +a1b2P1P2 +a2b0P2 +

a2b1P1P2 + a2b2P
2
2 + a1b1P1P1 = (a0b0) + (a0b1 + a1b0 + a1b1)P1 + (a0b2 + a1b2 + a2b0 + a2b1 +

a2b2)P2.

It is clear that 2−SPR is a ring. If R is a field, then 2−SPR is called a symbolic 2-plithogenic

field. Also, if R is commutative, then 2− SPR is commutative, and if R has a unity (1), than

2− SPR has the same unity (1).

Theorem 2.2. [12] Let 2 − SPR be a 2-plithogenic symbolic ring, with unity (1). Let X =

x0 + x1P1 + x2P2 be an arbitrary element, then:

(1) X is invertible if and only if x0, x0 + x1, x0 + x1 + x2 are invertible.

(2) X−1 = x−1
0 + [(x0 + x1)

−1 − x−1
0 ]P1 + [(x0 + x1 + x2)

−1 − (x0 + x1)
−1]P2

Definition 2.3. [7] A symbolic 2-plithogenic real square matrix is a matrix with symbolic

2-plithogenic real entries.

Theorem 2.4. [7] Let S = S0 + S1P1 + S2P2 be a symbolic 2-plithogenic real square matrix,

then
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(1) S is invertible if and only if S0, S0 + S1, S0 + S1 + S2 are invertible.

(2) If S is invertible then

S−1 = S−1
0 + [(S0 + S1)

−1 − S−1
0 ]P1 + [(S0 + S1 + S2)

−1 − (S0 + S1)
−1]

(3) Sm = Sm
0 + [(S0 + S1)

m − Sm
0 ]P1 + [(S0 + S1 + S2)

m − (S0 + S1)
m] for m ∈ N .

Definition 2.5. [7] Let L = L0 + L1P1 + L2P2 ∈ 2− SPM , we define:

detL = det(L0) + [det(L0 + L1)− detL0]P1 + [det(L0 + L1 + L2)− det(L0 + L1)]P2.

3. Adjoint of Symbolic 2-Plithogenic Square Matrices

We begin this section with the following definition.

Definition 3.1. Let L = L0 + L1P1 + L2P2 be a symbolic 2-plithogenic square matrix with

real entries. The adjoint matrix of L is defined as

adjL = adjL0 + [adj(L0 + L1)− adjL0]P1 + [adj(L0 + L1 + L2)− adj(L0 + L1)]P2.

Example 3.2. Consider the following symbolic 2-plithogenic 2× 2 matrix:

L =

(
2 + P1 + 3P2 1− P1 − P2

3 + 4P1 1 + P2

)
Here,

L0 =

(
2 1

3 1

)
, L0 + L1 =

(
3 0

7 1

)
and L0 + L1 + L2 =

(
6 −1

7 2

)
,

Then,

adjL0 =

(
1 −1

−3 2

)
, adj(L0 + L1) =

(
1 0

−7 3

)
and adj(L0 + L1 + L2) =

(
2 1

−7 6

)
.

Therefore,

adjL = adjL0 + [adj(L0 + L1)− adjL0]P1 + [adj(L0 + L1 + L2)− adj(L0 + L1)]P2

=

(
1 + P1 −1 + P1 + P2

−3− 4P2 2 + P1 + 3P2

)
Example 3.3. Consider the following symbolic 2-plithogenic 3× 3 matrix:

L =

 −3 + P1 − P2 1 + P1 5

−P1 + P2 3P1 4P2

−1 + 2P1 − P2 5 + 2P2 7 + P1 + 10P2


Here,

L0 =

−3 1 5

0 0 0

−1 5 7

 , L0 + L1 =

−2 2 5

−1 3 0

−1 5 8

 and L0 + L1 + L2 =

−3 2 5

0 3 4

0 7 18

,

Then,
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adjL0 =

0 18 0

0 −16 0

0 14 0

 , adj(L0 + L1) =

24 9 −15

8 −21 −5

−8 12 −4

 and

adj(L0 + L1 + L2) =

26 −1 −7

0 −54 12

0 21 9

.

Therefore,

adjL = adjL0 + [adj(L0 + L1)− adjL0]P1 + [adj(L0 + L1 + L2)− adj(L0 + L1)]P2

=

24P1 + 2P2 18− 9P1 − 10P2 −15P1 + 8P2

8P1 − 8P2 −16 + 5P1 + 33P2 −5P1 + 17P2

−8P1 + 8P2 14− 2P1 + 9P2 −4P1 + 13P2



Using the definition of adjoint of symbolic 2-plithogenic matrix we can modify the Theorem

2.4 as follows:

Theorem 3.4. Let L = L0 + L1P1 + L2P2 be a symbolic 2-plithogenic square matrix, then L

is invertible if and only if detL0 6= 0, det(L0 + L1) 6= 0 and det(L0 + L1 + L2) 6= 0 and

L−1 =
1

detL
(adjL).

Proof. By Theorem 2.4, L is invertible if and only if detL0 6= 0, det(L0 + L1) 6= 0 and

det(L0 + L1 + L2) 6= 0.

Also,

1

detL
(adjL) =

(
1

detL0 + [det(L0 + L1)− det(L0)]P1 + [det(L0 + L1 + L2)− det(L0 + L1)]P2

)
(adjL0 + [adj(L0 + L1)− adjL0]P1 + [adj(L0 + L1 + L2)− adj(L0 + L1)]P2)

=
adjL0

detL0
+

[
adj(L0 + L1)

det(L0 + L1)
− adjL0

detL0

]
P1 +

[
adj(L0 + L1 + L2)

det(L0 + L1 + L2)
− adj(L0 + L1)

det(L0 + L1)

]
P2

= L−1
0 +

[
(L0 + L1)

−1 − L−1
0

]
P1 +

[
(L0 + L1 + L2)

−1 − (L0 + L1)
−1
]
P2

= L−1

Hence the result holds by Theorem 2.4.

Example 3.5. Consider the symbolic 2-plithogenic 2× 2 matrix

L =

(
1 + P1 + P2 −1 + P1

1− P2 1

)
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Here, detL = 2 + P2, and adjL =

(
1 1− P1

−1 + P2 1 + P1 + P2

)
.

Hence,

L−1 =
1

detL
(adjL)

=
1

2 + P2

(
1 1− P1

−1 + P2 1 + P1 + P2

)

=

(
1

2
− 1

6
P2

)(
1 1− P1

−1 + P2 1 + P1 + P2

)

=

(
1
2 −

1
6P2

1
2 −

1
2P1

−1
2 + 1

2P2
1
2 + 1

2P1

)

Example 3.6. Consider the symbolic 2-plithogenic 3× 3 matrix

L =

 1 + P1 1− P1 1 + P1 − P2

1 + P2 −1 + P1 + P2 2 + P1

1− P1 + P2 −1 + P2 1 + P1


Here, detL = 2 + 2P1 − P2, and

adj(L) =

1 + 2P1 − P2 −2 + 2P2 3− 3P1 − P2

1− 3P1 + P2 4P1 − P2 −1− 3P1

−P1 2− 2P2 −2 + 2P1 + 2P2


L−1 =

1

detL
(adjL)

=
1

2 + 2P1 − P2

1 + 2P1 − P2 −2 + 2P2 3− 3P1 − P2

1− 3P1 + P2 4P1 − P2 −1− 3P1

−P1 2− 2P2 −2 + 2P1 + 2P2



=

(
1

2
− 1

4
P1 +

1

12
P2

)1 + 2P1 − P2 −2 + 2P2 3− 3P1 − P2

1− 3P1 + P2 4P1 − P2 −1− 3P1

−P1 2− 2P2 −2 + 2P1 + 2P2



=


1
2 + 1

4P1 − 1
12P2 −1 + P2

3
2 −

3
2P1 − 1

3P2

1
2 − P1 + 1

6P2 P1 + 8
3P2 −1

2 −
1
2P1 − 1

3P2

−1
4P1 − 1

12P2 1− 1
2P1 − 1

2P2 −1 + P1 + 2
3P2


Remark 3.7. If X is a invertible symbolic 2-plithogenic square matrix and X−1 is its inverse,

then adjX = detX ·X−1.

Theorem 3.8. Let X = A+BP1+CP2 and Y = M+NP1+SP2 be two symbolic 2-plithogenic

invertible square matrices. Then XY is also invertible and (XY )−1 = Y −1X−1.
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Proof. By Theorem 3.4, if X is invertible then

det(A) 6= 0, det(A+B) 6= 0 and det(A+B + C) 6= 0.

Similarly, if Y is invertible then

detM 6= 0 , det(M +N) 6= 0 and det(M +N + S) 6= 0.

This implies that,

det(AM) = detA detM 6= 0

det[(A+B)(M +N)] = det(A+B) det(M +N) 6= 0

det[(A+B + C)(M +N + S)] = det(A+B + C) det(M +N + S) 6= 0.

Now,

det(XY ) = det(AM) + [det((A+B)(M +N))]P1 + [det((A+B + C)(M +N + S))]P2 6= 0

and hence XY is invertible. Also by associativity of matrix multiplication, we have

(XY )(Y −1X−1) = X(Y Y −1)X−1 = XX−1 = Un×n

(Y −1X−1)(XY ) = Y −1(X−1X)Y = Y −1Y = Un×n.

Thus,(MN)−1 = N−1M−1.

Theorem 3.9. Let X and Y be two m×m symbolic 2-plithogenic invertible matrices. Then

the following properties holds.

(1) det(adjX) = (detX)m−1.

(2) adj(XY ) = adjX adjY .

(3) adj(Xk) = (adjX)k for any positive integer k.

(4) adj(XT ) = (adjX)T .

(5) adj(adjX) = (detX)m−2X

Proof. We can prove this results based on the properties adjoint of classical matrices.

4. Characteristic Polynomial of Symbolic 2-Plithogenic Square Matrices

We begin this section with the following definition.

Definition 4.1. Let L = L0 + L1P1 + L2P2 be a symbolic 2-plithogenic n× n square matrix

with real entries. The characteristic polynomial of L is defined as

φ(λ) = α(λ) + [β(λ)− α(λ)]P1 + [γ(λ)− β(λ)]P2
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where,

α(λ) = det(L0 − λUn×n)

β(λ) = det(L0 + L1 − λUn×n)− det(L0 − λUn×n)

γ(λ) = det(L0 + L1 + L2 − λUn×n)− det(L0 + L1 − λUn×n).

Example 4.2. Consider the following symbolic 2-plithogenic 2× 2 matrix:

L =

(
2 + P1 + 3P2 1− P1 − P2

3 + 4P1 1 + P2

)
with

L0 =

(
2 1

3 1

)
, L0 + L1 =

(
3 0

7 1

)
and L0 + L1 + L2 =

(
6 −1

7 2

)
.

Here,

α(λ) = det(L0 − λUn×n) =

(
2− λ 1

3 1− λ

)
= λ2 − 3λ− 1.

β(λ) = det(L0 + L1 − λUn×n)− det(L0 − λUn×n)

=

(
3− λ 0

7 1− λ

)
= λ2 − 4λ+ 3.

γ(λ) = det(L0 + L1 + L2 − λUn×n)− det(L0 + L1 − λUn×n)

=

(
6− λ −1

7 2− λ

)
= λ2 − 8λ− 19.

Hence the characteristic polynomial of L is

φ(λ) = λ2 − 3λ− 1 + [(λ2 − 4λ+ 3)− (λ2 − 3λ− 1)]P1 + [(λ2 − 8λ− 19)− (λ2 − 4λ+ 3)]P2

= λ2 − 3λ− 1 + (−λ+ 4)P1 + (−4λ+ 16)P2.

Example 4.3. Consider the symbolic 2-plithogenic 3× 3 matrix

L =

 1 + P1 1− P1 1 + P1 − P2

1 + P2 −1 + P1 + P2 2 + P1

1− P1 + P2 −1 + P2 1 + P1


with

L0 =

1 1 1

1 −1 2

1 −1 1

 , L0 + L1 =

2 0 2

1 0 3

0 −1 2

 , and L0 + L1 + L2 =

2 0 1

2 1 3

1 0 2

.
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Here,

α(λ) = det(L0 − λUn×n) =

1− λ 1 1

1 −1− λ 2

1 −1 1− λ

 = −λ3 + λ2 + λ+ 2.

β(λ) = det(L0 + L1 − λUn×n)− det(L0 − λUn×n)

=

2− λ 0 2

1 −λ 3

0 −1 2− λ


= −λ3 + 4λ2 − 7λ+ 4.

γ(λ) = det(L0 + L1 + L2 − λUn×n)− det(L0 + L1 − λUn×n)

=

2− λ 0 1

2 1− λ 3

1 0 2− λ


= −λ3 + 5λ2 − 7λ+ 3.

Hence the characteristic polynomial of L is

φ(λ) = −λ3 + λ2 + λ+ 2 + [(−λ3 + 4λ2 − 7λ+ 4)− (−λ3 + λ2 + λ+ 2)]P1

+[(−λ3 + 5λ2 − 7λ+ 3)− (−λ3 + 4λ2 − 7λ+ 4)]P2

= −λ3 + λ2 + λ+ 2 + (3λ2 − 8λ+ 2)P1 + (λ2 − 1)P2.

Theorem 4.4 (Symbolic 2-plithogenic Cayely-Hamilton Theorem). Every symbolic

2-plithogenic square matrix satisfies its characteristic polynomial.

Proof. We can prove this result based on the Cayely-Hamilton theorem for classical matrices.

Example 4.5. Consider the symbolic 2-plithogenic 2× 2 matrix given in Example 4.2

L =

(
1 + P1 + P2 −1 + P1

1− P2 1

)
The characteristic polynomial of L is φ(λ) = λ2 − 3λ− 1 + (−λ+ 4)P1 + (−4λ+ 16)P2. This

implies that,

φ(L) = L2 − 3L− 1 + (−L+ 4)P1 + (−4L+ 16)P2.

=

(
−P1 + 11P2 −5P2

7P1 + 28P2 −3P1 − 7P2

)
+

(
P1 − 3P2 P2

−7P1 3P1 − P2

)
+

(
−8P2 4P2

−28P1 8P2

)

=

(
0 0

0 0

)
Hence, φ(L) = 0.
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Remark 4.6. If L is a invertible symbolic 2-plithogenic matrix, then using Cayely-Hamilton

theorem we can compute the inverse of L. See the following example.

Example 4.7. Consider the symbolic 2-plithogenic 2× 2 matrix

L =

(
1 + P1 + P2 −1 + P1

1− P2 1

)
with

L0 =

(
1 −1

1 1

)
, L0 + L1 =

(
2 0

1 1

)
, and L0 + L1 + L2 =

(
3 0

0 1

)
.

Here,

α(λ) = det(L0 − λUn×n) =

(
1− λ −1

1 1− λ

)
= λ2 − 2λ+ 2.

β(λ) = det(L0 + L1 − λUn×n)− det(L0 − λUn×n)

=

(
2− λ 0

1 1− λ

)
= λ2 − 3λ+ 2.

γ(λ) = det(L0 + L1 + L2 − λUn×n)− det(L0 + L1 − λUn×n)

=

(
3− λ 0

0 1− λ

)
= λ2 − 4λ+ 3.

Hence the characteristic polynomial of L is

φ(λ) = α(λ) + [β(λ)− α(λ)]P1 + [γ(λ)− β(λ)]P2

= λ2 − 2λ+ 2− λP1 + (−λ+ 1)P2.

Now, by Cayely-Hamilton theorem we have φ(λ) = 0, we have,

L2 − 2L+ 2− LP1 + (−L+ 1)P2 = 0

(2 + P2)LL
−1 = −L2 + 2L+ LP1 + LP2.

This implies that,

L−1 =
1

2 + P2
[−L+ (2 + P1 + P2)Un×n]

=
1

2 + P2

(
1 1− P1

−1 + P2 1 + P1 + P2

)

=

(
1

2
− 1

6
P2

)(
1 1− P1

−1 + P2 1 + P1 + P2

)

=

(
1
2 −

1
6P2

1
2 −

1
2P1

−1
2 + 1

2P2
1
2 + 1

2P1

)
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5. Conclusion

In this work, the adjoint of symbolic 2-plithogenic square matrices was defined and the

inverse of invertible symbolic 2-plithogenic square matrices was studied in terms of symbolic

2-plithogenic adjoint and symbolic 2-plithogenic determinant. Also, we have presented the

concept of the characteristic polynomial of symbolic 2-plithogenic matrices and we have proved

the symbolic 2-plithogenic version of of Cayley-Hamilton theorem with many examples that

clarify the validity of this work.
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