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1 Introduction
The concept of Neutrosophic set, first introduced by Smarandache [17],is a powerful general formal framework
that generalizes the concept of fuzzy set and intuitionistic fuzzy set. Recently, many researchers have been
involved in extending the concepts and results of abstract algebra to the broader framework of the neutrosophic
set theory[2, 3, 4, 5, 19]. Smarandache[17] and Wang et al.[18] introduced the concept of a single valued
neutrosophic set as a subclass of the neutrosophic set and specified the definition of a neutrosophic set to make
more applicable the theory to real life problems. In 1992, B. M. Schein have considered systems of the form
(Φ; ◦, \) [16], where Φ is a set of functions closed under the composition “◦” of functions (and hence (Φ; ◦)
is a function semigroup) and the set theoretic subtraction “\” (and hence (Φ; \) is a subtraction algebra in the
sense of [1]). Jun et al. introduced the concept of ideal in subtraction algebras and continued studying on
ideals in subtraction algebras[6, 8, 9, 14]. K. J. Lee and C. H. Park [11] introduced the concept of a fuzzy
ideal in subtraction algebras and investigated some conditions for a fuzzy set to be a fuzzy ideal in subtraction
algebras. Since then many reseachers worked in this area[7, 10, 12, 13].

In this paper, we apply the notion of neutrosophic sets in subtraction algebras. Also, we introduce the notion
of neutrosophic ideal and give some conditions for a neutrosophic set to be a neutrosophic ideal in substraction
algebras. Finally,we showed that neutrosophic image and neutrosophic inverse image of neutrosophic ideal are
both neutrosophic ideal under certain conditions

2 Preliminaries
We review some definitions and properties that are necessary for this paper.

Definition 2.1. [1] An algebra (X,−) is called a subtraction algebra if a single binary operation− satisfies the
following identities: for any x, y, z ∈ X ,

(SA1) x− (y − x) = x,
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(SA2) x− (x− y) = y − (y − x),

(SA3) (x− y)− z = (x− z)− y,

We introduced an order relation X on a subtraction algebras: a ≤ b ⇔ a− b = 0, where 0 = a− a is an
element that does not depend on the choice of a ∈ X .

Proposition 2.2. [9] Let (X,−) be a subtraction algebra. Then we have the following axioms:

(SP1) (x− y)− y = x− y,

(SP2) x− 0 = x and 0− x = 0,

(SP3) (x− y)− x = 0,

(SP4) x− (x− y) ≤ y,

(SP5) (x− y)− (y − x) = x− y,

(SP6) x− (x− (x− y)) = x− y,

(SP7) (x− y)− (z − y) ≤ x− z,

(SP8) x ≤ y if and only if x = y − w for some w ∈ X,

(SP9) x ≤ y implies x− z ≤ y − z and z − y ≤ z − x for all z ∈ X,

(SP10) x, y ≤ z implies x− y = x ∧ (z − y),

(SP11) (x ∧ y)− (x ∧ z) ≤ x ∧ (y − z), for all x, y, z ∈ X.

Definition 2.3. [9] A nonempty subset A of a subtraction algebra X is called an ideal of X, denoted by A�X,
if it satisfies:

(SI1) a− x ∈ A for all a ∈ A and x ∈ X,

(SI2) for all a, b ∈ A, whenever a ∨ b exists in X then a ∨ b ∈ A.

Proposition 2.4. [9] Let X be a subtraction algebra and let x, y ∈ X. If w ∈ X is an upper bound for x and y,
then the element

x ∨ y := w − ((w − y)− x)

is a least upper bound for x and y.

Definition 2.5. [11] A fuzzy set µ in X is called a fuzzy ideal of X if it satisfies:

(SFI1) µ(x− y) ≥ µ(x),

(SFI2) ∃x ∨ y ⇒ µ(x ∨ y) ≥ min{µ(x), µ(y)}) for all x, y ∈ X.

We give some preliminaries about single valued neutrosophic sets and set operations, which will be called
neutrosophic sets, for simplicity.
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Definition 2.6. [18] Let X be a space of points (objects), with a generic element in X denoted by x. A single
valued neutrosophic set A on X is characterized by truth-membership function tA, indeterminacy-membership
function iA and falsity-membership function fA. For each point x in X, tA(x), iA(x), fA(x) ∈ [0, 1]. A neutro-
sophic set A can be written as denoted by a mapping defined as A : X → [0, 1]× [0, 1]× [0, 1] and

A = {< x, tA(x), iA(x), fA(x) >, x ∈ X}

for simplicity.

Definition 2.7. [15, 18] Let A and B be two neutrosophic sets on X . Then
(1) A is contained in B, denoted as A ⊆ B, if and only if NA(x) ≤ NB(x). i.e., tA(x) ≤ tB(x), iA(x) ≤

iB(x) and fA(x) ≥ fB(x). Two sets A and B is called equal, i.e., A = B iff A ⊆ B and B ⊆ A.

(2) the union ofA andB is denoted byC = A∪B and defined as NC(x) = NA(x)∨NB(x) where NA(x)∨
NB(x) = (tA(x)∨tB(x), iA(x)∨iB(x), fA(x)∧fB(x)), for each x ∈ X. i.e., tC(x) = max{tA(x), tB(x)}, iC(x) =
max{iA(x), iB(x)} and fC(x) = min{fA(x), fB(x)}.

(3) the intersection of A and B is denoted by C = A ∩ B and defined as NC(x) = NA(x) ∧ NB(x)
where NA(x) ∧ NB(x) = (tA(x) ∧ tB(x), iA(x) ∧ iB(x), fA(x) ∨ fB(x)), for each x ∈ X.i.e., tC(x) =
min{tA(x), tB(x)}, iC(x) = min{iA(x), iB(x)} and fC(x) = max{fA(x), fB(x)}.

(4) the complement of A is denoted by Ac and defined as N c
A (x) = (fA(x), 1 − iA(x), tA(x)), for each

x ∈ X.

Definition 2.8. [4] Let g : X1 → X2 be a function and A,B be the neutrosophic sets of X1 and X2, respec-
tively. Then the image of a neutrosophic set A is a neutrosophic set of X2 and it is defined as follows:∀y ∈ X2

g(A)(y) = (tg(A)(y), ig(A)(y), fg(A)(y))

= (g(tA)(y), g(iA)(y), g(fA)(y)),

where

g(tA)(y) =

{ ∨
tA(x) if x ∈ g−1(y),

0 otherwise,

g(iA)(y) =

{ ∨
iA(x) if x ∈ g−1(y),

0 otherwise,

g(fA)(y) =

{ ∧
tA(x) if x ∈ g−1(y),

0 otherwise,

And the preimage of a neutrosophic set B is a neutrosophic set of X1 and it is defined as follows:

g−1(B)(x) = (tg−1(B)(x), ig−1(B)(x), fg−1(B)(x))

= (tB(g(x)), iB(g(x)), fB(g(x)))

= B(g(x)), ∀x ∈ X1.

Definition 2.9. [4] Let A = {< x, tA(x), iA(x), fA(x) >, x ∈ X} be a neutrosophic set on X and α ∈ [0, 1].
Define the α-level sets of A as follows: (tA)α = {x ∈ X | tA(x) ≥ α}, (iA)α = {x ∈ X | iA(x) ≥ α}, and
(fA)α = {x ∈ X | fA(x) ≤ α}.
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3 Neutrosophic ideals
In what follows, let X be a subtraction algebra unless otherwise specified.

Definition 3.1. A neutrosophic set A of X is called a neutrosophic ideal of X if the following conditions are
true: ∀x, y ∈ X,

(SNI1) NA(x− y) ≥ NA(x) i.e., tA(x− y) ≥ tA(x), iA(x− y) ≥ iA(x) and fA(x− y) ≤ fA(x);

(SNI2) ∃x ∨ y ⇒ NA(x ∨ y) ≥ NA(x) ∧ NA(y),i.e., tA(x ∨ y) ≥ tA(x) ∧ tA(y), iA(x ∨ y) ≥ iA(x) ∧
iA(y) and fA(x ∨ y) ≤ fA(x) ∨ fA(y) whenever there exists x ∨ y.

Proposition 3.2. If a neutrosophic set A of X satisfies

(∀x, a, b ∈ X)
(

NA(x− ((x− a)− b)) ≥ NA(a) ∧NA(b)
)

(3.1)

then A is a neutrosophic ideal of X.

Proof. Let A = {< x, tA(x), iA(x), fA(x) >, x ∈ X} be a neutrosophic set of X that satisfies (3.1). By (SP2)
and (SP3) we have (x− y)− (((x− y)−x)−x) = (x− y)− (0−x) = (x− y)−0 = x− y. From this we get

tA(x− y) = tA((x− y)− (((x− y)− x)− x)) ≥ tA(x) ∧ tA(x) = tA(x),

iA(x− y) = iA((x− y)− (((x− y)− x)− x)) ≥ iA(x) ∧ iA(x) = iA(x),

fA(x− y) = fA((x− y)− (((x− y)− x)− x)) ≤ fA(x) ∨ fA(x) = fA(x).

Now suppose x∨y exists for x, y ∈ X. If we take w = x∨y,we have x∨y = w−((w−x)−y) by Proposition
2.4. It follows from (3.1) that

tA(x ∨ y) = tA(w − ((w − x)− y)) ≥ tA(x) ∧ tA(y),

iA(x ∨ y) = iA(w − ((w − x)− y)) ≥ iA(x) ∧ iA(y),

fA(x ∨ y) = fA(w − ((w − x)− y)) ≤ fA(x) ∨ fA(y).

Hence A is a neutrosophic ideal of X.

Proposition 3.3. For every neutrosophic ideal A of X, we have the following inequality:

(∀x ∈ X) (NA(0) ≥ NA(x)). (3.2)

Proof. Let A = {< x, tA(x), iA(x), fA(x) >, x ∈ X} be a neutrosophic ideal of X. Putting y = x in (SNI1),
then

tA(0) = tA(x− x) ≥ tA(x), iA(0) = iA(x− x) ≥ iA(x), fA(0) = fA(x− x) ≤ fA(x).

Hence (3.2) is valid.

Proposition 3.4. Let A be a neutrosophic set of X such that

(SNI3) (∀x ∈ X) (NA(0) ≥ NA(x)),
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(SNI4) (∀x, y, z ∈ X) (NA(x− z) ≥ NA((x− y)− z) ∧NA(y).)

Then we have the following implication:

(∀a, x ∈ X)(x ≤ a ⇒ NA(x) ≥ NA(a)). (3.3)

Proof. Let a, x ∈ X be such that x ≤ a. Then

tA(x) = tA(x− 0) ≥ tA((x− a)− 0) ∧ tA(a) = tA(0) ∧ tA(a) = tA(a),

iA(x) = iA(x− 0) ≥ iA((x− a)− 0) ∧ iA(a) = iA(0) ∧ iA(a) = iA(a),

fA(x) = fA(x− 0) ≤ fA((x− a)− 0) ∨ fA(a) = fA(0) ∨ fA(a) = fA(a).

Hence NA(x) ≥ NA(a).

Theorem 3.5. If a neutrosophic set A in X satisfies (SNI3) and (SNI4), then A is a neutrosophic ideal of X.

Proof. Let A be aneutrosophic in X satisfying (SNI3) and (SNI4), and let x, y ∈ X . Then x−y ≤ x by (SP3).
It follows from Proposition 3.4 that

NA(x− y) ≥ NA(x),

i.e., (SNI1) is valid. Also, we have
NA(x ∨ y) ≥ NA(x)

whenever x ∨ y exists in X by using Proposition 3.4 and so

NA(x ∨ y) ≥ NA(x) ∧NA(y).

Thus (SNI2) is valid. Therefore NA is a neutrosophic ideal of X.

Proposition 3.6. A necessary and sufficient condition for a neutrosophic set A of X to be a neutrosophic ideal
of X is that tA ,iA and 1− fA are fuzzy ideals of X.

Proof. Assume thatA = {< x, tA(x), iA(x), fA(x) >, x ∈ X} is a neutrosophic ideal ofX . For any x, y ∈ X ,
we have tA(x− y) ≥ tA(x), iA(x− y) ≥ iA(x) and fA(x− y) ≤ fA(x). Thus

(1− fA)(x− y) ≥ (1− fA(x)).

Now suppose x∨y exists for x, y ∈ X.We have tA(x∨y) ≥ tA(x)∧, tA(y), iA(x∨y) ≥ iA(x)∧iA(y) and fA(x∨
y) ≤ fA(x) ∨ fA(y). Thus

(1− fA)(x ∨ y) ≥ (1− fA(x)) ∧ (1− fA(y)).

Hence tA, iA and 1− fA are fuzzy ideal of X.
Conversely,assume that tA, iA and 1−fA are fuzzy ideal ofX and x, y ∈ R. Then tA(x−y) ≥ tA(x), iA(x−

y) ≥ iA(x) and 1− fA(x− y) ≥ (1− fA(x)). Thus

fA(x− y) = 1− (1− fA(x− y)) ≤ 1− (1− fA(x)) = fA(x).
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It follows that NA(x − y) ≥ NA(x) ∧ NA(y). Suppose x ∨ y exists for x, y ∈ X, we have tA(x ∨ y) ≥
tA(x) ∧ tA(y), iA(x ∨ y) ≥ iA(x) ∧ iA(y) and (1− fA)(x ∨ y) ≥ 1− fA(x) ∧ 1− fA(y). Thus

fA(x ∨ y) ≤ fA(x) ∨ fA(y).

It follows that
NA(x ∨ y) ≥ NA(x) ∧NA(y).

Hence A is a neutrosophic ideal of X .

Theorem 3.7. A is a neutrosophic ideal of X if and only if for all α ∈ [0, 1], the α-level sets of A, (tA)α,(iA)α
and (fA)α are ideals of X.

Proof. Assume that A = {< x, tA(x), iA(x), fA(x) >, x ∈ X} is a neutrosophic ideal of X . Let x ∈ X ,
a ∈ (tA)α, a ∈ (iA)α and a ∈ (fA)α. Then tA(a) ≥ α, iA(a) ≥ α, and fA(a) ≤ α. By Definition 3.1(SNI1),
we have

tA(a− x) ≥ tA(a) ≥ α, iA(a− x) ≥ iA(a) ≥ α, fA(a− x) ≤ fA(a) ≤ α.

Hence a − x ∈ (tA)α, a − x ∈ (tA)α and a − x ∈ (tA)α. Let a, b ∈ (tA)α a, b ∈ (iA)α and a, b ∈ (fA)α and
assume that there exists a ∨ b. Then tA(a) ≥ α and tA(b) ≥ α, which imply from Definition 3.1(SNI2) that

tA(a ∨ b) ≥ tA(a) ∧ tA(b) ≥ α, iA(a ∨ b) ≥ iA(a) ∧ iA(b) ≥ α, fA(a ∨ b) ≤ fA(a) ∨ fA(b) ≤ α.

and so that a ∨ b ∈ (tA)α,a ∨ b ∈ (iA)α and a ∨ b ∈ (fA)α. Therefore (tA)α,(iA)α and (fA)α are ideals of X.
Conversely, assume that tA(x− y) < tA(x) for some x, y ∈ X. Then

tA(x− y) < α < tA(x)

for some α ∈ (0, 1]. This implies that x ∈ (tA)α but x−y /∈ (tA)α. This is contradiction. Therefore tA(x−y) ≥
tA(x) for all x, y ∈ X. Similary iA(x− y) ≥ iA(x). If fA(x− y) > fA(x) for all x, y ∈ X. Then

tA(x− y) > α > fA(x)

for some α ∈ (0, 1]. This implies that x ∈ (fA)α but x − y /∈ (fA)α. This is contradiction. Therefore
fA(x− y) ≤ fA(x) for all x, y ∈ X. Suppose that x ∨ y exists such that tA(x ∨ y) < tA(x) ∧ tA(y) for some
x, y ∈ X, Then

tA(x ∨ y) < α < tA(x) ∧ tA(y)

for some α ∈ (0, 1]. It follows that x, y ∈ (tA)α and x∨y /∈ (tA)α. This is contradiction. Therefore tA(x∨y) ≥
tA(x) ∧ tA(y) for all x, y ∈ X. Similary iA(x ∨ y) ≥ iA(x) ∧ iA(y). If x ∨ y exists such that fA(x ∨ y) >
fA(x) ∧ tA(y) for some x, y ∈ X, Then

fA(x ∨ y) > α > fA(x) ∨ fA(y)

for some α ∈ (0, 1]. It follows that x, y ∈ (fA)α and x ∨ y /∈ (fA)α. This is contradiction. Therefore
fA(x ∨ y) ≤ fA(x) ∨ fA(y) for all x, y ∈ X. Hence A is a neutrosophic ideal of X .

Theorem 3.8. Let A and B are neutrosophic ideals of X . Then A ∩B is a neutrosophic ideal of X.

Chul Hwan Park, Neutrosophic ideal of Subtraction Algebras.



Neutrosophic Sets and Systems, Vol. 24, 2019 42

Proof. Suppse that A = {< x, tA(x), iA(x), fA(x) >, x ∈ X} and B = {< x, tB(x), iB(x), fB(x) >, x ∈ X}
are neutrosophic ideals of X and let x, y ∈ X. By Definition 3.1 , we have

tA∩B(x− y) = tA(x− y) ∧ tB(x− y) ≥ tA(x) ∧ tB(x) = tA∩B(x),

iA∩B(x− y) = iA(x− y) ∧ iB(x− y) ≥ iA(x) ∧ iB(x) = iA∩B(x),

fA∩B(x− y) = fA(x− y) ∨ fB(x− y) ≤ fA(x) ∨ fB(x) = fA∩B(x).

Now suppose x ∨ y exists for x, y ∈ X. By Definition 3.1, we have

tA∩B(x ∨ y) = tA(x ∨ y) ∧ tB(x ∨ y)

≥ (tA(x) ∧ tA(y)) ∧ (tB(x) ∧ tB(y))

= (tA(x) ∧ tB(x)) ∧ (tA(y) ∧ tB(y))

= tA∩B(x) ∧ tA∩B(y).

Similary we get iA∩B(x ∨ y) ≥ iA∩B(x) ∧ iA∩B(y). Also we obtain

fA∩B(x ∨ y) = fA(x ∨ y) ∨ fB(x ∨ y)

≤ (fA(x) ∨ fA(y)) ∨ (fB(x) ∨ fB(y))

= (fA(x) ∨ fB(x)) ∨ (fA(y) ∨ fB(y))

= fA∩B(x) ∨ fA∩B(y).

Hence A is a neutrosophic ideal of X .

Theorem 3.9. Let A be a neutrosophic ideal of X. Then the set

K := {x ∈ X | NA(x) = NA(0)}

is an ideal of X.

Proof. Let A be a neutrosophic ideal of X and a ∈ K. Then NA(a) = NA(0). By (SNI1), we have

NA(a− x) ≥ NA(a) = NA(0)

for x ∈ X. It follows from (3.2) that NA(a − x) = NA(0) so that a − x ∈ K. Let a, b ∈ K and assume that
there exists a ∨ b. By means of (SNI2), we know that

NA(a ∨ b) ≥ min{NA(a),NA(b)} = NA(0).

Thus NA(a ∨ b) = NA(0) by (3.2), and so a ∨ b ∈ K. Therefore K is an ideal of X.

Theorem 3.10. Let g : X1 → X2 be a homomorphism. Then the image f(A) of a neutrosophic ideal A of X1

is a neutrosophic ideal of X2.

Proof. For any y1, y2 ∈ f(X1), Consider the set

S = {a1 − a2 | a1 ∈ g−1(y1), a2 ∈ g−1(y2)}.
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If x ∈ S then x = x1 − x2 for x1 ∈ g−1(y1) and x2 ∈ g−1(y2) and so

f(x) = f(x1 − x2) = f(x1)− f(x2) = y1 − y2,

that is, x = x1 − x2 ∈ f−1(y1 − y2). It follows that

g(tA)(y1 − y2) =
∨

x∈f−1(y1−y2)

tA(x) ≥ tA(x1 − x2) ≥ tA(x1)

g(iA)(y1 − y2) =
∨

x∈f−1(y1−y2)

iA(x) ≥ iA(x1 − x2) ≥ iA(x1)

g(fA)(y1 − y2) =
∧

x∈f−1(y1−y2)

fA(x) ≤ fA(x1 − x2) ≤ fA(x1).

Then

g(A)(y1 − y2) = (g(tA)(y1 − y2), g(iA)(y1 − y2), g(fA)(y1 − y2)))
= (

∨
x∈f−1(y1−y2)

tA(x),
∨

x∈f−1(y1−y2)

iA(x),
∧

x∈f−1(y1−y2)

fA(x))

≥ (tA(x1 − x2), iA(x1 − x2), fA(x1 − x2))
≥ (tA(x1), iA(x1), fA(x1)).

Cnsequently,

g(A)(y1 − y2) ≥ (
∨

x1∈f−1(y1)

tA(x1),
∨

x1∈f−1(y1)

iA(x1),
∧

x1∈f−1(y1−y2

fA(x1))

= (g(tA)(y1), g(iA)(y1), g(fA)(y1))

= g(A)(y1).

If y1 ∨ y2 exist for any y1, y2 ∈ f(X1). We first consider the set

T = {a1 ∨ a2 | a1 ∈ g−1(y1), a2 ∈ g−1(y2)}.

If x ∈ T then x = x1 ∨ x2 for x1 ∈ g−1(y1) and x2 ∈ g−1(y2) and so

f(x) = f(x1 ∨ x2) = f(x1) ∨ f(x2) = y1 ∨ y2,

that is, x = x1 ∨ x2 ∈ f−1(y1 ∨ y2). It follows that

g(tA)(y1 ∨ y2) =
∨

x∈f−1(y1∨y2)

tA(x) ≥ tA(x1 ∨ x2),

g(iA)(y1 ∨ y2) =
∨

x∈f−1(y1∨y2)

iA(x) ≥ iA(x1 ∨ x2),

g(fA)(y1 ∨ y2) =
∧

x∈f−1(y1∨y2)

fA(x) ≤ fA(x1 ∨ x2).
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Then

g(A)(y1 ∨ y2) = (g(tA)(y1 ∨ y2), g(iA)(y1 ∨ y2), g(fA)(y1 ∨ y2)))
= (

∨
x∈f−1(y1∨y2)

tA(x),
∨

x∈f−1(y1∨y2)

iA(x),
∧

x∈f−1(y1∨y2)

fA(x))

≥ (tA(x1 ∨ x2), iA(x1 ∨ x2), fA(x1 ∨ x2))
≥ (tA(x1) ∧ tA(x2), iA(x1) ∧ iA(x2), fA(x1) ∨ fA(x2))

= (tA(x1), iA(x1), fA(x1)) ∧ (tA(x2), iA(x2), fA(x2)).

Cnsequently,

g(A)(y1 − y2) ≥ (
∨

x1∈f−1(y1)

tA(x1),
∨

x1∈f−1(y1)

iA(x1),
∧

x1∈f−1(y1)

fA(x1))

∧ (
∨

x2∈f−1(y2)

tA(x2),
∨

x2∈f−1(y2)

iA(x2)
∧

x2∈f−1(y2

fA(x1))

= (g(tA)(y1), g(iA)(y1), g(fA)(y1)) ∧ (g(tA)(y2), g(iA)(y2), g(fA)(y2))

= g(A)(y1) ∧ g(A)(y2).

Hence g(A) is a neutrosophic ideal of f(X1).

Theorem 3.11. Let g : X1 → X2 be a homomorphism. Then the preimage f−1(B) of a neutrosophic ideal B
of X2 is a neutrosophic ideal of X1.

Proof. Let B = {< x, tB(x), iB(x), fB(x) >, x ∈ X2} be a neutrosophic ideal of X2 and x, y ∈ X1. Then

g−1(B)(x− y) = (tB(g(x− y)), iB(g(x− y)), fB(g(x− y))

= (tB(g(x)− g(y)), iB(g(x)− g(y)), fB(g(x)− g(y))

≥ (tB(g(x)), iB(g(x)), fB(g(x))

= g−1(B)(x).

Now suppse x ∨ y exists for x, y ∈ X1. Then

g−1(B)(x ∨ y) = (tB(g(x ∨ y)), iB(g(x ∨ y)), fB(g(x ∨ y))

= (tB(g(x) ∨ g(y)), iB(g(x) ∨ g(y)), fB(g(x) ∨ g(y))

≥ tB(g(x)) ∧ iB(g(y)), iB(g(x) ∧ iB(g(y)), fB(g(x) ∨ fB(g(y)))

= (tB(g(x)), iB(g(x)), fB(g(x)) ∧ (tB(g(y)), iB(g(y)), fB(g(y))

= g−1(B)(x) ∧ g−1(B)(y)

Hence g−1(B), is a neutrosophic ideal of X1.

4 conclusions
F.Smarandache introduced the concept of neutrosophic sets, which can be seen as a new mathematical tool
for dealing with uncertainty. In this paper, we apply the notion of neutrosophic sets in subtraction algebras.

Chul Hwan Park, Neutrosophic ideal of Subtraction Algebras.
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Also, we introduce the notion of neutrosophic ideal and give some conditions for a neutrosophic set to be
a neutrosophic ideal in substraction algebras. Finally,we showed that neutrosophic image and neutrosophic
inverse image of neutrosophic ideal are both neutrosophic ideal under certain conditions Based on these re-
sults,we could apply neutrosophic sets to other types of ideals in subtraction algebra. Also,we believe that such
a results applied for other algebraic structure.
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