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Abstract: Neutrosophic Graphs are graphs that follow three-valued logic. They may be considered 

a fuzzy graph, although in some cases, it is difficult to optimize and model them using fuzzy graphs. 

In this paper, the first and second Zagreb indices, the Harmonic index, the Randic’ index and the 

Connectivity index for these graphs are investigated and some of the theorems related to these 

indices are discussed and proven. These indices are also calculated for some specific types of 

Neutrosophic Graphs, such as regular Neutrosophic Graphs and regular complete Neutrosophic 

Graphs. 
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1. Introduction 

Graph theory has many applications for modeling problems in various fields of computer 

science such as systems analysis, computer networks, transportation, operations research and 

economics. The vertices and edges of the graphs are used to represent objects and the relationships 

between them, respectively. Many of the optimization issues are caused by inaccurate information 

due to factors like lack of evidence, incomplete statistical data, and lack of sufficient information; this 

creates uncertainty in various issues. Classical Graphic Theory uses the basic concept of classical set 

theory, as proposed by Contour. In a classic graph, for each vertex or edge, there are two possibilities: 

either in the graph or not in the graph. Therefore, classical graphs cannot model uncertain 

optimization problems. Real-life issues are often unclear, making modeling by classical graphs 

difficult. Zadeh introduced the degree of membership/truth (T) in 1965 and defined the fuzzy set. 

Atanassov [14] introduced the degree of nonmembership/falsehood (F) in 1983 and defined the 

intuitionistic fuzzy set. Smarandache [15] introduced the degree of indeterminacy/neutrality (I) as an 

independent component in 1995 and defined the neutrosophic set on three components (T, I, F) [4]. 

Fuzzy set [1] is a generalized version of the classical set in which objects have different 

membership degrees. A fuzzy set gives the degree of different members between zero and one. Much 

work has already been done on fuzzy graphs, including the calculation of various topology indices, 

indicators such as Zagreb index, Randic’, harmonic, and so on. However, there is another class of 

graphs that is a broad case of fuzzy graphs. In this type of graph, known as neutrosophic graphs, in 

addition to the degree of accuracy of each membership function, the degree of its membership is 

uncertain, as well as its inaccuracy. So in many cases, it may be more logical to use this model than 

graphs in real-world problems. 
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Since that neutrosophic graphs are more efficient than fuzzy graphs for modeling real problems. 

Therefore, in this paper, we try for the first time to calculate some topological indices for this type of 

graph.  

 

2. Preliminaries 

This section, provides some definitions and theorems needed.  

Definition 1. [13] Let 𝐺 = (𝑁, 𝑀)  be a single-valued Neutrosophic graph, where 𝑁  is a 

Neutrosophic set on 𝑉 and, 𝑀 is a Neutrosophic set on 𝐸, which satisfy the following 

 

𝑇𝑀(𝑢, 𝑣) ≤ 𝑚𝑖𝑛(𝑇𝑁(𝑢), 𝑇𝑁(𝑣)), 

𝐼𝑀(𝑢, 𝑣) ≥ 𝑚𝑎𝑥(𝐼𝑁(𝑢), 𝐼𝑁(𝑣)), 

𝐹𝑀(𝑢, 𝑣) ≥ 𝑚𝑎𝑥(𝐹𝑁(𝑢), 𝐹𝑁(𝑣)), 

 

Where 𝑢 and 𝑣 are two vertices of 𝐺, and (𝑢, 𝑣) ∈  𝐸 is an edge of 𝐺. 

 

Definition 2. [2] Let 𝐺 = (𝑁, 𝑀) be a Single-Valued Neutrosophic Graph and 𝑃 is a path in 𝐺. 𝑃 is 

a collection of different vertices, 𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑛 such that (𝑇𝑀(𝑣𝑖−1, 𝑣𝑖), 𝐼𝑀(𝑣𝑖−1, 𝑣𝑖), 𝐹𝑀(𝑣𝑖−1, 𝑣𝑖)) > 0 

for 0 ≤ 𝑖 ≤ 𝑛. 𝑃 is a Neutrosophic cycle if 𝑣0 = 𝑣𝑛 and 𝑛 ≥ 3. 

 

Definition 3. [2] Suppose 𝐺 = (𝑁, 𝑀) a single-valued Neutrosophic graph. 𝐺 is a connected Single-

Valued Neutrosophic Graph if there exists no isolated vertex in 𝐺. (𝑣 ∈ 𝑉𝐺  is isolated vertex, if there 

exists no incident edge to the vertex 𝑣.) 

 

Definition 4. [2] Let 𝐺 = (𝑁, 𝑀) be a Single-Valued Neutrosophic Graph, and 𝑣 ∈ 𝑉 is vertex of 𝐺. 

The degree of vertex 𝑣 is the sum of the truth membership values, the sum of the indeterminacy 

membership values, and the sum of the falsity membership values of all the edges that are adjacent 

to vertex 𝑣. And is denoted by 𝑑(𝑣), that 

𝑑(𝑣) = (𝑑𝑇(𝑣), 𝑑𝐼(𝑣), 𝑑𝐹(𝑣)) = (∑ 𝑇𝑀(𝑣, 𝑢)
𝑣∈𝑉
𝑣≠𝑢

, ∑ 𝐼𝑀(𝑣, 𝑢)
𝑣∈𝑉
𝑣≠𝑢

, ∑ 𝐹𝑀(𝑣, 𝑢)
𝑣∈𝑉
𝑣≠𝑢

). 

 

Definition 5. [2] Let 𝐺 = (𝑁, 𝑀) be a Single-Valued Neutrosophic Graph, and the 𝑑𝑚–degree of any 

vertex 𝑣 in 𝐺 is denoted as 𝑑𝑚(𝑣) where 

𝑑𝑚(𝑣) = ( ∑ 𝑇𝑀
𝑚(𝑢, 𝑣)

𝑢≠𝑣∈𝑉

, ∑ 𝐼𝑀
𝑚(𝑢, 𝑣)

𝑢≠𝑣∈𝑉

, ∑ 𝐹𝑀
𝑚(𝑢, 𝑣)

𝑢≠𝑣∈𝑉

) 

Here, the path 𝑣 = 𝑣0𝑣1 𝑣2  … 𝑣𝑛 = 𝑢 is the shortest path between the vertices 𝑣 and 𝑢, when the 

length of this path is 𝑚. 

 

Definition 6. [2] Let 𝐺 = (𝑁, 𝑀)  be a Single-Valued Neutrosophic Graph, 𝐺  is a regular 

neutrosophic graph if it satisfies the following, 

∑ 𝑇𝑀(𝑣, 𝑢)
𝑣≠𝑢

= 𝑐, ∑ 𝐼𝑀(𝑣, 𝑢)
𝑣≠𝑢

= 𝑐, ∑ 𝐹𝑀(𝑣, 𝑢)
𝑣≠𝑢

= 𝑐, 

Where 𝑐 is a constant value. 

3. Topological Indices in Neutrosophic Graphs 

In the section, we introduce Topological Indices in Neutrosophic Graphs and provide a number 

of examples. We define Zagreb indices, Harmonic index, and Randic’ index, and in finally 

Connectivity index on the neutrosophic graphs. 
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3.1. Zagreb index of First and Second Kind in Neutrosophic Graphs 

Definition 8. Let 𝐺 = (𝑁, 𝑀) be the Neutrosophic Graph whit non-empty vertex set. The first Zagreb 

index is denoted by 𝑀(𝐺) and defined as 

𝑀(𝐺) = ∑(𝑇𝑁 (𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑2(𝑢𝑖),            ∀

𝑛

𝑖=1

 𝑢𝑖 ∈  𝑉. 

Example 1. Consider the Neutrosophic Graph 𝐺 = (𝑁, 𝑀) as shown in figure 1, with the vertex set 

𝑉 = {𝑎, 𝑏, 𝑐}  such that (𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑎) = (0.3, 0.6, 0.7), (𝑇𝑁 , 𝐼𝑁, 𝐹𝑁)(𝑏) = (0.3, 0.5, 0.6),  and 

(𝑇𝑁 , 𝐼𝑁, 𝐹𝑁)(𝑐) = (0.4, 0.5, 0.6), The edge set contains (𝑇𝑀 , 𝐼𝑀, 𝐹𝑀)(𝑎, 𝑏) = (0.2, 0.6, 0.8), 

(𝑇𝑀 , 𝐼𝑀 , 𝐹𝑀)(𝑏, 𝑐) = (0.2, 0.6, 0.7), and (𝑇𝑀 , 𝐼𝑀 , 𝐹𝑀)(𝑎, 𝑐)  =  (02, 0.8, 0.9). We have, 

 

 

 

 

 

 

 

Figure 1. A neutrosophic graph with 𝑉 = {𝑎, 𝑏, 𝑐} 

 

The first Zagreb index is 

𝑑(𝑎) = (0.2 + 0.2, 0.6 + 0.8, 0.8 + 0.9) = (0.4, 1.4, 1.7), 

𝑑(𝑏) = (0.2 + 0.2, 0.6 + 0.6, 0.8 + 0.7) = (0.4, 1.2, 1.5), 

𝑑(𝑐) = (0.2 + 0.2, 0.8 + 0.6, 0.9 + 0.7) = (0.4, 1.4, 1.6). 

Now, we have 

𝑑2(𝑎) = (0.04 + 0.04, 0.36 + 0.64, 0.64 + 0.81) = (0.08, 1, 1.45), 

𝑑2(𝑏) = (0.04 + 0.04, 0.36 + 0.36, 0.64 + 0.49) = (0.08, 0.72, 1.13), 

𝑑2(𝑐) = (0.04 + 0.04, 0.64 + 0.36, 0.81 + 0.49) = (0.08, 1, 1.3). 

𝑀(𝐺) = ∑(𝑇𝑁 (𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑2(𝑢𝑖)

4

𝑖=1

= (0.3, 0.6, 0.7)(0.08, 1, 1.45) + (0.3, 0.5, 0.6)(0.08, 0.72, 1.13)

+ (0.4, 0.5, 0.6)(0.08, 1. 1.3)

= (0.024 + 0.6 + 1.015) + (0.024 + 0.36 + 0.678) + (0.032 + 0.5 + 0.78) = 4.013. 

 

Definition 9. The second Zagreb index is denoted by 𝑀∗(𝐺) and defined as 

𝑀∗(𝐺) =
1

2
∑[(𝑇𝑁(𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑(𝑢𝑖)][(𝑇𝑁(𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗))𝑑(𝑣𝑗)],    ∀𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑢𝑖 , 𝑣𝑗) ∈ 𝐸.  

 

Example 2. If 𝐺 is the same Neutrosophic Graph as example 1, we have 
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𝑀∗(𝐺) =
1

2
[(0.3, 0.6, 0.7). (0.4, 1.4, 1.7) × (0.3, 0.5, 0.6). (0.4, 1.2, 1.5) + (0.3, 0.6, 0.7). (0.4, 1.4, 1.7)

× (0.4, 0.5, 0.6). (0.4, 1.4, 1.6) + (0.3, 0.5, 0.6). (0.4, 1.2, 1.5)

× (0.4, 0.5, 0.6). (0.4, 1.4, 1.6)]

=
1

2
[(0.12 + 0.84 + 1.19) × (0.12 + 0.6 + 0.9) + (0.12 + 0.84 + 1.19)

× (0.16 + 0.7 + 0.96) + (0.12 + 0.6 + 0.9) × (0.16 + 0.7 + 0.96)

=
1

2
[(2.15)(1.62) + (2.15)(1.82) + (1.62)(1.82)] =

1

2
(10.3444) = 5.1722. 

Note 1. As we have seen, the value of 𝑀∗(𝐺) is less than the value of 𝑀(𝐺), and this is always the 

case. 

Theorem 1. Let 𝐺 is the Neutrosophic Graph and 𝐻 is the Neutrosophic sub graph of 𝐺 such that 

𝐻 = 𝐺 − 𝑢 then 𝑀(𝐻) < 𝑀(𝐺) and 𝑀∗(𝐻) < 𝑀∗(𝐺). 

 

Proof. Given that by omitting a vertex of 𝐺, a positive value, the sum is lost, so the proof is obvious. 

   

Theorem 2. Let 𝐺 be the regular neutrosophic graph. Then, we have 

𝑀(𝐺) = 𝑐2 × ∑(𝑇𝑁 (𝑢𝑖) +  𝐼𝑁(𝑢𝑖)+ 𝐹𝑁(𝑢𝑖)),            ∀

𝑛

𝑖=1

 𝑢𝑖 ∈  𝑉. 

Where ∑ 𝑇𝑀(𝑣, 𝑢)𝑣≠𝑢 = 𝑐,   ∑ 𝐼𝑀(𝑣, 𝑢)𝑣≠𝑢 = 𝑐,   ∑ 𝐹𝑀(𝑣, 𝑢)𝑣≠𝑢 = 𝑐. 

 

Proof. Given the degree of definition of each vertex,  

𝑑(𝑣) = (𝑑𝑇(𝑣), 𝑑𝐼(𝑣), 𝑑𝐹(𝑣)) = (∑ 𝑇𝑀(𝑣, 𝑢)
𝑣∈𝑉
𝑣≠𝑢

, ∑ 𝐼𝑀(𝑣, 𝑢)
𝑣∈𝑉
𝑣≠𝑢

, ∑ 𝐹𝑀(𝑣, 𝑢)
𝑣∈𝑉
𝑣≠𝑢

). 

On the other hand, for regular neutrosophic graphs, we know that  

 

∑ 𝑇𝑀(𝑣, 𝑢)

𝑣≠𝑢

= 𝑐, ∑ 𝐼𝑀(𝑣, 𝑢)

𝑣≠𝑢

= 𝑐, ∑ 𝐹𝑀(𝑣, 𝑢)

𝑣≠𝑢

= 𝑐, 

Therefore 

𝑑(𝑣) = (𝑑𝑇(𝑣), 𝑑𝐼(𝑣), 𝑑𝐹(𝑣)) = (𝑐, 𝑐, 𝑐). 

 

Now, by embedding the formula in the first Zagreb index, we will get the desired result. The 

proof is complete. 

 

Theorem 3. Let 𝐺 be the regular neutrosophic graph. Then, we have 

𝑀∗(𝐺) =
1

2
(𝑐2) ∑[𝑇𝑁(𝑢𝑖) + 𝐼𝑁(𝑢𝑖) + 𝐹𝑁(𝑢𝑖)][𝑇𝑁(𝑣𝑗) +  𝐼𝑁(𝑣𝑗) +  𝐹𝑁(𝑣𝑗)],  

∀𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑢𝑖 , 𝑣𝑗) ∈ 𝐸, 

Where ∑ 𝑇𝑀(𝑣, 𝑢)𝑣≠𝑢 = 𝑐,   ∑ 𝐼𝑀(𝑣, 𝑢)𝑣≠𝑢 = 𝑐,   ∑ 𝐹𝑀(𝑣, 𝑢)𝑣≠𝑢 = 𝑐. 

 

Proof. Assume 𝐺 is a regular neutrosophic graph, using the second Zagreb index formula for 𝐺, we 

have ∀ 𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑢𝑖 , 𝑣𝑗) ∈ 𝐸, 
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𝑀∗(𝐺) =
1

2
∑[(𝑇𝑁(𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑(𝑢𝑖)][(𝑇𝑁(𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗))𝑑(𝑣𝑗)]  

=
1

2
∑[(𝑇𝑁 (𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑(𝑑𝑇(𝑢𝑖), 𝑑𝐼(𝑢𝑖), 𝑑𝐹(𝑢𝑖))]

× [(𝑇𝑁 (𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗))𝑑 (𝑑𝑇(𝑣𝑗), 𝑑𝐼(𝑣𝑗), 𝑑𝐹(𝑣𝑗))]

=  
1

2
∑[(𝑇𝑁(𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖)). (𝑐, 𝑐, 𝑐)][(𝑇𝑁 (𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗)). (𝑐, 𝑐, 𝑐)]

=
1

2
∑[𝑐. 𝑇𝑁(𝑢𝑖) +  𝑐. 𝐼𝑁(𝑢𝑖) +  𝑐. 𝐹𝑁(𝑢𝑖)][𝑐. 𝑇𝑁 (𝑣𝑗) + 𝑐. 𝐼𝑁(𝑣𝑗) +  𝑐. 𝐹𝑁(𝑣𝑗)]

=
1

2
∑ 𝑐[𝑇𝑁(𝑢𝑖) + 𝐼𝑁(𝑢𝑖) + 𝐹𝑁(𝑢𝑖)]. c[𝑇𝑁(𝑣𝑗) + 𝐼𝑁(𝑣𝑗) + 𝐹𝑁(𝑣𝑗)]  

=
1

2
𝑐2 ∑[𝑇𝑁(𝑢𝑖) + 𝐼𝑁(𝑢𝑖) + 𝐹𝑁(𝑢𝑖)][𝑇𝑁(𝑣𝑗) + 𝐼𝑁(𝑣𝑗) +  𝐹𝑁(𝑣𝑗)] . 

 

The desired result was obtained. 

 

3.2. Harmonic index in Neutrosophic Graphs 

Definition 10. The Harmonic index of Neutrosophic Graph 𝐺 is defined as 

𝐻(𝐺) = ∑
1

(𝑇𝑁 (𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑(𝑢𝑖) + (𝑇𝑁(𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗))𝑑(𝑣𝑗) 
,     ∀𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑢𝑖 , 𝑣𝑗) ∈ 𝐸. 

 

Example 3. We have the previous example, 

𝐻(𝐺) =
1

(0.3, 0.6, 0.7)(0.4, 1.4, 1.7) + (0.3, 0.5, 0.6)(0.4, 1.2, 1.5)

+
1

(0.3, 0.6, 0.7)(0.4, 1.4, 1.7) + (0.4, 0.5, 0.6)(0.4, 1.4, 1.6)

+
1

(0.3, 0.5, 0.6)(0.4, 1.2, 1.5) + (0.4, 0.5, 0.6)(0.4, 1.4, 1.6)

=
1

2.15 + 1.62
+

1

2.15 + 1.82
+

1

1.62 + 1.82
=

1

3.77
+

1

3.97
+

1

3.44
= 0.8078. 

 

3.3. Randic’ index in Neutrosophic Graphs 

Definition 11. The Randic’ index of Neutrosophic Graph 𝐺 is defined as  

𝑅(𝐺) = ∑((𝑇𝑁(𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑(𝑢𝑖)(𝑇𝑁(𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗))𝑑(𝑣𝑗))
−1
2   ,   ∀𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑢𝑖 , 𝑣𝑗) ∈ 𝐸. 

 

Example 3. For above example, by simple calculations, it is easy to see that 

𝑅(𝐺) =
1

√(0.3, 0.6, 0.7). (0.4, 1.4, 1.7) × (0.3, 0.5, 0.6). (0.4, 1.2, 1.5)

+
1

√(0.3, 0.6, 0.7). (0.4, 1.4, 1.7) × (0.4, 0.5, 0.6). (0.4, 1.4, 1.6)

+
1

√(0.3, 0.5, 0.6). (0.4, 1.2, 1.5) × (0.4, 0.5, 0.6). (0.4, 1.4, 1.6)

=
1

√2.15 × 1.62
+

1

√2.15 × 1.82
+

1

√1.62 × 1.82
= 1.6237. 

 

3.4. Connectivity index in Neutrosophic Graphs 

Connectivity index is an important parameter in the graph. Using it, we can study and study 

some of the features of graph models. 

 

Definition 12. Let 𝐺 = (𝑁, 𝑀) be the Neutrosophic Graph. The connectivity index of 𝐺 is defined by 
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𝐶𝐼(𝐺) = ∑ (𝑇𝑁 (𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))(𝑇𝑁 (𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗)) × 𝐶𝑂𝑁𝑁𝐺(𝑢𝑖 , 𝑣𝑗)

𝑢𝑖,𝑣𝑗∈𝑉

. 

Where 𝐶𝑂𝑁𝑁𝐺(𝑢𝑖 , 𝑣𝑗) is the strength of connectedness between 𝑢𝑖 and 𝑣𝑗. 

 

Definition 13. The strength of connectedness between 𝑢𝑖 and 𝑣𝑗 is defined as 

 

𝐶𝑂𝑁𝑁𝑃(𝑢𝑖 , 𝑣𝑗) = ( min
𝑒∈𝑃𝑢𝑖𝑣𝑗

𝑇𝑀 (𝑒) , max
𝑒∈𝑃𝑢𝑖𝑣𝑗

𝐼𝑀(𝑒) , max
𝑒∈𝑃𝑢𝑖𝑣𝑗

𝐹𝑀(𝑒)), 

 

Where 𝑃𝑢𝑖𝑣𝑗
 is the path between 𝑢𝑖 and 𝑣𝑗. 

 

|𝐶𝑂𝑁𝑁𝑃(𝑢𝑖 , 𝑣𝑗)| = 2 ( min
𝑒∈𝑃𝑢𝑖𝑣𝑗

𝑇𝑀(𝑒)) − ( max
𝑒∈𝑃𝑢𝑖𝑣𝑗

𝐼𝑀(𝑒)) − ( max
𝑒∈𝑃𝑢𝑖𝑣𝑗

𝐹𝑀(𝑒)), 

 

Then 

𝐶𝑂𝑁𝑁𝐺(𝑢𝑖 , 𝑣𝑗) = max
𝑃

{|𝐶𝑂𝑁𝑁𝑃(𝑢𝑖 , 𝑣𝑗)|}. 

 

Example 4. For example, in the above figure, the strength of connectedness between: 

𝑎 and 𝑏 from the direct path 𝑃1 = 𝑎𝑏 is  

 
𝐶𝑂𝑁𝑁𝑃1

(𝑎, 𝑏) =  𝑀𝑎𝑏 = (0.2, 0.6, 0.8), 

From path 𝑃2 = 𝑎𝑐𝑏 is 

 
𝐶𝑂𝑁𝑁𝑃2

(𝑎, 𝑏) = (𝑚𝑖𝑛{0.2, 0.2}, 𝑚𝑎𝑥{0.8, 0.6}, 𝑚𝑎𝑥{0.9, 0.7}) = (0.2, 0.8, 0.9); 

 

𝑎 and 𝑐 from the direct path 𝑃1 = 𝑎𝑐 is 

 
𝐶𝑂𝑁𝑁𝑃1

(𝑎, 𝑐) =  𝑀𝑎𝑐 = (0.2, 0.8, 0.9), 

From path 𝑃2 = 𝑎𝑏𝑐 is  

 

𝐶𝑂𝑁𝑁𝑃2
(𝑎, 𝑐) = (𝑚𝑖𝑛{0.2, 0.2}, 𝑚𝑎𝑥{0.6, 0.6}, 𝑚𝑎𝑥{0.8, 0.7}) = (0.2, 0.6, 0.8); 

 

𝑏 and 𝑐 from the direct path 𝑃1  = 𝑏𝑐 is 

 
𝐶𝑂𝑁𝑁𝑃1

(𝑏, 𝑐) =  𝑀𝑏𝑐 = (0.2, 0.6, 0.7), 

From path 𝑃2 = 𝑏𝑎𝑐 is 

 
𝐶𝑂𝑁𝑁𝑃2

(𝑏, 𝑐) = (𝑚𝑖𝑛{0.2, 0.2}, 𝑚𝑎𝑥{0.6, 0.8}, 𝑚𝑎𝑥{0.8, 0.9}) = (0.2, 0.8, 0.9). 

 

Then, we have for 𝑎 and 𝑏 

 
|𝐶𝑂𝑁𝑁𝑃1

(𝑎, 𝑏)| =  2 × (0.2) − 0.6 − 0.8 =  −1, 

 |𝐶𝑂𝑁𝑁𝑃2
(𝑎, 𝑏)| = 2 × (0.2) − 0.8 − 0.9 =  −1.3. 

For 𝑎 and 𝑐, 
|𝐶𝑂𝑁𝑁𝑃1

(𝑎, 𝑐)| = 2 × (0.2) − 0.8 − 0.9 =  −1.3, 

|𝐶𝑂𝑁𝑁𝑃2
(𝑎, 𝑐)|  =  2 × (0.2) − 0.6 − 0.8 =  −1. 

 

For 𝑏 and 𝑐, 
|𝐶𝑂𝑁𝑁𝑃1

(𝑏, 𝑐)| = 2 × (0.2) − 0.6 − 0.7 =  −0.9, 

|𝐶𝑂𝑁𝑁𝑃2
(𝑏, 𝑐)| = 2 × (0.2) − 0.8 − 0.9 =  −1.3. 
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Since we have 

𝐶𝑂𝑁𝑁𝐺(𝑎, 𝑏) =  −1;   𝐶𝑂𝑁𝑁𝐺(𝑎, 𝑐) =  −1;    𝐶𝑂𝑁𝑁𝐺(𝑏, 𝑐) =  −0.9. 
 

Then 𝐶𝐼(𝐺) is calculated as follows 

 

𝐶𝐼(𝐺) = ∑ (𝑇𝑁(𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))(𝑇𝑁 (𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗)) × 𝐶𝑂𝑁𝑁𝐺(𝑢𝑖 , 𝑣𝑗)

𝑢𝑖,𝑣𝑗∈𝑉

= (0.3, 0.6, 0.7). (0.3, 0.5, 0.6) × (−1) + (0.3, 0.6, 0.7). (0.4, 0.5, 0.6) × (−1)

+ (0.3, 0.5, 0.6). (0.4, 0.5, 0.6) × (−0.9)

= (0.09 + 0.3 + 0.42)(−1) + (0.12 + 0.3 + 0.42)(−1) + (0.12 + 0.25 + 0.36)(−0.9)

= (0.81)(−1) + (0.84)(−1) + (0.73)(−0.9) = −2.307. 
 

The connectivity index of 𝐺 is equal -2.307, which the negative sing indicates the high level of 

false and indeterminacy information in the problem. 

 

Theorem 4. Let 𝐺  and 𝐻  be the two Neutrosophic Graphs are isomorphic, then the topological 

indices values of two Neutrosophic Graphs are equal. 

 

Proof. To prove, let 𝐺 = (𝑉𝐺 , 𝑁𝐺 , 𝑀𝐺)  and 𝐻 = (𝑉𝐻 , 𝑁𝐻, 𝑀𝐻) be isomorphic Neutrosophic Graphs. 

Hence there is an identity function 𝜇𝑁: 𝑁𝐺(𝑢) → 𝑁𝐻(𝑢∗), for all 𝑢 ∈ 𝑉𝐺  there exist 𝑢∗ ∈ 𝑉𝐻  as well as 

𝜇𝑀 : 𝑀𝐺(𝑢, 𝑣) → 𝑀𝐻(𝑢∗, 𝑣∗), then each vertex of 𝐺  corresponds to an vertex in 𝐻 , with the same 

membership value and the same edges. Hence, the Neutrosophic graph structure may differ but 

collection of vertices and edges are same gives the equal topological indices value. 

 

Theorem 5. Let 𝐺 = (𝑉𝐺 , 𝑁𝐺 , 𝑀𝐺), is a neutrosophic Graph and 𝐻 is the neutrosophic sub graph of 𝐺, 

Such that 𝐻 is made by removing edge 𝑢𝑣 ∈ 𝑀𝐺 from 𝐺. Then, we have, 𝐶𝐼(𝐻) < 𝐶𝐼(𝐺) iff 𝑢𝑣 is 

a bridge. 

 

Proof. To prove the first side of the theorem we consider two cases: 

 

Case 1. Let 𝑢𝑣 be an edge with all three components having the least value, Therefore the edge 𝑢𝑣 

will have no effect on the result. Then we have 𝐶𝐼(𝐻) = 𝐶𝐼(𝐺). 

 

Case 2. Now suppose that 𝑢𝑣 is an edge that has maximum components, so they will have an effect 

on 𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣). Therefore, by removing edge 𝑢𝑣, the value of 𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣) will decrease, then we 

have 𝐶𝐼(𝐻) < 𝐶𝐼(𝐺).  Since the bridge is called the edge that has its deletion reducing the 

𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣), However, 𝑢𝑣 is a bridge. 

Conversely, given that 𝑢𝑣 is a bridge. According to the definition of bridge we have, for the 

edge 𝑢𝑣, 𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣) > 𝐶𝑂𝑁𝑁𝐺−𝑢𝑣(𝑢, 𝑣), So we conclude that, 𝐶𝐼(𝐻) < 𝐶𝐼(𝐺). 

 

4. Applications 

Fuzzy set theory and intuitionistic fuzzy set theory are useful models for modelling problems in 

real life. But they may not be sufficient in modelling of indeterminate and inconsistent information 

encountered in real word. In cases where our information is incomplete or part of our information is 

incompatible with each other, depending on the features of the neutrosophic graphs, we can use them 

for modeling. However, neutrosophic graphs have many application in real life. For example, social 

network model, detection of a safe root for an Airline journey and military problems are application 

neutrosophic graph theory [4]. Note that to many applications that neutrosophic graphs have, 

obtaining topological indices can be a way to compare the different problems that are modeled by 
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neutrosophic graphs. For example, by obtaining different indicators for the two social networks 

Telegram and Whatsapp, we can analyze some of the features of the network and their impact. 

To see more applications of the neutrosophic graphs, you can refer to [5-12]. 

Here we refer to one of the applications of the connectivity index for an example of [4].  

 

4.1. Optimal flight path for weather emergency landing 

In this application, we use the concept of rough neutrosophic digraph for decision-making in 

real-life problems [4]. There, provided a formula for obtaining the desired result, and after 

performing the calculations, reached the desired result.  

Now, using the connectivity index for different paths, it is possible to predict the optimal path 

for flying in weather emergency landing. 

Suppose 𝑉 = {𝐶ℎ𝑖𝑐𝑎𝑔𝑜(𝐶𝐻), 𝐵𝑒𝑖𝑗𝑖𝑛𝑔(𝐵𝐽), 𝐿𝑎ℎ𝑜𝑟𝑒(𝐿𝐻), 𝑃𝑎𝑟𝑖𝑠(𝑃𝐴), 𝐼𝑠𝑡𝑎𝑛𝑏𝑢𝑙(𝐼𝑆)} , be the set of 

cities under consideration and R an equivalence relation on V, where equivalence classes represent 

cities having same characteristics. 

Assume that a flight Boeing 747 of Pakistan International Airways (PIA) travels to these cities. 

In case of bad weather, the flight will be directed to the city with good weather condition among the 

cities under consideration. 

Let 

 𝑁 = {𝐶𝐻, 0.1, 0.2, 0.8), (𝐵𝐽, 0.9, 0.7, 0.5), (𝐿𝐻, 0.8, 0.4, 0.3), (𝑃𝐴, 0.6, 0.5, 0.4), (𝐼𝑆, 0.2, 0.4, 0.6)}, 

And 

𝑀 = {((𝐵𝐽, 𝐶𝐻), 0.1, 0.1, 0.3), ((𝐿𝐻, 𝐶𝐻), 0.1, 0.2, 0.3), ((𝐵𝐽, 𝐿𝐻), 0.1, 0.3, 0.2), 

 ((𝐼𝑆, 𝐵𝐽), 0.2, 0.1, 0.1), ((𝑃𝐴, 𝐵𝐽), 0.1, 0.1, 0.4), ((𝑃𝐴, 𝐿𝐻), 0.2, 0.2, 0.3)}. 

 

Now, we obtain the connectivity index for all paths. 

The direct path 𝐵𝐽 _ 𝐶𝐻 

𝐶𝑂𝑁𝑁𝑃(𝐵𝐽, 𝐶𝐻) = 2(0.1) − 0.1 − 0.3 =  −0.2 , 

The direct path 𝐵𝐽 _ 𝐿𝐻 

𝐶𝑂𝑁𝑁𝑃(𝐵𝐽, 𝐿𝐻) = 2(0.1) − 0.3 − 0.2 =  −0.3,  

The direct path 𝐿𝐻 _ 𝐶𝐻 

𝐶𝑂𝑁𝑁𝑃(𝐿𝐻, 𝐶𝐻) = 2(0.1) − 0.2 − 0.3 =  −0.3,  

The direct path 𝐼𝑆 _ 𝐵𝐽 

𝐶𝑂𝑁𝑁𝑃(𝐼𝑆, 𝐵𝐽) = 2(0.2) − 0.1 − 0.1 =  0.2,  

The direct path 𝑃𝐴 _ 𝐵𝐽 

𝐶𝑂𝑁𝑁𝑃(𝐵𝐽, 𝐶𝐻) = 2(0.1) − 0.1 − 0.4 =  −0.3,  

The direct path 𝑃𝐴 _ 𝐿𝐻 

𝐶𝑂𝑁𝑁𝑃(𝑃𝐴, 𝐿𝐻) = 2(0.2) − 0.2 − 0.3 =  −0.1.  

 

Hence, as expected from [4], the weather condition between Beijing and Istanbul is good, and 

Boeing 747 can use this path in case of weather emergency. We were able to achieve the desired result 

with much shorter calculations. Also, if needed, we can calculate the connectivity index for indirect 

paths and finally for neutrosophic graph. 

For connectivity index of 𝐺 we have, 
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𝐶𝐼(𝐺) = ∑ (𝑇𝑁(𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))(𝑇𝑁(𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗)) × 𝐶𝑂𝑁𝑁𝐺(𝑢𝑖 , 𝑣𝑗)

𝑢𝑖,𝑣𝑗∈𝑉

= (0.63)(−0.2) + (0.76)(−0.3) + (0.4)(−0.3) + (1.09)(−0.3) + (0.8)(−0.1)

+ (0.76)(0.2) + (0.5)(−0.3) + (0.58)(−0.2) + (0.8)(−0.5) + (0.48)(−0.3)

+ (0.58)(−0.4) + (0.48)(−0.5)

=  −0.126 − 0.228 − 0.12 − 0.327 − 0.08 + 0.152 − 0.15 − 0.116 − 0.4 − 0.144

− 0.232 − 0.24 =  −1.783. 

 

As you can see, the negative numerical connectivity index was obtained, which means that our 

incorrect information was less than our correct information. 

 

Conclusion 

In this paper, for the first time, some topological indices for neutrosophic graphs are defined. 

This topic has a lot of work to do, and it can also be used for its results on various issues related to 

this category of graphs. In the rest of our research and in future articles, we will address more of these 

theorems and their applications.   
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