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1. Introduction 

At the beginning use of the concept of fuzzy sets "FS" was submitted by L. Zadeh's conference 

paper in 1965 [1] where each element had a degree of membership. Then many extension done by 

several studies. Intuitionistic fuzzy set "IFS" was one of the extension proved and known by K 

.Atanassov in 1983 [2- 4], when he has proved the degree of membership of an item of any set in"FS" 

and added a degree of non-membership in "IFS". Then many studies are being on the generalizations 

of the notion of "IFS", one of them proved was by F. Smarandache in 2005 [5,6], when he developed 

something else in membership and added indeterminacy membership between the last two 

membership and non-membership which were known in "IFS" and called it neutrosophic sets "NSs". 

After that, A Salama et.al. in 2014 [7,8] introduced neutrosophic topological spaces "NTSs".  

The term of neutrosophic sets "NSs" was defined with membership, non-membership not 

specified degree. In the last three year ago, Veereswari [9] submitted his paper in fuzzy neutrosophic 

topological spaces "FNTSs" to be the solution and representation of the problems different fields 

where he takes all values  between the closed interval 0 and 1 instead of the unitary non-standard 

interval ]-0,1+[ in NSs. 

In this work, as generalized of the work of R.K. Al-Hamido [10] and the last papers which 

studied by F. Mohammed [11-13], we have identified a new category of fuzzy neutrosophic sets 
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"FNSs" called fuzzy neutrosophic generalized b-closed sets in fuzzy neutrosophic bi-topological 

spaces. Finally, on the basis of our manster's we will discuss some new characteristics and apply it. 

Finally, there are many application of NSs in many fields see [14-19 ], so before we ended our work 

we added some applications based in our new sets via fuzzy neutrosophic bi-topological spaces.  

 

2. Preliminaries: 

In this part of our study, we will refer to some basic definitions and operations which are useful 

in our work.  

Definition 2.1 [9]: Let U be a  non-empty fixed set. The fuzzy neutrosophic set "FNS" µN is an object 

having the form µN ={˂ u, λµN(u), ɣµN(u), VµN(u) ˃ : uϵ U} where the  functions λµN(u), ɣµN(u),VµN(u): 

U→[0,1] denote the degree of  membership function (namely λµN(u)), the  degree of indeterminacy 

function (namely ɣµN(u)) and the degree of non-membership function (namely VµN(u)) respectively 

of each element uϵ U to the set µN and 0 ≤ λµN(u)+ ɣµN(u) +VµN(u) ≤ 3, for each u∈ U. 

    

Remark 2.2: FNS µN = {˂ u, λµN(u), σµN(u), VµN(u) ˃: u ∈U} can be identified to an ordered triple ˂ u, 

λµN, σµN, VµN ˃ in [0,1] on U. 

 

Lemma 2.3 [9]: Let U be a non-empty set and the "FNS" µN and ɣN be in the form µN = {˂ u, λµN, σµN, 

VµN ˃ } and  ɣN ={˂ u, λɣN, σɣN, VɣN ˃} on U. Then, 

i. µN ⊆ ɣN  iff λµN ≤ λɣN, σµN ≤ σɣN and VµN  ≥ VɣN, 

ii. µN = ɣN iff  µN ⊆ ɣN and ɣN ⊆ µN, 

iii. (µN)c ={˂ u, VµN, 1-σµN, λµN ˃}, 

iv. µN ∪ ɣN ={˂ u, Mx( λµN, λɣN ), Mx( σµN, σɣN ), Mn( VµN, VɣN ) ˃}, 

v. µN ∩ ɣN ={˂ u, Mn( λµN, λɣN ), Mn( σµN, σɣN ), Mx( VµN, VɣN ) ˃}, 

vi. 0N = {˂ u, 0, 0, 1˃} and  1N = { ˂ u, 1, 1, 0 ˃}. 

 

Definition 2.4 [9]: Fuzzy neutrosophic topology ( for short, FNT) on a non-empty set U is a family TN 

of fuzzy neutrosophic subset in U satisfying the following axioms: 

i. 0N, 1N ∈ TN, 

ii. µN1 ∩ µN2 ∈ TN ∀ µN1, µN2 ∈ TN,  

iii. ∪ µNj ∈ TN, ∀ { µNj : j ∈ J} ⊆ TN. 

 In this case the pair (U, TN) is called fuzzy neutrosophic topological space ( for short, FNTS ). 

The elements of TN are called fuzzy neutrosophic-open sets ( for short, FN-OS ). The complement of  

FN-OS in the FNTS ( U, TN ) is called fuzzy neutrosophic- closed set (for short, FN-CS). 

 

Definition 2.5 [9]: Let (U, TN ) is FNTS and µN = ˂ u, λµN, σµN, VµN ˃ is FNS in U. Then the fuzzy 

neutrosophic-closure (for short, FN-Cl ) and the fuzzy neutrosophic-interior (for short, FN-In) of µN 

are defined by:  

FN-Cl (µN ) = ∩ { ɣN : ɣN is FN-CS in U and µN ⊆ ɣN }, 
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FN-In ( µN ) = ∪ { ɣN : ɣN is FN-OS in U and ɣN ⊆ µN }. 

 Now, the FN-Cl (µN ) is FN-CS and FN-In(µN) is FN-OS in U. 

Further,  

i. µN is FN-CS in U iff  FN-Cl(µN) = µN, 

ii. µN is FN-OS in U iff  FN-In(µN) = µN. 

 

Definition 2.6: Let (UN, TN1, TN2) is FNTS and µN =˂ u, λµN, σµN, VµN ˃ is FNS in UN. Then the fuzzy 

neutrosophic semi-closure ( resp. fuzzy neutrosophic Pre-closure and fuzzy neutrosophic α-closure) 

of µN and denoted by FN-SCl (µN) (resp. FN-PCl( µN ) and FN-αCl ( µN ) are defined by:  

FN-SCl( µN ) = ∩ { ɣN : ɣN is FN-SCS set in U and µN ⊆ ɣN } = µN ∪ FN-In(FN-Cl(µN)), 

FN-PCl( µN ) = ∩ { ɣN : ɣN is FN-PCS set in U and µN ⊆ ɣN } = µN ∪ FN-Cl(FN-In(µN)), 

FN- α Cl( µN ) = ∩ { ɣN : ɣN is FN- αCS set in U and µN ⊆ ɣN } = µN ∪ FN-Cl (FN-In(FN-Cl(µN))), 

 

Definition 2.7 [11, 12]: FNS λN in FNTS (U, TN) is called: 

i. Fuzzy neutrosophic-regular open set (FN-ROS) if µN =FN-In(FN-Cl(µN)), 

ii. Fuzzy neutrosophic-regular closed set (FN-RCS) if µN = FN-Cl(FN-In(µN), 

iii. Fuzzy neutrosophic-semi open set (FN-SOS) if µN ⊆ FN-Cl(FN-In(µN)), 

iv. Fuzzy neutrosophic-semi closed set(FN-SCS) if  FN-In(FN-Cl(µN)) ⊆ µN, 

v. Fuzzy neutrosophic pre-open set(FN-POS) if µN ⊆ FN-In(FN-Cl(µN)), 

vi. Fuzzy neutrosophic pre-closed set( FN-PCS) if FN-Cl(FN-In(µN)) ⊆ µN, 

vii. Fuzzy neutrosophic-α-open set(FN-αOS) if µN ⊆ FN-In(FN-Cl(FN-In(µN))), 

viii. Fuzzy neutrosophic-α-closed set( FN-αCS) if FN-Cl(FN-In(FN-Cl(µN))) ⊆ µN, 

ix. Fuzzy neutrosophic generalized closed set ( FN-GCS ) if FN-Cl(K ⊆N ) whenever K ⊆ N and N is a 

FN-OS, 

x. Fuzzy neutrosophic generalized pre closed set ( FN-GPCS) if FN-PCl(K) ⊆ N, whenever K⊆ N and 

N is a FN-OS, 

xi. Fuzzy neutrosophic α generalized closed set (FN-αGCS) if FNα-Cl(K) ⊆N whenever K⊆ N and N 

is a FN-OS, 

xii. Fuzzy neutrosophic generalized semi closed set ( FN-GSCS) if FN-SCl(K) ⊆ N, whenever K⊆ N 

and N is a FN-OS. 

 

Definition 2.8 [13]: A fuzzy neutrosophic set K in FNTs (U, TN) is called fuzzy neutrosophic b-closed 

set (FN-b-CS) set if and only if FN-In(FN-Cl (K)) ⋁ FN-Cl(FN-In (K)) ≤ K. 

 

Definition 2.9 [13]: Let UN be a non-empty set and (U, TN1), (U, TN2) be two topological spaces then, 

the triple (UN, TN1, TN2) is a fuzzy neutrosophic bi-topological space ( for short, FN-bi-TS ). 
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3. Generalized b-Open Sets and Generalized b-Closed Sets in Fuzzy Neutrosophic bi- 

Topological Spaces 

In this section, we generalized our work [13] and study the concept of generalized b-closed sets 

and generalized b-open sets based of fuzzy neutrosophic bi- topological spaces and  introduced it 

after giving the definition of  fuzzy neutrosophic bi- topological spaces as follows:   

                                                                        

Definition 3. 1: Let U be a non-empty set and TN1, TN2 be two topologies on FNTS (U, TN), then the 

triple (U, TN1, TN2) is a fuzzy neutrosophic bi- topological space ( for short, FN-bi-TS). 

 

Definition 3.2: Let U be a non-empty set and TN1, TN2 be two topologies on FNTS (U, TN). A subset A 

of U is called fuzzy neutrosophic open set ( for short, FN-OS) set if A∈ TN1 ∪ TN2. A is called fuzzy 

neutrosophic closed set ( for short, FN-CS) if 1N-A  is FN-OS. 

Note: In this work we refer to TN1∪TN2 by TN. 

 

Example 3.3: Let U = { k1, k2}, TN1 ={0N, 1N}, TN2 = {0N, 1N, E1} and,                                                                                                                                         

TN ={ 0N, E1, 1N} be a FN-bi-TS on U, 

Where,  E1 = ˂ u, ( k1(0.2) , k1(0.5), k1(0.8) ), ( k2(0.3), k2(0.5), k2(0.7) ) ˃ .  

Then the neutrosophic set Z = ˂ u, (k1(0.7), k1(0.5), k1(0.3)), ( k2(0.6), k2(0.5), k2(0.4 )) ˃ is a FN-b-CS in U. 

 

Definition 3.4: Let (U, TN ) be any FN-bi-TS and µN = ˂ u, λµN, σµN, VµN ˃ be FNS in U. Then the fuzzy 

neutrosophic-b-closure (for short, FN-bCl ) and the fuzzy neutrosophic-b-interior (for short, FN-bIn) 

of µN are defined by:  

FN-bCl (µN ) = ∩ { ɣN : ɣN is FN-bCS in U and µN ⊆ ɣN }, 

FN-bIn ( µN ) = ∪ { ɣN : ɣN is FN-bOS in U and ɣN ⊆ µN }. 

 

Definition 3.5: Let (U,TN) be a FN-bi-TS, then, for each µ1, λ1 ∈ IU the fuzzy set µ1 is called fuzzy 

neutrosophic- generalized b-open set (for short, FN-gb-OS ) set if µ1 ≤ FN-bIn (λ1) such that µ1 ≤ λ1 

and µ1 is FN-CS. 

 

Theorem 3.6: A fuzzy neutrosophic set Z of FN-bi-TS ( U, TN ) is a FN-gb-OS iff N ⊆ FN-bIn( Z) 

whenever N is a FN-CS and N ⊆ Z.  

Proof: Necessity : Suppose Z is a FN-gb-OS in FN-bi-TS (U, TN) and let E be a FN-CS and N ⊆ Z. 

Then Hc = 1N-H is a FN-OS in U such that Zc  =1N-Z ⊆ Nc =1N-N  

⟹ 1N-Z is a FN-gb-CS and FN-bCl(1N-Z) ⊆ 1N-N , 

Hence, (1N-FN-bIn(Z)) ⊆ 1N-N  ⟹ N ⊆ FN-bIn(Z). 

Sufficiency: Let Z be any FNS of U and let N ⊆ FN-bIn(Z) whenever, N is a FN-CS and N ⊆ Z. 

 

Theorem 3.7: Let (U, TN) be FN-bi-TS, then: 
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(1) Every FN-CS is a FN-gb-CS, 

(2) Every FN-αCS is a FN-gb-CS, 

(3) Every FN-PCS is a FN-gb-CS, 

(4) Every FN-b-CS is a FN-gb-CS, 

(5) Every FN-RCS is a FN-gb-CS, 

(6) Every FN-GCS is a FN-gb-CS, 

(7) Every FN-αGCS is a FN-gb-CS, 

(8) Every FN-GPCS is a FN-gb-CS 

(9) Every FN-SCS is a FN-gb-CS. 

(10) Every FN-GSCS is FN-gb-CS. 

 

Proof : (1): Let Z ⊆ N and N be a FN-CS in FN-bi-TS (U, TN) with FN-bCl(Z) ⊆ FN-Cl(Z). 

But, FN-bCl(Z) = Z ⊆ N. Therefore, Z is a FN-gb-CS in FN-bi-TS (U, TN). 

 

(2): Let Z ⊆ N and N ∈ TN,⟹ Z is a FN-αCl(Z) = Z. Therefore, FN-bCl(Z) ⊆ FN-αCl(Z) = Z ⊆ N. 

Hence, Z is a FN-gb-CS in FN-bi-TS (U, TN). 

 

(3): Let Z ⊆  N and N ∈ TN . 

Since Z is a FN-PCS, and FN-Cl( FN-In(Z)) ⊆  Z. 

Therefore,  FNCl(FN-In(Z)) ∩ FN- In(FN-Cl(Z)) ⊆ FN-Cl(Z) ∩ FN-Cl(FN-In(Z)) ⊆ Z. 

⟹ FN-bCl(Z) ⊆ N. Hence,  Z is a FN-gb-CS in U. 

 

(4): Let Z ⊆ N and N be a FN-OS in FN-bi-TS (U, TN)  

⟹ Z is a FN-b-CS and FN-bCl(Z) = Z. 

Therefore, FN-bCl(Z) = Z ⊆ N. Hence, Z is a FN-gb-CS in FN-bi-TS (U, TN). 

 

(5): Let Z ⊆ N and N ∈ TN  and let Z be a FN-RCS. 

But, FN-Cl(FN-In(Z)) = Z ⟹ FN-Cl(Z) = FN-Cl(FN-In(Z)). Therefore, FN-Cl(Z) = Z. 

Hence, Z is a FN-CS in U. By  (1), we get Z is a FN- gb-CS in FN-bi-TS (U, TN). 

 

(6): Let Z ⊆  N and N ∈ TN ⟹ Z is a FN-GCS, FN-Cl(Z) ⊆ N.  

Therefore, FN-bCl(Z) ⊆ FN-Cl(Z). 

But, FN-bCl(Z) ⊆ N. Hence, Z is a FN-gb-CS in FN-bi-TS (U, TN). 

 

(7): Let Z ⊆ N and N ∈ TN ⟹ Z is a FN-αGCS. 

 But, FN-αCl(Z) ⊆ N. Therefore, FNbCl(Z) ⊆ FN-αCl(Z), 

 So, FN-bCl(Z) ⊆ N. Hence, Z is a FN-gb-CS in FN-bi-TS (U, TN).  

 

(8): Let Z ⊆ N and N ∈ TN ⟹ Z is a FN-gp-CS and FN-PCl(Z) ⊆ N. 

Therefore, FNbCl(Z) ⊆ FN-pCl(Z), so FN-bCl(Z) ⊆ N.  
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Hence,  Z is a FN-gb-clos. set in FN-bi-TS (U, TN).  

 

(9): Let Z ⊆ N and N ∈ TN ⟹ Z is a FN-SCS. 

But, FN-bCl(Z) ⊆ FN-SCl(Z) ⊆ N. Therefore, Z is a FN-gb-CS in FN-bi-TS (U, TN). 

(10): Obivious  

 

Proposition 3.8: The converse of theorem 3.7 is not true in general for all cases and we can see it in 

(Diagram 1.) 

 

 

 

                                                         

                                                         

                                                          

 

 

                                         

 

 

 

 

 

                                          

( Diagram 1) 

 

Example 3.9: (i):  Let U = { k1, k2 }, TN1 = { 0N, 1N}, TN2 = {0N, 1N, E1}. 

Then, TN = { 0N, E1, 1N } is a FN-bi-TS on U , 

1-  Take E1 = ˂ u, ( k1(0.3), k1(0.5), k1(0.6) ), ( k2(0.2), k2(0.5), k2(0.7) ) ˃.  

Then, the FNS  "Z" = ˂ u, ( k1(0.5), k1(0.5), k1(0.4) ), ( k2(0.6), k2(0.5), k2(0.3))  is a FN-gb-CS but, not a FN-CS in U 

⟹ FN-Cl("Z") = E1 ≠ "Z".  

                                    

2- Let E1 = ˂ u, ( k1(0.3), k1(0.5), k1(0.6)), (k2(0.2), k2(0.5), k2(0.8)) ˃ . Then, the FNS "Z" = ˂ u, ( k1(0.5), k1(0.5), 

k1(0.3)), (k2(0.6), k2(0.5), k2(0.3)) ˃ is a FN-αCS in U⟹ FN-Cl(FN-Cl(Z)) = 1N- E1⊈ "Z". 

3- Let E1 = ˂ u, (k1(0.9), k1(0.5), k1(0.8)),  (k2(0.3), k2(0.5), k2(0.7)) ˃.  

Then, the FNS  "Z" = ˂ u, (k1(0.4), k1(0.5), k1(0.6) ), ( k2(0.5), k2(0.5), k2(0.5)) ˃ is a FN-gb-CS but, not a 

FN-PCS in U ⟹ FN-Cl(FN-In("Z")) = E1 ⊈ "Z". 

4- Let  E1 = ˂ u, (k1(0.6), k1(0.5), k1(0.4) ), (k2(0.8),k2(0.5),k2(0.2)) ˃ . 

FN-PCS 

FN-αCS FN-CS FN-GSCS  

FN-SCS 

FN-b-CS 

FN-RCS 

FN-GPCS 

FN-αGCS 

FN-gb-CS  

FN-GCS 
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 Then, the FNS "Z" = ˂ u, (k1(0.8), k1(0.5), k1(0.2)), (k2(0.9), k2(0.5), k2(0.1)) ˃ is a FN-gb-CS but, not a FN-b-CS in 

FN-bi-TS (U, TN).⟹ FN-RCS is a FN-gb-CS but, not a FN-b-CS in FN-bi-TS (U, TN), 

 ⟹ FN-Cl(FN-In("Z")) ∩ FN-In(FN-Cl("Z")) = 1N ⊈ "Z". 

5- Let E1 = ˂ u, (k1(0.2), k1(0.5), k1(0.8)), (k2(0.4), k2(0.5), k2(0.6)) ˃ .  

Then, the FNS "Z" = ˂ u, (k1(0.7), k1(0.5), k1(0.3) ), (k2(0.5), k2(0.5), k2(0.5)) ˃ is a FN-gb-CS but, not a FN-RCS in 

FN-bi-TS (U, TN) ⟹ FN-Cl(FN-In("Z")) = 1N-E1
 ≠ "Z". 

6- Let E1 = ˂ u, (k1(0.2), k1(0.5), k1(0.8)), (k2(0.4), k2(0.5), k2(0.6)) ˃. 

 Then, the FNS "Z" = ˂ u, ( k1(0.1), k1(0.5), k1(0.8)), (k2(0.3), k2(0.5), k2(0.7)) ˃ is a FN-gb-CS but, not a FN-GCS in 

FN-bi-TS (U, TN). ⟹ FN-Cl("Z") = E1
c  ⊈ E1. 

7- Let  E1 = ˂ u, ( k1(0.5), k1(0.5), k1(0.4) ), ( k2(0.5), k2(0.5), k2(0.5) ) ˃ .  

Then, the FNS "Z" = ˂ u, ( k1(0.5), k1(0.5), k1(0.5) ), ( k2(0.3), k2(0.3), k2(0.7) ) ˃ is a FN-gb-CS but, not a FN-αGCS in 

FN-bi-TS (U, TN). ⟹ FN-Cl( FN-In( FN-Cl("Z"))) = 1N ⊈ E1. 

 

8-  Let E1 = ˂ u, ( k1(0.9), k1(0.5), k1(0.1) ), ( k2(0.7), k2(0.5), k2(0.2) ) ˃. 

 Then, the FNS "Z" = ˂ u, ( k1(0.7), k1(0.5), k1(0.3) ), ( k2(0.6), k2(0.5), k2(0.4) ) ˃ is a FN-gb-CS but, not a FN-SCS in 

FN-bi-TS (U, TN), ⟹ FN-In( FN-Cl("Z")) = 1N ⊈ "Z". 

 

9-  Let E1 = ˂ u, ( k1(0.8), k1(0.5), k1(0.6) ), ( k2(0.0), k2(0.5), k2(0.1) ) ˃. 

 Then, the FNS "Z" = ˂ u, ( k1(0.6), k1(0.5), k1(0.5) ), ( k2(0.2), k2(0.5), k2(0.3) ) ˃ is a FN-gb-CS but, not a FN-GSCS in 

FN-bi-TS (U, TN), ⟹ FN-In( FN-Cl("Z")) = 1N ⊈  "Z". 

 

10-  Let U = { k1, k2 },TN1 = {0N, E1}, TN2 = {0N,1N, E1, E2} = TN  be a FN-bi-TS on U. 

Where,  E1 = ˂ u, (k1(0.2), k1(0.5), k1(0.8) ), (k2(0.3), k2(0.5), k2(0.7) ) ˃ , 

         E2 = ˂ u, ( k1(0.4), k1(0.5), k1(0.6) ), ( k2(0.5), k2(0.5), k2(0.5) ) ˃. 

 Then, the FNS "Z" = ˂ u, ( k1(0.4), k1(0.5), k1(0.6)), ( k2(0.5), k2(0.5), k2(0.5) ) ˃ is a FN-gb-CS but, not a FN-GPCS in U 

⟹ FN-PCl( "Z) = 1N-E2  ⊈ E2. 

 

Theorem 3.10: The union of any two  FN-gb-CS need not be a FN-gb-CS in general as seen from the 

following example: 

 

Example 3.11: Let U = { k1, k2 },TN1 = { 0N, E1} and TN2 = { 0N, 1N, E1} = TN be a FNT on U, where  

E1 = ˂ u, ( k1(0.6), k1(0.5), k1(0.4)), ( k2(0.8), k2(0.5), k2(0.2)) ˃. 

Then, the FNS "Z" = ˂ u, ( k1(0.1), k1(0.5), k1(0.9)), ( k2(0.8), k2(0.5), k2(0.2)) ˃ ,  

M = ˂ u, ( k1(0.6), k1(0.5), k1(0.4)), ( k2(0.7), k2(0.5), k2(0.3) ) ˃ is a FN-gb-CS but,  Z ∩ M is not a FN-gb-CS in U 

 ⟹ FN-bCl( "Z"∩M )  = 1N ⊈E1. 
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Theorem 3.12: If Z is a FN-gb-CS in FN-bi-TS (U, TN) , such that Z ⊆ M ⊆ FN-bCl( Z ) then, M is a 

FN-gb-CS in (U, TN) 

Proof : Let M be any FNS in a FN-bi-TS (U, TN), such that M ⊆ N and N ∈ TN ⟹ Z ⊆ N , since Z is a 

FN-gb-CS and FN-bCl( Z) ⊆ N. 

By hypothesis, we have FN-bCl(M) ⊆ FNbCl( FN-bCl( Z )) = FN-bCl( Z ) ⊆ N.  

Hence, M is FN-gb-CS in U. 

 

Theorem 3.13: If Z is a FN-b-OS and FN-gb-CS in FN-bi-TS (U, TN), then Z is a FN-b-CS. 

Proof : Since Z is a FN-b-OS and FN-gb-CS in FN-bi-TS (U, TN) such that FN-bCl( Z ) ⊆  Z. 

But, Z ⊆ FN-bCl( Z ) .  

Thus, FN-bCl( Z ) = Z and  hence, Z is FN-b-CS in FN-bi-TS (U, TN). 

 

Definition 3.14: A fuzzy neutrosophic set Z is said to be  a fuzzy neutrosophic generalized b open set ( 

FN-gb-OS) in FN-bi-TS (U, TN). If the complement 1N-Z is a  FN-gb-CS in U. The family of all FN-gb-OS of  

FN-bi-TS (U, TN) is denoted by  FN-gb-O (U). 

 

Example 3.15: Let U = { k1, k2 },TN1 = {0N, E1}, TN2 = {0N, 1N, E1} = TN be FN-bi-TS on U, where  

E1 = ˂ u, ( k1(0.3), k1(0.5), k1(0.7)), ( k2(0.4), k2(0.5), k2(0.6) ) ˃.  

Then, the FNS Z = ˂ u, ( k1(0.4), k1(0.5), k1(0.6)), ( k2(0.5), k2(0.5), k2(0.5) ) ˃ is a FN-gb-OS in U. 

 

4. Some Applications of Generalized b-Closed Sets in Fuzzy Neutrosophic bi-Topological Spaces 

In  [14] they propose two models for solving Neutrosophic Goal  Programming  Problem (NGPP), and 

in [15-19], we can see many applications of neutrosophic so, we will try in our study to give some application of 

our new studies concepts. 

 

Definition 4.1: A FN-bi-TS (U, TN) is called: 

i. a fuzzy neutrosophic b
1

2
  space ( for short, FN-b

1

2
S) if every FN-bCS is a FN-CS. 

ii. a fuzzy neutrosophic gb
1

2
 space ( for short, FN-gb

1

2
S) if every FN-gb-CS is a FN-CS. 

iii. a fuzzy neutrosophic gbUb space ( FN-gbbS) if every FN-gb-CS is a FN-b-CS. 

Theorem 4.2: Every FN-gb
1

2
S is a FN-gbUb S in any FN-bi-TS (U, TN),. 

Proof : Let ( U, TN ) be a FN-gb
1

2
S and let Z be any FN-gb-CS in FN-bi-TS (U, TN), By hypothesis, Z is a 

FN-CS in U.  

Since every FN-CS is a FN-b-CS in U. Hence, ( U, TN) , is a FN-gbUb S. 

 

The converse of above  theorem need not be true in general as seen from the following example: 
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Example 4.3: Let U = { k1, k2 }, TN1 = TN = {0N, 1N, E1} and TN2 = { 0N, 1N} be a FNT on U, where,  

E1 = ˂ u, ( k1(0.9), k1(0.5), k1(0.9) ), ( k2(0.1), k2(0.5), k2(0.1) ) ˃. 

Then, the FNS "Z" = ˂ u, ( k1(0.2), k1(0.5), k1(0.3) ), ( k2(0.8), k2(0.5), k2(0.7) ) ˃ is a FN-gbUb S but, not a FN-gb
1

2
 S. 

Theorem 4.4: Let ( U, TN) be  a FN-bi-TS and  ( U, TN ). A FN-gb
1

2
S. Then we have the  following statement: 

i- Any union of FN-gb-CS is a FN-gb-CS. 

ii- Any intersection of any FN-gb-OS is a FN-gb-OS. 

Proof : (i ) Let {Ni }i ∈ J  be a collection  of  FN-gb-CS in a FN-gb
1

2
S, ( U, TN ).  

Therefore, every FN-gb-CS is a FN-CS.  

But, the union of FN-CS is a FN-CS. Hence, the union of FN-gb-CS is a FN-gb-CS in U. 

 

(ii) It can be proved by taking complement in (i). 

 

Theorem 4.5: A FN-bi-TS (U, TN) is a FN-gbUb S if and only if  FN-gb(U) = FNb-O (U) 

Proof : Necessity : Let "Z" be a FN-gb-OS in a FN-bi-TS (U, TN). Then, 1N-Z is  a FN-gb-CS. 

 By hypothesis , 1N-Z is a FN-b-CS in U. Therefore, Z is a FN-b-OS 

Hence, FN-gb-O(U) = FNb-O (U). 

Sufficiency : Let Z be a FN-gb-CS in any FN-bi-TS (U, TN). Then, 1N-Z is a FN-gb-OS in U. 

By hypothesis , 1N-Z is a FN-b-OS in U.  

Therefore, Z is a FN-b-CS in U. Hence, ( U, TN) is a FN-gbUbS. 

Theorem 4.8: A FN-bi-TS (U, TN) is a FN-gb
1

2
 if and only if  FN-gb-O(U) = FN-O(U). 

Proof : Necessity : Let Z be a FN-gb-OS in a FN-bi-TS (U, TN). Then 1N-Z is a FN-gb-CS in U. 

 By hypothesis, 1N-Z   is a FN-CS in U. Therefore, Z is a FN-OS in U. 

 Hence, FN-gb-O(U) = FN-O(U) 

Sufficiency : Let Z be a FN-gb-CS. Then, 1N-Z is a FN-gb-OS in U. By hypothesis, 1N-Z  is a FN-OS  

in U. Therefore, Z is a FN-CS in U. Hence, (U, TN) is a FN-gb
1

2
. 

5. Conclusions  

In this paper, the new concept of a new class of sets was studied and called fuzzy neutrosophic 

generalized b-closed sets and its complement fuzzy neutrosophic generalized b-open sets. We 

investigated the relations between fuzzy neutrosophic generalized b closed sets and other fuzzy 

neutrosophic sets such as α closed sets,  regular closed sets, semi closed sets  pre closed sets, 

generalized closed sets,  b closed sets, α generalized closed sets and  semi generalized closed sets 

based of fuzzy  neutrosophic bi-topological spaces and applied some new spaces to be applications 

of the new defined sets.  
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