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Abstract: In this work, we present a generalized isomorphism between field of symbolic n-
plithogenic set and R™*?, use it to study the most general form of symbolic plithogenic random
variables and study its probabilistic properties including expectation, variance and moments
generating function. We also use this isomorphism to study symbolic n-plithogenic probability
density function and present many theorems related to it. As an application to this new theory, we
study exponential distribution in its symbolic n-plithogenic form and derive its properties, like
expected value and variance. Many examples were presented and solved successfully. This paper
closes the grand gap in-plithogenic probability theory and paves the way to study many related
theories like stochastic modeling and its applications.

Keywords: Plithogenic; Exponential Distribution; Expected Value; Variance; Isomorphism.

1. Introduction

Professor Florentin Smarandache presented a new set of numbers called neutrosophic numbers
similar to hypercomplex numbers presented by Kantor, L.L. and Solodovnikov, A.S. [1] where this
new set is defined by R(I) ={a+bl;I*=1,a,b € R} [2]-[6]. This theory built new algebraic
structures and new geometry. Hence, new theories in algebra, real analysis, probability, etc.

In neutrosophic probability theory, or as it is called by researchers “literal neutrosophic probability
theory”, many continuous probability distributions have been studied well, estimation theory was
rebuilt under indeterminacy and many methods of estimation were well-defined including:
maximum likelihood, moments and bayes. Researchers developed strong theories and many
applications in real-life. From our point of view, the most important applications of this theory are in
stochastic processes and stochastic modelling. [7]-[17].

Another extension to this set was then developed by professor Smarandache to what is known by
plithogenic sets and it is said to be the most general form of a set until this moment. Plithogenic set
is defined by R(P,P,,..,B) ={ag+a;Pi + ayPy + -+ ayPy; Ao, ay, ..., ay € R}; P7 = P, PP, =
PiP; = Ppaxqjyand i =1,2,..,n,j = 1,2,..,,n. This last set was studied in many fields of mathematics
but with n = 2. [18]-[34].

This paper can be considered a generalization of our work in [22] where we first presented the
symbolic 2 plithogenic probability theory and studied its properties. This paper will close the gap in
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symbolic n-plithogenic probability theory and pave the way for many researches related to it
including statistical inference, stochastic modelling, sampling theory, queueing theory, distributions
theory, stable distributions, reliability theory, etc.

2. Preliminaries
Definition 2.1

Let R(I) = {a + bI; I* = I}, we call R(I) the neutrosophic field of reals.
Definition 2.2

Set of symbolic n-plithogenic real numbers is defined as follows:
R(P) = R(P,,P,, ..., B) ={ayg + a, P, + a,P, + -+ a,,B;; ay, ay, ..., a, € R}
Where:
P? =P, PP = PP, = Praxiijy; i = 1,2, .,n,j =1,2,..,n
Definition 2.3
Symbolic 2 plithogenic random variable is defined as follows:
Xop: Qop > R(Py, Pp); Qpp = Qo X Q1 (Py) X Q,(P2);

Xop = Xo + X, P, + X,P,; P2 = P, P} = P,,P,P, = P,P, = P,

Where random variables X, X;, X, are classical random variables defined on €, Q,, Q, respectively.

3. Symbolic n-plithogenic random variables

Definition 3.1

Let R(P) be the symbolic n-plithogenic set of reals, we define B isomorphism and its inverse B~*
between R(P) and R™*! as follows:
B:R(P) » R™;
B(ay, + a,P; + a,P, + -+ a,P,) = (ag, ay + ay, ...,ay + a; + -+ a,)
B~ LR 5 R(P);
B~ (ag, ay, ..., 0y) = ag + (a; — ap)Py + (a, — a))P, + - + (a, — a,,)P,
Theorem 3.1
Isomorphism presented in definition 3.1 is an algebraic isomorphism.
Proof
Let ag + a, P, + a,P, + -+ a, B, by + b1 Py + b,P, +---+ b, P, € R(P).
B(a, + a;P; + ayP, + - + a,P, + by + b;P; + b,P, + -+ b,P,)
= B([ay + bo] + [a; + b,]P;+.. +[a, + b,]P,)
= (ag + bg,ag + by + a; + by,...,ap+ by +a; + by + - +a, +b,)
= (ag ag + ay, ., a9 + ay + -+ a,) + (b, by + by, .., by + by + -+ b,)
= B(ay + a;P; + a,P, + -+ a,P,) + B(by + byP; + b,P, + -+ b,P,).
We also have:
B([ay + a;P; + ayP, + -+ a,P,] - [by + by Py + byP, + -+ b,P,])
= B(ayby + [agh; + a;b; + a;by|P; + [agh, + a;b, + ayb, + ayby + ayb, Py + -
+ [agh, + a;b, + - + a,b, + a,b,_; + ayb,_, + -+ a,by|P,)
= (aobo,aobO + aygby + a;by + a,by, agby + ayb, + a1by + a;by + agb, + a;b,
+ ayb, + a,by + ayby, ..., a9by + agby + a;by + a1by + ayb,, + a1b, + -+ a,b,
+ ayb,_q + ayb,_, + -+ + a,by)
= B(ay + a,P, + ay,P, + -+ a,P,)B(by + byP; + b,P, + -+ b,P,).
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Also, B is correspondence one-to-one because Ker(B) = {0} and for every (ao, a,...,a,) € R**!
exists aq + (a; —ag)P; + (a, —a)P, + -+ (a, —ay,_1)P, € R(P) that satisfies B(ay+ (a; —
ag)P, + (a; — a)P, + -+ (a, — a,_1)B) = (ag, a4, ..., a,) € R™?* so B is an algebraic isomorphism.
Definition 3.2

We say that ay + a,P; + ayP; + -+ a,P,, =p by + by Py + byP; + .-+ b, P, if ay = by, ay + a; =
by + by,..,ap +a; +--+a, =2by+by+--+b,.

Theorem 3.2

Relation defined in definition 3.2 is a partial order relation.

Proof

Straightforward.

Definition 3.3
Symbolic n-plithogenic random variable is defined by:
Xp:Qp = R(P); Qp = Qp X Qy(Py) X Q3(P;) ... X O (B);

Xp = Xo + X1 Py + XoPy + -+ XpPy; P? = P, PP, = PP, = Proayiijyii = 1,2, j = 1,2,.,m
Where X,, X, X5, ..., X, are classical random variables defined on g, Q4,Q,, ..., Q, respectively.
Theorem 3.3
Let X, be a symbolic n-plithogenic random variable then the following equations hold:

1. EXp) = E(Xp) + Xiz1 EX)P;.

2. Var(Xy) + Xy [Var(Xio X;) — Var (X2t x;)|P..

3. 0(Xo) + Xi[o ()0 X;) — o(Z70 X)) P

Proof

Without loss of generality, we can prove the theorem assuming that X,, is a discrete random variable.
1. EXp) = pr xpf (xp) =pr(x0 + 3Py 3Py + o+ xny B)f (0 + X1 Py + X, Py o+ X By)

The isomorphic expectation of last equation is:

B[E(Xp)] =B Z(XO +X1P1 +x2P2 + "‘+ann)f(x0 +x1P1 +x2P2 + "'+ann)

xp

= ZB[(XO + x1P1 + xzpz + -+ ann)f(xo + xlpl + xzpz + -+ ann)]

xp

D xf G0, ) o+ x)fGot ), D (ot b x)f G0+ 1

X0 Xo+Xx1 Xo+x1++xn

—+

ot 1) | = (EXo), EXo + X1), oo, EXo + Xy + -+ + X))

(E(Xo), E(Xo) + E(Xy), .., E(Xo) + E(Xy) + -+ E(X,)

Taking B~1:

E(Xp) = B"HE(Xo), E(Xo) + E(Xy), ., E(Xo) + E(Xy) + -+ + E(Xy))
= E(Xo) + [E(Xo) + E(X1) - E(Xo)]P1 +
+[EXo) + E(Xy) + -+ E(Xp) —E(Xo) —E(Xy) — = E(Xn_1)]P,
=EXy) + EX))P, + -+ E(X,,)P,
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2. E(Xg) = E(XO +X1P1 + .- +XnPn)2 = pr(xo + xlpl + -+ ann)Zf(xO + x1P1 + -+ ann)

Taking B:

B[E(Xg)] =B Z(.xo + x1P1 + .- +ann)2f(X0 + X1P1 + -+ ann)

xp

Z B[(XO + X1P1 + °ee + ann)zf(xo + xlpl + A + ann)] =

xp

Z x3f(xo), Z (xo +x1)%f (%o + x1), ..e, Z (xo + 21 + -+ x,)%f (xo

Xo Xo+X1 Xo+xXq1++xn

+x 4+ x,) | = (EXE),EXo +X1)?, o, EXo + Xy + 4+ X,)?)

Now by taking the inverse isometry we get:
E(X3) =B Y EWX3),EXy + X)? ... EXog + X, + -+ X)?)
=EX§) + [E(Xo + X1)? — EXD]P, + -
+[EXo+ X1+ +X)? —EXo+ X1 + -+ Xp_1)?]P,
Also, we can prove in similar way that:
[E(XP)]Z = [E(Xo)]z + [[E(Xo + X1)]2 - [E(Xo)]z]P1 +
+[[EXo + Xy + -+ X2 = [EKo + Xy + -+ + X)) P] Py
Hence, we have:
Var(Xp) = E(X3) — [E(Xp)]?
=EX§) + [E(Xo + X1)? — EXD]Py + -
+[EKo+ X1 + -+ X)* —EXo+ X1 + -+ X,1)?]P,
—{[EX)]? + [[E(Xo + X1 — [E(X)]?1Py + -+
+[EXo + X1+ + X2 = [EKo + Xy + - + X121}
=Var(Xy) + [Var(X, + X;) — Var(Xy)1P, + -+
+[Var(Xg+ X, + -+ X)) —Var(Xo + X, + -+ X,,_1)]B,

n i i-1
i=

= Var(Xo) + X] Pi

Var ij —Var

1 j=0 Jj=0

3. Straightforward.

Theorem 3.4
A symbolic n-plithogenic function f(xp) = f(x¢ + x;P; + -+ x,B,) is a probability density function
in classical scene if and only if it satisfies the following conditions:
1. f(xo), f(xg +x1), ..., f(xo + x1 + -+ x3,) are all continuous nonnegative functions.
2. fxo fxo)dxy =1, fx0+x1 flxo +x)d(x + x1) = 1, ---'fxo+x1+4..+xnf(xo +2xp + 4 x)d (g +
X+ +x,) =1

Proof

The isometric image of f(xp) is:
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B(f(xp)) = (f(xo)vf(xo +x1) e fxg 3+ + xn))
According to theorem 3.2 we can see that if f(xq),f(xg + xq), ..., f(xg +x; + -+ x,) are all
nonnegative then f(xp) is a nonnegative function and vice-versa.
Also, according to the properties of the isomorphism B we can conclude that f(xp) will be a
continuous function if and only if f(xq), f(xg + x1), ..., f(xg + %1 + -+ x,,) are all continuous
functions.

Finally, let us assume that:

f fo)dxo = 1, f £ (o + x)d(xo + x1)

Xo+Xx1

=1,.., f flxg+xy + 4+ x)d(xe +x, + -+ x,) = 1.

Xo+X1++Xp
Then taking B! yields to:

Bt ff(xo)dxo, f flxo +x)d(xg + %), o) f flxog+xg+ -+ x,)d(xg + 21 + -

Xo+x1 Xo+x1++xp
+x) | =B (1L, .., ) =1+(1-1DP + -+ (1 -1P, =1

And this completes the proof.

Example

Let f(xp) = 2xq + (6™ — 2x)P; + (1 — e *1)P,; x5 € [0,1], %9 + x4 > 0,x5 + x; + x, € [0,1]
1. prove that f(xp) is a probability density function.

2. Calculate the probability P (X p < % + P - ;PZ).

Solution

1. B(f(xp)) = B(2x0 + (e=®0**1) — 2x )P, + (1 — e~ *o**))p)) = (2x0,2x0 +
(e—(xo+x1) _ ZXO), 2xy + (e—(xo+x1) _ 2x0) + (1 _ e—(xo+x1))) = (Zxo,e—(xo‘*'xﬂ' 1)

We conclude that:

f(xo) = 2x9;x0 € [0,1]

flxo +x,) = e Co+ ;x5 4+, > 0

flxo+x + %) = Lx + %, + x, €[0,1]

All previous functions are continuous nonnegative functions and integrate to one on their defined

domain.
2. Calculating P (X p < % + P, — ZPZ) is equivalent to calculating the following three

probabilities:
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1 1 1., 3

2 - P s 2tz 3
1 3 3

J‘Zxodx0 = x%l(zJ = Z'f e~ Cotx)d (x, + x,) = [1 - e‘("(’”l)]g =1-e72 f d(xg +x, +x3) = 2

0 0 0

So P(x, <%+P1—ZP2)=B‘1G,1—e_§,%)=i+(1—e_§—i)P1+G—1+e_§)P2 =2+(3-

e_é) P + (e_% - i) P,.
Theorem 3.5

Let Xp be a symbolic n-plithogenic random variable then its moments generating function is:

n
My () = My @)+ ) Myt ©) = My, 0] P
i=1

Proof
+00 +o0o
MXP(t) =E(e"P) = f e"Pf(xp)dxp = B™'B l J e P f(xp)dxp
+00 +00 o
=B71 f et o f(xy)dx,, f etGotxD) £ (xo 4+ x,)d (xp + X1) , oor, j etGotxatxn) £y 4 x4 o

+x,)d (g + 21 + -+ xp)

=B71! (MX() (t)l MX()+X1 (t)' e MX0+X1+"'+X‘"~(t))

= My, (t) + [MX0+X1 ) - Mxo(t)]P1 +t [MX0+X1+---+Xn(t) - MX0+X1+---+Xn_1(t)]Pn = My, (t)
n

= M)+ ) Mg O = My 0]
i=1

Theorem 3.6
Let Xp be a symbolic n-plithogenic random variable and let its moments generating function be My, (¢) then:

dk
WMXP (O)le=0 = E(XF)
Proof

We have
n
My () = My 0 + ) Myt (0 = My, (0] P
i=1

By taking k™" derivative of the last equation and substituting t = 0 we get:
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k

k d n
LMy, (Olimo = 2 (Mxo(t) ' Z My 3 © = Myis 0] Pi>
i=

t=0

k

k = [ dk d
ﬁMXom)*Z[WMzﬁzox,-(") ar Mz “”]t
=1

. k . k
n i i-1
=E(X{;)+Z E ZXJ. —E ZX,. P, = EXK
i=1 j=0 j=0

4. Application to symbolic n-plithogenic exponential distribution

Definition 4.1
A symbolic n-plithogenic random variable is said to follow exponential distribution with parameter 1y = 1, +
APy + -+ A, B, if its probability density function is given by:

n i i-1
T yiml gy wie1
f(xp) = Age Ho%o + Z Z/lj e~ Zj=04jZj=0%j _ z/lj e Zi=0%Zj=0% | P, s xp, Ap >p 0
| & =

Theorem 4.1
If Xp is a symbolic n-plithogenic exponential random variable with parameter Ay = 45 + ;P; + - +
A, P, then:

L Fxp) = 1—Age 0% + S0, [e B4 ZE — o~ Zimo 2 Zj=0%1| P, xp, Ap >p 0
2. E(Xp)z [2 y lll]PL
3. Var(Xy) = 1_13 +yn, [(zi 1/1‘)2 _ (Zi‘:}u)z] P,
j=04j j=04j
Proof
1 Fxp) = 37 fGepddcp = [0 50 2 e hoo 4y [ 2y e Zimo s Bimo®s —

it A e_z;;%’lfz;;%’xf] P, ] d(xg + x, Py + -+ x,B,) = B‘l[f AogeHo%odx, fx°+x1(lo

2 )e—(/10+/11)(x0+x1)d(x0 +x1) fx0+x1+ +xn(/10 F A+ e+ A )e—(lo+11+ HAn) (xg+x1++ +x")d(x +x;, +
- xn)] - —1(1 _ e—ﬂoxo’ 1— e—(/10+11)(xo+x1)’ 1= e~ (Got+Ar++An) (xo+x1+- +xn)) =1- Aoe—loxo +

n [gﬁ%%ﬁ‘:ﬁ Xj _ o= Zjmodj 23‘:0"1'] P,

2. E(Xp) = [ xpf (p)dxp = [ (g + 1Py + oo x,Py) [Age 0% + B, [5 2; e Dm0 B0 —
1 © ©

Zl 1 A e Z] OA Z] Ox]] L]d(xo + xlpl + b + ann) = B_l[fo xol’loe_loxodxo ,fo (xo + xl)(/’lo +

A)e Rt Aot 2 d (o + x), ..o, [ o + 21 + o+ 1) (Ao + Ay + -+
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~(AgH+Ag++An) (Ko +X1 +-+%Xn) —p1(Ll _1 1 -1
Ap)e~ Vot Xotxit ) d(xg + x; + -+ + x,)| = B </10'10+/11'""/10+/11+'"+1n>_/10+

n ([t 1 )

= [zj-zoa,- z;-;%)ﬂ,] i
3. Var(Xp) = BB([, [xp — E(Xp)]?Ape~*r *Pdxp) = B~ <f0°° (x0 —
1) -2 © 1 )2 —(Ao+21)(xg+x1)
_) /106 oxode ,f (XO + X1 - ) (AO + /11)8 ( 0 1) XotX1 d(xo +

1

o 2
xl))---;fo (X0+x1+---+xn— ) (AO+/’{1++

Ao+Ai++2p

An)e—(/10"'11+"'+/1n)(xo+x1+"’+xn)d(xo +x;+ o+ xn)> =

—1(1 1 1 1 1 1

B (E (Ao+2)2" "’ (Ao+ll+"‘+in)2) % T2 [(2;’-0/1].)2 - (2}3‘%)zj)2] Fi

5. Conclusion

We have presented an important introduction to symbolic n-plithogenic probability theory and
studied random variables related to it. Many theorems were demonstrated and proved successfully.
As an application to this new theory, exponential distribution was defined and its properties were
studied. Many examples have been solved successfully. In future researches, we are going to study
symbolic n-plithogenic stochastic processes and its real-life applications in communication using

queueing theory.
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