
On Some New Notions and Functions in Neutrosophic Topological 
Spaces

1 I. Arokiarani, 2 R. Dhavaseelan, 3S. Jafari, 4M. Parimala
1Department of Mathematics, Nirmala College for women,Coimbatore, Tamil Nadu, India. E-mail :stell11960@yahoo.co.in

2 Department of Mathematics, Sona College of Technology, Salem-636005,Tamil Nadu,India. E-mail: dhavaseelan.r@gmail.com
3 Department of Mathematics, College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark. E-mail: jafaripersia@gmail.com

4 Department of Mathematics, Bannari Amman Institute of Technology,Sathyamangalam-638401 Tamil Nadu, India. E-mail: rishwanthpari@gmail.com

Abstract: In this paper, we define the notion of neutrosophic
semiopen (resp. preopen and α-open) functions and investigate re-
lation among them. We give a characterization of neutrosophic α-
open set, and provide conditions for a neutrosophic set to be a neu-

trosophic α-open set. We discuss characterizations of neutrosophic
pre-continuous (resp. α-continuous) functions. We give a condition
for a function of neutrosophic topological spaces to be a neutrosophic
α-continuous function.
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1 Introduction and Preliminaries
After the advent of the notion of fuzzy set by Zadeh[11], C. L.
Chang [4] introduced the notion of fuzzy topological space and
many researchers converted, among others, general topological
notions in the context of fuzzy topology. The notion of intuition-
istic fuzzy set introduced by Atanassov [1, 2, 3] is one of the
generalizations of the notion of fuzzy set. Later, Coker [5] by
using the notion of the intuitionistic fuzzy set, offered the use-
ful notion of intuitionistic fuzzy topological space. Joung Kon
Jeon et al.[7] introduced and studied the notions of intuitionis-
tic fuzzy α-continuity and pre-continuity which we will investi-
gate in the context of neutrosophic topology. After the introduc-
tion of the concepts of neutrosophy and neutrosophic set by F.
Smarandache [[9], [10]], the concepts of neutrosophic crisp set
and neutrosophic crisp topological spaces were introduced by A.
A. Salama and S. A. Alblowi[8].

In this paper, we define the notion of neutrosophic semiopen
(resp. preopen and α-open) functions and investigate relation
among them. We give a characterization of neutrosophic α-open
set, and provide conditions for which a neutrosophic set is neu-
trosophic α-open. We discuss characterizations of neutrosophic
precontinuous (resp. α-continuous) functions.

Definition 1.1. [6] A neutrosophic topology (NT) on a nonempty
set X is a family T of neutrosophic sets in X satisfying the fol-
lowing axioms:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neu-
trosophic topological space (briefly NTS) and each neutrosophic
set in T is called a neutrosophic open set (briefly NOS). The com-
plement A of a NOS A in X is called a neutrosophic closed set
(briefly NCS) in X . Each neutrosophic supra set (briefly NS)
which belongs to (X,T ) is called a neutrosophic supra open set
(briefly NSOS) in X . The complement A of a NSOS A in X is
called a neutrosophic supra closed set (briefly IFSCS) in X .

Definition 1.2. [6] Let A be a neutrosophic set in a neutrosophic
topological space X . Then
Nint(A) =

⋃
{G | G is a neutrosophic open set in X and

G ⊆ A} is called the neutrosophic interior of A;
Ncl(A) =

⋂
{G | G is a neutrosophic closed set in X and

G ⊇ A} is called the neutrosophic closure of A.

Definition 1.3. [6] Let X be a nonempty set. If r, t, s be real
standard or non standard subsets of ]0−, 1+[ then the neutro-
sophic set xr,t,s is called a neutrosophic point(in short NP )in
X given by

xr,t,s(xp) =

{
(r, t, s), if x = xp

(0, 0, 1), if x 6= xp

for xp ∈ X is called the support of xr,t,s.where r denotes the de-
gree of membership value ,t denotes the degree of indeterminacy
and s is the degree of non-membership value of xr,t,s.

2 Definitions
Definition 2.1. A neutrosophic set A in a neutrosophic 
topological space (X, T ) is called
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1) a neutrosophic semiopen set (briefly NSOS) if A ⊆
Ncl(Nint(A)).

2) a neutrosophic α-open set (briefly NαOS) if A ⊆
Nint(Ncl(Nint(A))).

3) a neutrosophic preopen set (briefly NPOS) if A ⊆
Nint(Ncl(A)).

4) a neutrosophic regular open set (briefly NROS) if A =
Nint(Ncl(A)).

5) a neutrosophic semipreopen or β-open set (briefly NβOS)
if A ⊆ Ncl(Nint(Ncl(A))).

A neutrosophic set A is called neutrosophic semiclosed (resp.
neutrosophic α-closed, neutrosophic preclosed, neutrosophic
regular closed and neutrosophic β-closed) (briefly NSCS, NαCS,
NPCS, NRCS and NβCS) if the complement of A is a neutro-
sophic semiopen (resp. neutrosophic α-open, neutrosophic pre-
open, neutrosophic regular open and neutrosophic β-open).

Example 2.1. Let X = {a, b, c}. Define the neutrosophic sets
A,B,C,D and E in X as follows:
A = 〈x, ( a

0.5 ,
b
0.4 ,

c
0.5 ), ( a

0.5 ,
b
0.4 ,

c
0.5 ), ( a

0.5 ,
b
0.6 ,

c
0.5 )〉,

B = 〈x, ( a
0.5 ,

b
0.55 ,

c
0.5 ), ( a

0.5 ,
b

0.55 ,
c
0.5 ), ( a

0.5 ,
b

0.55 ,
c
0.5 )〉,

C = 〈x, ( a
0.6 ,

b
0.6 ,

c
0.5 ), ( a

0.6 ,
b
0.6 ,

c
0.5 ), ( a

0.4 ,
b
0.4 ,

c
0.5 )〉. Then

T = {0
N
, 1

N
, A,B,C} is neutrosophic topology on X.

Thus, (X,T ) is neutrosophic topological space. Ob-
serve that D = 〈x, ( a

0.5 ,
b
0.5 ,

c
0.5 ), ( a

0.5 ,
b
0.5 ,

c
0.5 ), ( a

0.5 ,
b
0.5 ,

c
0.5 )〉

is both semiopen and α-open in (X,T ) and E =
〈x, ( a

0.5 ,
b
0.4 ,

c
0.4 ), ( a

0.5 ,
b
0.4 ,

c
0.4 ), ( a

0.5 ,
b
0.6 ,

c
0.6 )〉 is both preopen

and β-open in (X,T ).

Proposition 2.1. Let (X,T ) be a neutrosophic topological space.
If A is a neutrosophic α-open set then it is a neutrosophic
semiopen set.

Proposition 2.2. Let (X,T ) be a neutrosophic topological space.
If A is a neutrosophic α-open set then it is a neutrosophic preopen
set.

Proposition 2.3. Let A be a neutrosophic set in a neutrosophic
topological spaces (X,T ). If B is a neutrosophic semiopen set
such that B ⊆ A ⊆ Nint(Ncl(B)), then A is a neutrosophic
α-open set.

Proof. Since B is a neutrosophic semiopen set, we have
B ⊆ Ncl(Nint(B)). Thus, A ⊆ Nint(Ncl(B)) ⊆
Nint(Ncl(Ncl(Nint(B)))) = Nint(Ncl(Nint(B))) ⊆
Nint(Ncl(Nint(A))), and so A is a neutrosophic α-open
set.

Lemma 2.1. Any union of NS α-open sets (resp. neutrosophic
preopen sets) is a NS α-open sets (resp., neutrosophic preopen
sets).

The Proof is straightforward.

Proposition 2.4. A neutrosophic set A in a neutrosophic topo-
logical space X is neutrosophic α-open (resp. neutrosophic pre-
open) iff for every neutrosophic point xr,t,s ∈ A, there exists a
neutrosophic α-open set (resp. neutrosophic preopen set) Bxr,t,s

such that xr,t,s ∈ Bxr,t,s
⊆ A.

Proof. If A is a neutrosophic α-open set (resp. neutrosophic pre-
open set), then we may take Bxr,t,s

= A for every xr,t,s ∈ A.
Conversely assume that for every neutrosophic point xr,t,s ∈ A,
there exists a neutrosophic α-open set (resp., neutrosophic pre-
open set), Bxr,t,s

such that xr,t,s ∈ Bxr,t,s
⊆ A. Then,

A = ∪{xr,t,s|xr,t,s ∈ A} ⊆ ∪{Bxr,t,s |xr,t,s ∈ A} ⊆ A, and so
A = ∪{Bxr,t,s |xr,t,s ∈ A}, which is a neutrosophic α-open set
(resp. neutrosophic preopen set) by Lemma 2.1.

Definition 2.2. Let f be a function from a neutrosophic topolog-
ical spaces (X,T ) and (Y, S). Then f is called

(i) a neutrosophic open function if f(A) is a neutrosophic open
set in Y for every neutrosophic open set A in X .

(ii) a neutrosophic α-open function if f(A) is a neutrosophic
α-open set in Y for every neutrosophic open set A in X .

(iii) a neutrosophic preopen function if f(A) is a neutrosophic
preopen set in Y for every neutrosophic open set A in X .

(iv) a neutrosophic semiopen function if f(A) is a neutrosophic
semiopen set in Y for every neutrosophic open set A in X .

Proposition 2.5. Let (X,T ), (Y, S) and (Z,R) be three neu-
trosophic topological spaces, let f : (X,T ) → (Y, S) and
g : (Y, S) → (Z,R) be functions. If f is neutrosophic open
and g is neutrosophic α-open(resp., neutrosophic preopen), then
g ◦ f is neutrosophic α-open(resp. neutrosophic preopen).

Proof. The Proof is straightforward.

Proposition 2.6. Let (X,T ) and (Y, S) are neutrosophic topo-
logical spaces. If f : (X,T ) → (Y, S) is neutrosophic α-open
then it is neutrosophic semiopen.

Proof. Assume that f is neutrosophic α-open and letA be a neu-
trosophic open set inX . Then, f(A) is a neutrosophic α-open set
in Y . It follows from Proposition 2.1 that f(A) is a neutrosophic
semiopen set so that f is a neutrosophic semiopen function.

Proposition 2.7. Let (X,T ) and (Y, S) are neutrosophic topo-
logical spaces. If f : (X,T ) → (Y, S) is neutrosophic α-open
then it is neutrosophic preopen.

3 Neutrosophic Continuity
Definition 3.1. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S).
Then f is called a neutrosophic pre-continuous function if
f−1(B) is a neutrosophic preopen set in X for every neutro-
sophic open set B in Y .
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Proposition 3.1. For a function f from a neutrosophic topologi-
cal spaces (X,T ) to an (Y, S), the following are equivalent.

(i) f is neutrosophic pre-continuous.

(ii) f−1(B) is a neutrosophic preclosed set in X for every neu-
trosophic closed set B in Y .

(iii) Ncl(Nint(f−1(A))) ⊆ f−1(Ncl(A)) for every neutro-
sophic set A in Y.

Proof. (i)⇒ (ii) The Proof is straightforward.
(ii) ⇒ (iii) Let A be a neutrosophic set in Y . Then Ncl(A) is
neutrosophic closed. It follows from (ii) that f−1(Ncl(A)) is a
neutrosophic preclosed set in X so that Ncl(Nint(f−1(A))) ⊆
Ncl(Nint(f−1(Ncl(A)))) ⊆ f−1(Ncl(A)).
(iii) ⇒ (i) Let A be a neutrosophic open set in
Y . Then A is a neutrosophic closed set in Y , and so
Ncl(Nint(f−1(A))) ⊆ f−1(Ncl(A)) = f−1(A). This im-
plies that Nint(Ncl(f−1(A))) = Ncl(Ncl(f−1(A))) =
Ncl(Nint(f−1(A))) = Ncl(Nint(f−1(A))) ⊆ f−1(A) =
f−1(A), and thus f−1(A) ⊆ Nint(Ncl(f−1(A))). Hence
f−1(A) is a neutrosophic preopen set inX , and f is neutrosophic
precontinuous.

Definition 3.2. Let xr,t,s be a neutrosophic point of a neutro-
sophic topological space (X,T ). A neutrosophic set A of X is
called neutrosophic neighbourhood of xr,t,s if there exists a neu-
trosophic open set B in X such that xr,t,s ∈ B ⊆ A.

Proposition 3.2. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S).
Then the following assertions are equivalent.

(i) f is a neutrosophic pre-continuous function.

(ii) For each neutrosophic point xr,t,s ∈ X and every neutro-
sophic neighbourhood A of f(xr,t,s), there exists a neutro-
sophic preopen set B in X such that xr,t,s ∈ B ⊆ f−1(A).

(iii) For each neutrosophic point xr,t,s ∈ X and every neutro-
sophic neighbourhood A of f(xr,t,s), there exists a neu-
trosophic preopen set B in X such that xr,t,s ∈ B and
f(B) ⊆ A

Proof. (i)⇒ (ii) Let xr,t,s be a neutrosophic point in X and let
A be a neutrosophic neighbourhood of f(xr,t,s). Then there ex-
ists a neutrosophic open setB in Y such that f(xr,t,s) ∈ B ⊆ A.
Since f is a neutrosophic pre-continuous function, we know
that f−1(B) is a neutrosophic preopen set in X and xr,t,s ∈
f−1(f(xr,t,s)) ⊆ f−1(B) ⊆ f−1(A). Consequently (ii) is valid.
(ii) ⇒ (iii) Let xr,t,s be a neutrosophic point in X and let
A be a neutrosophic neighbourhood of f(xr,t,s). The condi-
tion (ii) implies that there exists a neutrosophic preopen set B
in X such that xr,t,s ∈ B ⊆ f−1(A) so that xr,t,s ∈ B and
f(B) ⊆ f(f−1(A)) ⊆ A. Hence (iii) is true.
(iii) ⇒ (i) Let B be a neutrosophic open set in Y and let
xr,t,s ∈ f−1(B). Then f(xr,t,s) ∈ B, and so B is a neutro-
sophic neighbourhood of f(xr,t,s) since B is neutrosophic open

set. It follows from (iii) that there exists a neutrosophic pre-
open set A in X such that xr,t,s ∈ A and f(A) ⊆ B so that
xr,t,s ∈ A ⊆ f−1(f(A)) ⊆ f−1(B). Applying Propostion 2.4
induces that f−1(B) is a neutrosophic preopen set in X. There-
fore, f is a neutrosophic pre-continuous function.

Definition 3.3. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S).
Then f is called a neutrosophic α-continuous function if f−1(B)
is a neutrosophic α-open set inX for every neutrosophic open set
B in Y .

Proposition 3.3. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S)
that satisfies Ncl(Nint(Ncl(f−1(B)))) ⊆ f−1(Ncl(B)) for
every neutrosophic set B in Y . Then f is a neutrosophic α-
continuous function.

Proof. Let B be an neutrosophic open set in Y . Then B is a
neutrosophic closed set in Y , which implies that from hypothesis
that Ncl(Nint(Ncl(f−1(B)))) ⊆ f−1(Ncl(B)) = f−1(B). It
follows that

Nint(Ncl(Nint(f−1(B)))) = Ncl(Ncl(Nint(f−1(B))))

= Ncl(Nint(Nint(f−1(B))))

= Ncl(Nint(Ncl(f−1(B))))

= Ncl(Nint(Ncl(f−1(B)))) ⊆ f−1(B)

= f−1(B)

so that f−1(B) ⊆ Nint(Ncl(Nint(f−1(B)))). This shows that
f−1(B) is a neutrosophic α-open set in X . Hence, f is a neutro-
sophic α-continuous function.

Proposition 3.4. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S).
Then the following assertions are equivalent.

(i) f is neutrosophic α-continuous.

(ii) For each neutrosophic point xr,t,s ∈ X and every neutro-
sophic neighbourhood A of f(xr,t,s), there exists a neutro-
sophic α-open set B in X such that xr,t,s ∈ B ⊆ f−1(A).

(iii) For each neutrosophic point xr,t,s ∈ X and every neutro-
sophic neighbourhood A of f(xr,t,s), there exists a neu-
trosophic α-open set B in X such that xr,t,s ∈ B and
f(B) ⊆ A

Proof. (i)⇒ (ii) Let xr,t,s be a neutrosophic point in X and let
A be a neutrosophic neighbourhood of f(xr,t,s). Then there ex-
ists a neutrosophic open setB in Y such that f(xr,t,s) ∈ B ⊆ A.
Since f is neutrosophic α-continuous, we know that f−1(B) is
a neutrosophic α-open set in X and xr,t,s ∈ f−1(f(xr,t,s)) ⊆
f−1(B) ⊆ f−1(A). Consequently (ii) is valid.
(ii) ⇒ (iii) Let xr,t,s be a neutrosophic point in X and let
A be a neutrosophic neighbourhood of f(xr,t,s). The condi-
tion (ii) implies that there exists a neutrosophic α-open set B
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in X such that xr,t,s ∈ B ⊆ f−1(A) so that xr,t,s ∈ B and
f(B) ⊆ f(f−1(A)) ⊆ A. Hence (iii) is true.
(iii) ⇒ (i) Let B be a neutrosophic open set in Y and let
xr,t,s ∈ f−1(B). Then f(xr,t,s) ∈ B, and so B is a neutro-
sophic neighbourhood of f(xr,t,s) since B is neutrosophic open
set. It follows from (iii) that there exists a neutrosophic α-
open set A in X such that xr,t,s ∈ A and f(A) ⊆ B so that
xr,t,s ∈ A ⊆ f−1(f(A)) ⊆ f−1(B). Applying Proposition 2.4
induces that f−1(B) is a neutrosophic α-open set in X . There-
fore, f is a neutrosophic α-continuous function.

Proposition 3.5. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S).
If f is neutrosophic α-continuous, then it is neutrosophic semi-
continuous.

Proof. Let B be a neutrosophic open set in Y . Since f is neutro-
sophic α-continuous, f−1(B) is a neutrosophic semiopen set in
X . It follows from Proposition 2.1 that f−1(B) is a neutrosophic
semiopen set in X so that f is a neutrosophic semi-continuous
function.

Proposition 3.6. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S).
If f is neutrosophic α-continuous, then it is neutrosophic pre-
continuous.
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