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Abstract.  In this paper, we introduce and study a neutro-

sophic crisp manifold as a new topological structure of 

manifold via neutrosophic crisp set. Therefore, we study 

some new topological concepts and some metric distances 

on a neutrosophic crisp manifold. 
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1 Introduction
Neutrosophics found their places into contemporary 

research; we have introduced the notions of neutrosophic 

crisp sets, neutrosophic crisp point and neutrosophic 

topology on crisp sets.  

We presented some new topological concepts and 

properties on neutrosophic crisp topology. A manifold is 

a topological space that is locally Euclidean and around 

every point there is a neighborhood that is topologically the 

same as the open unit in 𝑅𝑛.  

The aim of this paper is to build a new manifold 

topological structure called neutrosophic crisp manifold as 

a generalization of manifold topological space by 

neutrosophic crisp point and neutrosophic crisp topology 

and present some new topological concepts on a neutro-

sophic crisp manifold space. 

Also, we study some metric distances on a neutrosophic 

crisp manifold. 

The paper is structured as follows: in Section 2, we 

introduce preliminary definitions of the neutrosophic crisp 

point and neutrosophic crisp topology; in Section 3, some 

new topological concepts on neutrosophic crisp topology 

are presented and defined; in Section 4, we propose some 

topological concepts on neutrosophic crisp manifold space; 

Section 5 introduces some metric distances on a 

neutrosophic crisp manifold. Finally, our future work is 

presented in conclusion. 

2 Terminologies [1, 2, 4]
We recollect some relevant basic preliminaries. 

Definition 2.1:

Let  𝐴 =< 𝐴1, 𝐴2, 𝐴3 > be a neutrosophic crisp set on a set

X, then  

p =< {𝑝1}, {𝑝2}, {𝑝3} > ,  𝑝1 ≠ 𝑝2 ≠ 𝑝3 ∈ 𝑋  is called a

neutrosophic crisp point. 

A NCP  p =< {𝑝1}, {𝑝2}, {𝑝3} > belongs to a neutrosophic

crisp set 

𝐴 =< 𝐴1, 𝐴2, 𝐴3 >  of X denoted by 𝑝 ∈ 𝐴 if it defined by:

{𝑝1} ⊆ 𝐴1, {𝑝2} ⊆ 𝐴2and{𝑝3} ⊆ 𝐴3.

Definition 2.2:

A neutrosophic crisp topology (NCT) on a non empty set X 

is a family of Γ of neutrosophic crisp subsets in X satisfying 

the following axioms: 

i. ϕ𝑁 , X𝑁 ∈  Γ

ii. 𝐴1 ∩ 𝐴2 ∈  Γ 𝑓𝑜𝑟 𝑎𝑛𝑦 𝐴1, 𝐴2 ∈  Γ

iii. ∪ 𝐴𝑗 ∈  Γ ∀ {𝐴𝑗  𝑗 ∈ 𝐽} ⊆  Γ

Then (𝑋, Γ )  is called a neutrosophic crisp topological 

space (NCTS) in X and the elements in Γ  are called 

neutrosophic crisp open sets (NCOSs). 
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3 Neutrosophic Crisp Topological Manifold 

Spaces [2, 5, 4, 7]

We present and study the following new topological 

concepts about the new neutrosophic crisp topological 

manifold Space. 

Definition 3.1:
A neutrosophic crisp topological space (𝑋, Γ )   is a 

neutrosophic crisp Haussdorff (NCH ) if for each two 

neutrosophic crisp points p =< {𝑝1}, {𝑝2}, {𝑝3} > and

q =< {𝑞1}, {𝑞2}, {𝑞3} >  in X such that 𝑝 ≠ 𝑞  there exist

neutrosophic crisp open sets  U =< 𝑢1, 𝑢2, 𝑢3 > and  V =<
𝑣1, 𝑣2, 𝑣3 > such that p in U, q in V and 𝑈 ∩ 𝑉 = ϕ𝑁.

Definition 3.2:

𝝱 is collection of neutrosophic crisp open sets in (𝑋, Γ ) 

is said to be neutrosophic crisp base of neutrosophic crisp 

topology (NCT) if  Γ𝑁𝐶 =∪ β.

Definition 3.3:

Neutrosophic crisp topology (𝑋, Γ ) is countable if it 

has neutrosophic crisp countable basis for neutrosophic 

crisp topology, i.e. there exist a countable collection of 

neutrosophic crisp open set {𝑈𝛼}𝛼∊𝑁 =< 𝑢11, 𝑢12, 𝑢13 >, <
𝑢21, 𝑢22, 𝑢23 >, … . . , < 𝑢𝑛1, 𝑢𝑛2, 𝑢𝑛3 >  such that for any

neutrosophic crisp open set U containing a crisp 

neutrosophic point p in U, there exist a β ∈ 𝑁 such that 𝑝 ∈
 𝑈β ⊆ 𝑈.

Definition 3.4:

Neutrosophic crisp homeomorphism is a bijective 

mapping 𝑓 of NCTs (𝑋, Γ1  ) onto NCTs (𝑌, Γ2 ) is called a

neutrosophic crisp homeomorphism if it is neutrosophic 

crisp continuous and neutrosophic crisp open. 

Definition 3.5:

Neutrosophic crisp topology is neutrosophic crisp 

Locally Euclidean of dimension 𝑛 if for each neutrosophic 

crisp point p =< {𝑝1}, {𝑝2}, {𝑝3} >  in X, there exist a

neutrosophic crisp open set U =< 𝑢1, 𝑢2, 𝑢3 > and a map

𝜙: 𝑈 → 𝑅𝑛  such that 𝜙: 𝑈 → 𝜙(𝑈) 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝜙(𝑈) =<
𝜙(𝑢1), 𝜙(𝑢2), 𝜙(𝑢3) > is a homeomorphism; in particular

𝜙(𝑈) is neutrosophic crisp open set of 𝑅𝑛 . 

We define a neutrosophic crisp topological manifold 

(NCM) as follows: 

Definition 3.6:

(NCM) is a neutrosophic crisp topological manifold 

space if the following conditions together satisfied 

1. (NCM) is satisfying neutrosophic crisp topology

axioms.

2. (NCM) is neutrosophic crisp Haussdorff.

3. (NCM) is countable neutrosophic crisp topology.

4. (NCM) is neutrosophic crisp Locally Euclidean of

dimension n.

We give the terminology (𝑀𝑁𝐶)𝑛  to mean that it is a

neutrosophic crisp manifold of dimension 𝑛. 

The following graph represents the neutrosophic 
crisp topological manifold space as a 

generalization of topological manifold space: 

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑 

↙   ↓   ↘ 

Haussdorff    Second Countable    Locally Euclidean 

↓               ↓                  ↓ 

  Neutrosophic crisp Haussdorff    Neutrosophic crisp Countable 

  Neutrosophic crisp  Locally Euclidean 

↘   ↓   ↙ 

𝑁𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝐶𝑟𝑖𝑠𝑝 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑 

Figure 3.1 A graph of  generalization of topological manifold space 

4 Some New Topological Concepts on NCM 

Space [2, 3, 4, 6, 8] 

The neutrosophic crisp set U and map  𝜙(𝑈)  in the 

Definition 3.5 of neutrosophic crisp Locally Euclidean is 

called a neutrosophic crisp coordinate chart. 

Definition 4.1: 

A neutrosophic crisp coordinate chart on  (𝑀𝑁𝐶)𝑛 is a pair

(𝑈, 𝜙(𝑈))where U in  (𝑀𝑁𝐶)𝑛 is open and 𝜙: 𝑈 → 𝜙(𝑈) ⊆

𝑅𝑛  is a neutrosophic crisp homeomorphism, and then the 

neutrosophic crisp set U is called a neutrosophic  crisp 

coordinate domain or a neutrosophic crisp coordinate 

neighborhood.  

A neutrosophic crisp coordinate chart (𝑈, 𝜙(𝑈)) is centered 

at 𝑝 if 

𝜙(𝑝) = 0 𝑤ℎ𝑒𝑟𝑒 

 𝑎  𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 crisp 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑏𝑎𝑙𝑙 𝜙(𝑈) 

is a ball in 𝑅𝑛. 

Definition 4.1.1: 

A Ball in neutrosophic crisp topology is an open ball 

(𝑟, є, 𝑝) , r is radius 

0 ≤ 𝑟 ≤ 1 , 0 < є < 𝑟 𝑎𝑛𝑑 𝑝 𝑖𝑠 𝑁𝐶𝑃. 

Theorem 4.1:

Every NCM has a countable basis of 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑏𝑎𝑙𝑙. 

Theorem 4.2: 

In  (𝑀𝑁𝐶)𝑛  every neutrosophic crisp point  𝑝 = (<
{𝑝1}, {𝑝2}, {𝑝3} >)  ∈ (𝑀𝑁𝐶)𝑛 is contained in neutrosophic

coordinate ball centered at 𝑝 if: 
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 (𝜙−1(𝜙(𝑝)), 𝜙(𝜙−1(𝜙(𝑝))))  

and then if we compose 𝜙 with a translating we must get 

𝑝 = 𝜙(𝑝) = 0. 

Proof: Since (𝑀𝑁𝐶)𝑛 neutrosophic crisp Locally Euclidean,

p must be contained in a coordinate chart(𝑈, 𝜙(𝑈)). Since 

𝜙(𝑈) is a neutrosophic crisp open set containing𝜙(𝑝), by 

the NCT of  𝑅𝑛  there must be an open ball B containing 

𝜙(𝑝)  and contained in𝜙(𝑈) . The appropriate coordinate 

ball is (𝜙−1(𝜙(𝑝)), 𝜙(𝜙−1(𝜙(𝑝)))) . Compose 𝜙 with a 

translation taking 𝜙(𝑝) to 0 , then 𝑝 = 𝜙(𝑝) = 0, we have 

completed the proof. 

Theorem 4. 3: 

The neutrosophic crisp graph 𝐺(𝑓)  of a continuous 

function𝑓: 𝑈 → 𝑅𝑘,  

where  𝑈 𝑖𝑠 𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝑐𝑟𝑖𝑠𝑝 𝑠𝑒𝑡 𝑖𝑛 𝑅𝑛 , is NCM. 

𝐺(𝑓) = {(𝑝, 𝑓(𝑝)) 𝑖𝑛 𝑅𝑛×𝑅𝑘: 𝑝  𝑁𝐶𝑃𝑖𝑛 𝑈 } 

Proof: Obvious. 

Example: Spheres are NCM. An n-sphere is defined as: 

𝑆𝑛 = {𝑝 𝑁𝐶𝑃 𝑖𝑛 𝑅𝑛+1: |𝑝|2 = √𝑝1
2 + 𝑝2

2 + 𝑝3
22

= 1} . 

Definition 4.2: 

Every neutrosophic crisp point p has a neutrosophic crisp 

neighborhood point 𝑝NCbd contained in an open ball B.

Definition 4.3: 

Here come the basic definitions first. 

Let (𝑋, Γ ) be a NCTS. 

a) If a family{< 𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3 >: 𝑖 ∈ 𝐽} of NCOSs in

X satisfies the condition ∪ {< 𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3 >: 𝑖 ∈
𝐽} = 𝑋𝑁 then it is called a neutrosophic open cover

of X.

b) A finite subfamily of an open cover {<
𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3 >: 𝑖 ∈ 𝐽} on X, which is also a neutro-

sophic open cover of X is called a neutrosophic finite

subcover { < 𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3 >: 𝑖 ∈ 𝐽}.

c) A family {< 𝐾𝑖1, 𝐾𝑖2, 𝐾𝑖3 >: 𝑖 ∈ 𝐽} of NCOSs in X

satisfies the finite intersection property [FIP] iff

every finite subfamily {< 𝐾𝑖1, 𝐾𝑖2, 𝐾𝑖3 >: 𝑖 =
1, 2, … … , 𝑛}  of the family satisfies the condition:

∩ {< 𝐾𝑖1, 𝐾𝑖2, 𝐾𝑖3 >: 𝑖 ∈ 𝐽} ≠ ϕ𝑁.

d) A NCTS (𝑋, Γ ) is called a neutrosophic crisp com-

pact iff each crisp neutrosophic open cover of X has

a finite subcover.

Corollary: 

A NCTS (𝑋, Γ ) is a neutrosophic crisp compact iff every 

family { < 𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3 >: 𝑖 ∈ 𝐽} of NCCS in X having the

FIP has non-empty intersection. 

Definition 4.4: 

Every neutrosophic point has a neutrosophic neigh-

borhood contained in a neutrosophic compact set is called 

neutrosophic locally compact set. 

Corollary: 

Every NCM is neutrosophic locally compact set. 

5 Some Metric Distances on a Neutrosophic Crisp 
Manifold [10, 9]

5.1. Haussdorff Distance between Two Neutrosophic Crisp 

Sets on NCM: 

Let  𝐴 =< 𝐴1, 𝐴2, 𝐴3 >  and 𝐵 =< 𝐵1, 𝐵2, 𝐵3 >   two

neutrosophic crisp sets on NCM then the Haussdorff 

distance between A and B is 

𝑑𝐻(𝐴, 𝐵) = 𝑠𝑢𝑝(𝑑(𝐴𝑖 , 𝐵𝑗), 𝑑(𝐵𝑗, 𝐴𝑖))

𝑑(𝐴𝑖 , 𝐵𝑗) =

𝑖𝑛𝑓|𝐴𝑖 − 𝐵𝑗|   , ∀ 𝑖, 𝑗 ∈ 𝐽

5.2. Modified Haussdorff Distance between Two 

Neutrosophic Crisp Sets on NCM: 

Let  𝐴 =< 𝐴1, 𝐴2, 𝐴3 > and 𝐵 =< 𝐵1, 𝐵2, 𝐵3 >  two neu-

trosophic crisp sets on NCM then the Haussdorff distance 

between A and B is 

𝑑𝐻(𝐴, 𝐵) = 

1

𝑛
[𝑠𝑢𝑝(𝑑(𝐴𝑖 , 𝐵𝑗), 𝑑(𝐵𝑗 , 𝐴𝑖))], 𝑛 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝐶𝑃𝑠

𝑑(𝐴𝑖 , 𝐵𝑗) = 𝑖𝑛𝑓|𝐴𝑖 − 𝐵𝑗|   , ∀ 𝑖, 𝑗 ∈ 𝐽.

Conclusion and Future Work 

In this paper, we introduced and studied the neutrosophic 

crisp manifold as a new topological structure of manifold 

via neutrosophic crisp set, and some new topological con-

cepts on a neutrosophic crisp manifold space via neutro-

sophic crisp set, and also some metric distances on a neutro-

sophic crisp manifold. Future work will approach neutro-

sophic fuzzy manifold, a new topological structure of man-

ifold via neutrosophic fuzzy set, and some new topological 

concepts on a neutrosophic fuzzy manifold space via neu-

trosophic fuzzy set. 
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