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Abstract: An economic production quantity model with triangular neutrosophic environment has been 

developed for deteriorating items with ramp type demand rate and reliability dependent unit 

production. The main objective of this paper is to determine the most cost effective production to 

generate better quality items under time discounting. Additionally, it is considered that the deterioration 

function deals with three parameters Weibull's distribution under finite time horizon. Moreover, it also 

considered the effect of shortages which are partially backordered and partially lost in sale. Here the 

reliability of the production process along with the production period is considered as decision variables. 

A numerical example is studied in both crisp and neutrosophic environment and a comparative analysis 

is performed here. It is observed that the model performs better in triangular neutrosophic arena rather 

than crisp domain. Finally, a sensitivity analysis of optimal solution is observed for some parameters and 

some crucial decision is taken with managerial insight. 

    Keywords: Ramp-type demand, Finite time horizon, Time-value of money, Reliability, Triangular 

Neutrosophic number. 

 

1. Introduction 

In market economy system, for a single product, many items are produced by the different 

manufacturing companies. The manufacturers are trying to give wide variety of option to the customer to 

gain competitive advantages over their competitors. But customers choose those items which have high 

reliability i.e. better in quality, and lower in cost. The companies require advanced planning many years 

prior to the sale target date in order to minimize the total cost and maximize the profit. Thus the facts like 

variation in the reliability of the production process, demand rate of an item, deterioration and shortages 

are in growing interest. In case of classical EPQ model the basic assumptions are that the production 

set-up cost is fixed and the item produced are of perfect quality. All the manufacturing sectors want to 
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produce perfect quality item, but in reality the product quality are not always perfect because there may 

be machine breakdown, labor problem, etc. The product quality is directly affected by the reliability of 

production process. In addition to that, the classical models also consider an ideal case that the demand 

and quality of the items remains unaffected by time and replenishment is done instantaneously. 

However in reality these assumptions do not hold. The inventories are often replenished periodically at 

certain production rate. Even if the items are purchased it takes days to sell the item so the items 

remained stored and hence the item deteriorates and their value reduces with time. Cheng [1] proposed a 

general equation for relationship between production set up cost and process reliability and flexibility. 

Later it was used by (Leung [2]; Bag et al. [3]) in their respective models studied on fuzzy random 

demand with flexibility and reliability on production process. Sarkar [4] analyzed an EMQ model with 

reliability in an imperfect production process. Many researchers (like Gomez et al. [5]; Cai et al. [6]) 

worked for production quality, tracking production control, etc. Pan and Li [7] worked with stochastic 

production system for deteriorating item with some environmental constrains. Rathore [8] explored a 

production reliability model with advertisement related demand. The paper considers reliability in unit 

production cost in order to identify the product quality with minimum total cost. 

Traditionally in inventory models, the researchers have assumed constant demand pattern in their 

deterministic models, but in reality demand has specific patterns which depicts the real scenarios in 

market. There are various types of demand rates such as linear or quadratic function of time, 

exponentially increasing or decreasing, price and stock dependent, etc. If the demand is linearly 

dependent on time i.e., demand as well as the vending increases and decreases in growth and decline 

phase respectively. Researchers have manifested these demands in their respective papers (Hariga [9], 

Bose et al. [10], etc). Demand of the item depending on price and stocking amount of the items with 

optimal replenishment policy for non-instantaneous deteriorating items with partial backlogging was 

discussed by Wu et al. [11]. Alfares [12] worked on stock dependent demand. Chung and Wee [13] 

organized an inventory model for stock dependent selling rate with deterioration under replenishment 

plan. Pal et al. [14] has developed a inventory model with price and stock depended demand rate for 

deteriorating item under inflation and delay in payment. In this field, some remarkable researches were 

done by Yang et al. [15]. It was observed that for seasonal and fashionable products the nature of demand 

is increasing-steady-decreasing. But for newly launched fashion goods and cosmetics, garments, etc. the 

demand rate increases linearly with time and then it become constant. Thus to understand the concept of 

such a demand, the ramp type function of time was introduced. (Skouri et al. [16], Luo [17], Manna and 

Chaudhari [18]) worked with ramp type demand rate with time dependent deterioration. Pal et al. [19] 

considered the EOQ model with ramp type demand under finite time horizon. 

As the effect of deterioration cannot be ignored so many researchers worked on it (Skouri et al. [20], Jaggi 

et al. [21], etc.). Generally, deterioration means spoilage or damage obsolescence, etc. which cannot be 

used further for its original purpose. Medicine, blood banks, etc. are difficult to preserve and they have 

some expiry date i.e., products maximum life time is time bounded. Electronic products become obsolete 

as technology changes; new fashion depreciates the clothing value over time; all these are also considered 

as deterioration. It has been observed that the delinquency in the life expectancy drugs, deterioration of 
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roasted ground coffee, corn seeds, frozen food, pasteurized milk, refrigerated meat, ice creams, and 

leakage failure of the batteries can be expressed in terms of Weibull's distribution. Wu [22] presented an 

inventory model with ramp type demand and Weibull's distribution deterioration under partial 

backlogging. Many researcher such as Skouri et al. [23], Sharma and Chaudhury [24], etc. worked with 

this type of deterioration. Mandal [25] discussed an inventory model with Weibull's distributed 

deterioration with ramp type demand rate. A common characteristic in most of these models are that they 

does not allows shortages. Widyadana et al. [26] developed an EOQ model for deteriorating items with 

planned backorder level. Wee et al. al. [27] worked with shortages and finite time horizon for 

deteriorating items. Yang [28] developed an inventory model with deterioration as three parameter 

Weibull’s distribution in two ware house system. Recently Pal and Chakraborty [29] have worked on 

non- instantaneous deteriorating items under shortage, Rahaman et al. [30] worked on arbitrary ordered   

generalized EPQ model with and without deterioration. In this paper shortages is also considered where 

the part of the unsatisfied demand are backordered and part of the sales are lost. 

As the amount of the money available at the present time is worth more than that of the same amount in 

the future due to its potential earning capacity. So it is necessary to consider the effect of time value of 

money in today's inventory where forecasting is required. To consider the effect of time value of money, a 

finite time horizon for planning the replenishment cycle is considered. From the last few decades we have 

observed that the economic situation of most countries has changes so it would be unrealistic to ignore 

the effect of time value of money. Hariga [31] developed the effect of inflation and time value of money 

for time dependent demand. Hou [32] considered a model for deteriorating items and stock-dependent 

demand rate with shortages and time discounting. Dash et al. [33] worked on EPQ model for declined 

quadratic demand with time value of money and shortages. Thus the paper considers time value of 

money specially when investment and forecasting are considered. 

In this current century, vagueness theory plays a crucial role in different Öeld of mathematical modeling 

and engineering problems. The theory of impreciseness was first invented by Zadeh [34]. Difference 

between crisp set and fuzzy set is shown briefly in this article by considering membership gradation and 

its formulation. Demonstration of triangular [35], trapezoidal [36], pentagonal [37] fuzzy number has 

already been developed by the researchers. In 1983 and later in 1986 Attasonov [38, 39] manifested a 

remarkable idea of intuitionistic fuzzy set where membership and non-membership functions are both 

considered together. Further, triangular intuitionistic [40, 41], trapezoidal intuitionistic [42] number has 

been introduced in this intuitionistic fuzzy research arena. After that, in 1998 Smarandache [43] 

established an amazing concept of neutrosophic fuzzy set where three disjunctive kinds of membership 

functions has been considered namely i) truthness ii) falseness iii) indeterminacy. Due to the presence of 

hesitation factor in fuzzy arena, neutrosophic number becomes more logical and scientific significance in 

research work. In this current era, researchers from different arena are focusing on neutrosophic concept 

and developed lots of interesting articles in this domain. Illustration of triangular, trapezoidal 

neutrosophic number has been introduced day by day and recently in 2018 Chakraborty et.al [44, 45] 

classifies different form of triangular and trapezoidal neutrosophic number and de-neutrosophication 

technique for crispification. Further, bipolarization of triangular bipolar number has been developed by 
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Chakraborty et.al [46] and also Maity et.al [47] manifested the concept of heptagonal dense fuzzy number 

related EOQ based model in 2018. Recently, Mullai [48] introduced EOQ model in neutrosophic domain 

and Mondal et.al [49] manifested optimization of EOQ Model with limited storage capacity by 

neutrosophic Geometric Programming application. Also, Majumdar et.al [50] focused on EPQ Model of 

deteriorating Items under partial trade credit financing and demand declining market in neutrosophic 

environment. Some useful articles [51-58] are also developed by the researchers in the neutrosophic arena 

recently. As developments goes on, some researchers [59-62] have extended the idea of neutrosophic set 

into plithogenic set and applied it in MCDM, MADM and optimization technique supply chain based 

model. Currently, several researchers from distinct fields focused on triangular neutrosophic number 

related to operation research models. As uncertainty prevails in various parameters such as inflation, 

holding cost, purchase cost so we have developed an EPQ under ramp type demand and considered the 

hesitation in those parameters by considering those parameter as neutrosophic number. Finally we 

compare the model in crisp and neutrosophic domain and observe that the model works better in 

neutrosophic arena. 

Previously the researchers have worked on ramp type demand with two parameter Weibull’s 

distribution as deterioration. But in this paper we have considered ramp type demand with three 

parameter Weibull’s distribution. In addition the model assumes that the product qualities are never 

perfect and it is the function of reliability of the production process so the production of items depend on 

the reliability of the items i.e., if the items are highly reliable then there is more demand in the market and 

hence its production should be more in order to fulfill the demand. In this model we also have considered 

finite planning horizon to observe the effect of time value of money under shortage. The shortage items 

are partially backlogged or partially lost in sales, which cannot be ignored. Also under this complicated 

scenario no work has been done by considering holding cost, purchase cost and inflation as triangular 

neutrosophic number. 

The rest of the paper is organized as follows: In section 2 we have presented some assumptions and 

notations and some definition of neutrosophic number that we have used in this paper. In this section we 

have defined few terminologies related to triangular neutrosophic number and also have formulated the 

model. In section 3 we have analyzed and optimized of the model. In Section 4 we have discussed the 

de-neutrosophication of the triangular neutrosophic number. In section 5 we present the numerical 

example and its mathematical analysis which is shown graphically. It is observed that the model works 

better in neutrosophic domain. In section 6 we present sensitivity analysis of some parameters. Finally in 

section 7 a concluding remark is stated along with its future extension. 

 

2.  Mathematical formulation of the inventory model 

In this model we have considered ramp type demand with deterioration as three parameter Weibull 

distributions, shortages, lost in sales under the influence of time discounting in finite planning horizon. 

The finite time horizon has been considered to evaluate the effect of inflation on the total cost for a finite 

period. The paper also considered reliability in production of items. The proposed model is graphically 

shown in figure-1. 
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The production process starts from t=0 and ends t=t1. The production has occurred along with the 

demand in the market and at t=t1 the inventory level is maximum, Qm. From t=t1 to t=t2 the inventory level 

decreases and at time t=t2, the inventory level reaches zero. Now during [t2,t3] the model undergoes 

shortage with partial backlog and partial lost in sales. Only the backlogged items are replaced by the next 

replenishment. During [t3,T1] production resumes to overcome the shortage (i.e., for backlogged items). 

Thus the total number of backlogged items is replaced in the next replenishment and the cycle repeats. 

 

Notations 

 

    The notations used in this paper are as follows: 

    G     Demand rate, 

    P     Production rate, 

    p     Unit production cost, 

    ρ(t)   Time distribution for deterioration of the item, 

    k      Discount rate, 

    h      Inventory carrying cost per unit item per unit time, 

    d      Deterioration cost per unit per unit time, 

    S      Set-up cost for one replenishment cycle. 

    c1     Purchase cost per unit item, 

    c2     Shortage cost, 

    c3     Penalty cost of a lost sale including loss of profit, 

    r      Production process reliability (a decision variable) 

    B     Fraction of backorder (0<B≤1), 

    T     Replenishment cycle, 

    H    Finite Planning horizon, 

    m    No. of replenishment during the planning horizon i.e., m=(H/T), 

    Tj    Time between start and end of jth replenishment cycle i.e., T0=0,T1=T,T2=2T,....,Tm=mT=H, 

    Qm   Maximum quantity of inventory, 

    Qs   Maximum quantity of inventory after shortage. 
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Assumptions 

    The assumptions which are considered in this model are as follows. 

1. A ramp type demand rate G=f(t) is a function of time𝑓(𝑡) = 𝑅[𝑡 − (𝑡 − 𝜇)𝐻(𝑡 − 𝜇)], 𝑅 > 0 𝑎𝑛𝑑 𝐻(𝑡) 

is a Heaviside function 𝐻(𝑡 − 𝜇) = {
1 𝑖𝑓 𝑡 ≥ 𝜇
0 𝑖𝑓 𝑡 < 𝜇

 

2. A function of three parameter Weibull's distribution of time is used to represent deterioration of the 

item is 𝜌(𝑡) = 𝛼𝛽(𝑡 − 𝛾)𝛽−1, 0 < 𝛼 < 1, 𝛽 ≥ 1, −∞ < 𝛾 < ∞ actually in this model  𝑇𝑗 < 𝛾 < 𝑇𝑗+1, 𝑖 =

0,1,2, . . . , 𝑚, 𝑤ℎ𝑒𝑟𝑒 𝛼 (0 < 𝛼 < 1) is a scaling parameter, β is the shape parameter and γ is the location 

parameter i.e., items shelf-time and t is the time of deterioration. 

    3. Deterioration begins as it reaches the inventory. 

    4. One item is considered in the prescribed time cycle. 

    5. Demand during shortage is partially lost and partially backordered. 

    6. Time discounting effect is considered under finite time horizon. 

    7 Production rate is greater than demand rate so P=σf(t) is the production rate where σ >1. 

    8. μ is less than production time. 

    9. The unit production cost is inversely proportional to the demand rate (G) and directly proportional 

to production reliability (r), so the unit production cost is 𝑝 = 𝑎𝐺−𝑏𝑟𝑐 , where b(>1) is called price 

elasticity and a,c (>0) are scaling parameters. 

    10. The reliability r means, r% of all the item produced are of acceptable quality that can fulfill the 

demand. 

Few assumptions taken above are the basic assumption used in classical inventory model for 

deteriorating item with shortages. The first assumption states that the demand rate linearly increases 

with time when t<μ and then become steady i.e., constant at and after t≥μ. We can see this type of 

demand in newly launched items like fashionable products, electronic items, etc. The demand increases 

with time during the initial stage i.e., [0,μ]. After some time the demand become constant, this continues 

for some period i.e., in the time interval [μ,T1]. Then the cycle ends. Again the next cycle starts with 

another new brand item and it will follow the same pattern of demand and production i.e., increasing 

and then steady and then stops. The finite time horizon has been considered to evaluate the effect of the 

time value of money on the total cost. Thus to understand the concept of value of future money in present 

date (which actually decreases due to time discounting rate) we need to consider a finite time horizon 

where its effect will be observed. The last assumption is mainly based on the unit variable production 

which is dependent on demand and process reliability. When the demand of an item increases then the 

production/purchase cost per unit item decreases and hence the unit production cost reduces which is 

inversely proportional to demand. Again the reliability of the produced items increases by using high 

quality raw material, technologically advanced machinery, quality control inspections, etc. Thus to 

produce high reliable product the production cost per unit item increases. 
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3. Neutrosophic number and its De-neutrosophication technique 

Definition 3.1 (Neutrosophic Set [5]) A set �̃� in the universal discourse X, it is said to be a neutrosophic 

set if �̃� = {〈𝑥; [𝜋�̃� (𝑥), 𝜃�̃�(𝑥), 𝜂�̃�(𝑥)]〉: 𝑥 ∈ 𝑋}, 𝑤ℎ𝑒𝑟𝑒 𝜋�̃� (𝑥): 𝑋 →] − 0,1 + [ is called the truth membership 

function, 𝜃�̃�(𝑥): 𝑋 →] − 0,1 + [  is called the hesitation membership function, and 𝜂�̃�(𝑥): 𝑋 →] − 0,1 + [ 

is called the false membership function of the decision maker, where 𝜋�̃� (𝑥), 𝜃�̃�(𝑥), 𝜂�̃�(𝑥) satisfies the 

following condition: 0 ≤ 𝑆𝑢𝑝{𝜋�̃� (𝑥)} + 𝑆𝑢𝑝{𝜃�̃�(𝑥)} + 𝑆𝑢𝑝{𝜂�̃�(𝑥)} ≤ 3. 

 

Definition 3.2 (Single-Valued Neutrosophic Set) A Neutrosophic set �̃� in the above definition 2.1 is also 

known as single-Valued Neutrosophic Set sig(�̃�) if x is a single-valued independent variable.  

𝑠𝑖𝑔(�̃�) = {< 𝑥; [π𝑠𝑖𝑔(�̃�)(x), θ𝑠𝑖𝑔(�̃�)(x), η
𝑠𝑖𝑔(�̃�)

(x)]〉: x ∈ X}, where π𝑠𝑖𝑔(�̃�)(x), θ𝑠𝑖𝑔(�̃�)(x), η
𝑠𝑖𝑔(�̃�)

(x) represent the 

concept of truth, hesitation and falsity memberships function respectively. 

 

Definition 3.2.1: (Neutro-normal) Let us consider three points, for which p,q,r for which, π𝑠𝑖𝑔(�̃�)(p) = 1,

θ𝑠𝑖𝑔(�̃�)(q) = 1, η
𝑠𝑖𝑔(�̃�)

(r) = 1  then the sig(�̃�)  is defined as neutro-normal.  

 

Definition 3.2.2: (Neutro-convex) A sig(�̃�)  is called neutro-convex if the following condition holds:  

     (𝑖)𝜋𝑠𝑖𝑔(�̃�) (𝜆𝛼 + (1 − 𝜆)𝛽) ≥ 𝑚𝑖𝑛(𝜋𝑠𝑖𝑔(�̃�)(𝛼), 𝜋𝑠𝑖𝑔(�̃�)(𝛽)) 

          (𝑖𝑖)𝜃𝑠𝑖𝑔(�̃�)(𝜆𝛼 + (1 − 𝜆)𝛽) ≥ 𝑚𝑖𝑛(𝜃𝑠𝑖𝑔(�̃�)(𝛼), 𝜃𝑠𝑖𝑔(�̃�)(𝛽)), 

          (𝑖𝑖𝑖)𝜂𝑠𝑖𝑔(�̃�)(𝜆𝛼 + (1 − 𝜆)𝛽) ≥ 𝑚𝑖𝑛(𝜂𝑠𝑖𝑔(�̃�)(𝛼), 𝜂𝑠𝑖𝑔(�̃�)(𝛽)) 

    𝑤ℎ𝑒𝑟𝑒 𝛼, 𝛽 ∈ 𝑅, 𝑎𝑛𝑑 𝜆 ∈ [0,1]      

 

Definition 3.3 (Triangular Single Valued Neutrosophic Number) A triangular Single Valued Neutrosophic 

Number ( �̃� ) is defined as �̃� =< (𝑚₁, 𝑚₂, 𝑚₃: 𝜇), (𝑛₁, 𝑛₂, 𝑛₃: 𝜗), (𝑝₁, 𝑝₂, 𝑝₃: 𝜁) >, 𝑤ℎ𝑒𝑟𝑒 𝜇, 𝜗, 𝜁 ∈ [0,1].  Here the 

truth membership function𝜋�̃�: R → [0, μ], the hesitation membership function θ�̃�: R → [ϑ, 1] and the falsity 

membership function η
�̃�
: R → [ζ, 1] are defined as follows: 

 

𝜋�̃�(𝑥) = {

𝛿�̃�𝑙(𝑥),      𝑚1 ≤ 𝑥 < 𝑚2

𝜇,                          𝑥 = 𝑚2

𝛿�̃�𝑟(𝑥),     𝑚2 < 𝑥 ≤ 𝑚3

0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  𝜃�̃�(𝑥) = {

𝜀�̃�𝑙(𝑥), 𝑛₁ ≤ 𝑥 < 𝑛₂
𝜗,                    𝑥 = 𝑛₂
𝜀�̃�𝑟(𝑥), 𝑛₂ < 𝑥 ≤ 𝑛₃
1,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  η
�̃�
(𝑥) = {

𝑙�̃�𝑙(𝑥), 𝑝₁ ≤ 𝑥 < 𝑝₂
𝜗,                    𝑥 = 𝑝₂
𝑙�̃�𝑟(𝑥), 𝑝₂ < 𝑥 ≤ 𝑝₃
1,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

De-neutrosophication of triangular single valued neutrosophic number: In this model we have applied 

removal area technique to evaluate the de-neutrosophication value of triangular single valued neutrosophic 

number  

�̃� =< (𝑚₁, 𝑚₂, 𝑚₃: 𝜇), (𝑛₁, 𝑛₂, 𝑛₃: 𝜗), (𝑝₁, 𝑝₂, 𝑝₃: 𝜁) > as done by (Chakraborty, et. al.). The de-neutrosophic form 

of �̃� is given as  𝑛𝑒𝑢𝐷�̃� = (
𝑚1+2𝑚2+𝑚3+𝑛1+2𝑛2+𝑛3+𝑝1+2𝑝2+𝑝3

12
) 

4.   Proposed model 

Thus the inventory level for the proposed model at any time t over [0,T] is described mathematically by 

the following equations: 
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𝑑𝑄(𝑡)

𝑑𝑡
+ 𝜌(𝑡)𝑄(𝑡) = 𝑟𝑃 − 𝐺 = (𝑟𝜎 − 1)𝑅𝑡,     0 ≤ 𝑡 ≤ 𝜇       (1) 

𝑑𝑄(𝑡)

𝑑𝑡
+ 𝜌(𝑡)𝑄(𝑡) = (𝑟𝜎 − 1)𝑅𝜇,                  𝜇 ≤ 𝑡 ≤ 𝑡₁      (2) 

𝑑𝑄(𝑡)

𝑑𝑡
+ 𝜌(𝑡)𝑄(𝑡) = −𝐺 = −𝑅𝜇,                  𝑡₁ ≤ 𝑡 ≤ 𝑡₂      (3) 

𝑑𝑄(𝑡)

𝑑𝑡
= −𝐵𝐺 = −𝐵𝑅𝜇,                            𝑡2 ≤ 𝑡 ≤ 𝑡3        (4) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝑟𝑃 − 𝐺 = 𝑟𝐾 − 𝑅𝜇 = (𝑟𝜎 − 1)𝑅𝜇, 𝑡₃ ≤ 𝑡 ≤ 𝑇₁      (5) 

 

with boundary conditions 

    𝑄(0) = 0, 𝑄(𝜇) = 𝐼, 𝑄(𝑡₁) = 𝑄𝑚 , 𝑄(𝑡₂) = 0, 𝑄(𝑡₃) = −𝑄𝑠  𝑎𝑛𝑑 𝑄(𝑇₁) = 0, 

    𝑤ℎ𝑒𝑟𝑒 𝐼 = (𝑟𝜎 − 1)𝑅[(
𝜇2

2
) + (

𝛼𝛾

𝛽 + 1
) (𝜇 − 𝛾)𝛽+1 + (

𝛼

𝛽 + 2
) (𝜇 − 𝛾)𝛽+2 +

(−1)𝛽𝛾𝛽+2

(𝛽 + 1)(𝛽 + 2)
] 

4.1 Mathematical Analysis of the proposed model  

From the above differential equations [1, 2, 3, 4, 5] and using the assumptions and the boundary conditions 

we obtain the inventory level of the proposed inventory model as follows: 

𝑄(𝑡) = (𝑟𝜎 − 1)𝑅[(
𝑡2

2
) − (

𝛼𝑡2

2
) (𝑡 − 𝛾)𝛽 + (

𝛼𝛾

𝛽 + 1
) (𝑡 − 𝛾)𝛽+1 + (

𝛼

𝛽 + 2
) (𝑡 − 𝛾)𝛽+2 + (

(−1){𝛽}𝛾𝛽+2

(𝛽 + 1)(𝛽 + 2)
)] 

𝑄(𝑡) = (𝑟𝜎 − 1)𝑅[𝑡𝜇 − (
𝜇2

2
) + 𝜇𝛼(𝑡 − 𝛾)𝛽 ((

𝑡−𝛾

𝛽+1
) − 𝑡 + (

𝜇

2
)) − (

𝛼

(𝛽+1)(𝛽+2)
) {(𝜇 − 𝛾)𝛽+2 − (−1)𝛽𝛾𝛽+2}]      (6) 

𝑄(𝑡) = 𝑅𝜇[𝑡₁ − 𝑡 + (
𝛼

𝛽+1
) {(𝑡1 − 𝛾)𝛽+1 − (𝑡 − 𝛾)𝛽+1} + 𝛼(𝑡 − 𝑡1)(𝑡 − 𝛾)𝛽] + 𝑄𝑚(1 − 𝛼(𝑡 − 𝛾)𝛽 + 𝛼(𝑡1 − 𝛾)𝛽), 𝑡₁ ≤ 𝑡 ≤ 𝑡₂      (7)  

𝑄(𝑡) = −𝐵𝑅𝜇(𝑡 − 𝑡₂),   𝑡₂ ≤ 𝑡 ≤ 𝑡₃                               (8) 

𝑄(𝑡) = (𝑟𝜎 − 1)𝑅𝜇(𝑡 − 𝑡₃) − 𝑄𝑠 ,    𝑡₃ ≤ 𝑡 ≤ 𝑇₁                            (9) 

Now using Q(t₂)=0 and eq.(6) we get the maximum amount inventory  Qm, 

𝑄𝑚 = 𝑅𝜇[𝑡₂ − 𝑡₁ + (
𝛼

𝛽+1
) (𝑡2 − 𝛾)𝛽+1 − 𝛼(𝑡1 − 𝛾)𝛽((

𝑡1−𝛾

𝛽+1
) + 𝑡₂ − 𝑡₁)]                           (10) 

    Now using eq.(8), eq.(9) and the relation Q(t₃)=-Qs we get the maximum shortages in the inventory level, 

 𝑄𝑠 = 𝐵𝑅𝜇(𝑡₃ − 𝑡₂)                             (11) 

Inventory carrying cost or holding cost: 

𝐻𝐶 = ℎ [∫  𝑄(𝑡)𝑑𝑡

𝜇

0

+ ∫  𝑄(𝑡)𝑑𝑡

𝑡1

𝜇

+ ∫  𝑄(𝑡)𝑑𝑡

𝑡2

𝑡1

] 

 

= ℎ[(𝑟𝜎 − 1)𝑅{(
𝜇4

6
) − (

𝛼𝛽𝜇(𝜇 − 𝛾)𝛽+3

2(𝛽 + 2)(𝛽 + 3)
) ((

𝛾(𝛽 + 5)

𝛽 + 1
) + 𝜇 + (

((−1)𝛽𝛼𝜇𝛾𝛽+2)

(𝛽 + 1)(𝛽 + 2)
) (𝜇 − (

𝛾

𝛽 + 3
))

+ (
𝛼𝜇𝛾2(𝜇 − 𝛾)𝛽+1

2(𝛽 + 1)
) + (

𝜇𝑡1

2
) (𝑡₁ − 𝜇) − (

𝛼𝛽𝜇(𝑡1 − 𝛾)𝛽+2

(𝛽 + 1)(𝛽 + 2)
) + 𝑅𝜇{− (

(𝑡2 − 𝑡1)2

2
) 
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+ (
𝛼𝜇((

𝜇

2
)−𝛾)

𝛽+1
) [(𝑡1 − 𝛾)𝛽+1 − (𝜇 − 𝛾)𝛽+1] + (

(𝛼(𝜇−𝛾)𝛽+2)

𝛽+2
) (𝜇 − (

𝑡1

𝛽+1
)) + (

(−1)𝛽𝛼𝛾(𝛽+2)

(𝛽+1)(𝛽+2)
) (𝑡₁ − 𝜇)} +

(
𝛼(𝑡1−𝛾)(𝑡2−𝛾)

𝛽+1
) [(𝑡1 − 𝛾)𝛽 − (𝑡2 − 𝛾)𝛽] + 𝑄𝑚 (𝑡2 − 𝑡1 − (

𝛼(𝑡2−𝛾)𝛽+1

𝛽+1
) + 𝛼(𝑡1 − 𝛾)𝛽 ((

𝑡1−𝛾

𝛽+1
) − 𝑡2 − 𝑡1))}] (12) 

Production cost: The unit production cost depends on demand and process reliability. When the demand of 

an item increases then the production/purchase cost of the item decreases hence the unit production cost 

reduces i.e., production / purchase cost varies inversely with demand. The process reliability level r means 

only r% of the produced items is of acceptable quality which can be used to meet demand. 

The unit production cost 𝑝 = 𝑎𝐷−𝑏𝑟𝑐  𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐 > 0 𝑎𝑛𝑑 𝑏 ≠ 2. 

The cost of production in [𝑡, 𝑡 + 𝑑𝑡] 𝑖𝑠 𝐾𝑝𝑑𝑡 = 𝜎𝐷. 𝑎𝐷−𝑏𝑟𝑐𝑑𝑡 = (
𝜎𝑎𝑟𝑐

𝐷𝑏−1) 𝑑𝑡. 

 Since the production occurs [0,t₁] and [t₃,T₁] so the production cost (PDC) is given as follows. 

Production cost (PDC)= ∫ (
𝜎𝑎𝑟𝑐

𝐷𝑏−1) 𝑑𝑡
𝜇

0
+ ∫ (

𝜎𝑎𝑟𝑐

𝐷𝑏−1) 𝑑𝑡
𝑡1

𝜇
+ ∫ (

𝜎𝑎𝑟𝑐

𝐷𝑏−1) 𝑑𝑡
𝑇1

𝑡3
   

= 𝜎𝑎𝑟𝑐[∫ (𝑅𝑡)1−𝑏𝑑𝑡
𝜇

0
+ ∫ (𝑅𝜇)1−𝑏𝑑𝑡

𝑡1

𝜇
+ ∫ (𝑅𝜇)1−𝑏𝑑𝑡

𝑇1

𝑡3
]  

= (
𝜎𝑎𝑟𝑐𝑅1−𝑏

2−𝑏
) [(𝑏 − 1)𝜇2−𝑏 + (2 − 𝑏)𝜇1−𝑏(𝑡₁ + 𝑇₁ − 𝑡₃)], 𝑏 ≠ 2                           (13) 

Deterioration cost: The total no. of deteriorated items in [0,T₁] is same as deterioration in [0,t₂] as there is no 

deterioration of items during the period [t₂,T₁]. 

D₁=Total no. of deteriorated items in [0,t₂] 

    =r×Production in [0,μ]+r×Production in [μ,t₁]-Demand in [0,μ]-Demand in [μ,t₂] 

    = 𝑟𝜎 ∫ 𝑅𝑡𝑑𝑡 

𝜇

0

+ 𝑟𝜎 ∫ 𝑅𝜇𝑑𝑡 

𝑡1

𝜇

− ∫ 𝑅𝑡𝑑𝑡 

𝜇

0

 − ∫ 𝑅𝜇𝑑𝑡 

𝑡2

𝜇

 

    = (
1

2
) 𝑅𝑟𝜇𝜎(2𝑡₁ − 𝜇) − (

1

2
) 𝑅𝜇(2𝑡₂ − 𝜇) 

∴ 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 (𝐷𝐶) = (𝑑𝐷₁) = (
𝑅𝜇𝑑

2
) (𝑟𝜎(2𝑡₁ − 𝜇) − (2𝑡₂ − 𝜇))    (14) 

Purchase cost: Since there is shortages in our model so the producer has to purchase raw material not only 

during [0,t₁] but also in [t₃, T₁]. So we have to calculate purchase cost during the above two period. 

𝑃𝐶 = 𝑐₁𝜎(∫ 𝑅𝑡𝑑𝑡 
𝜇

0
+ 𝑟𝜎 ∫ 𝑅𝜇𝑑𝑡 

𝑡1

𝜇
+ ∫ 𝑅𝜇𝑑𝑡

𝑇1

𝑡3
) = 𝑐₁𝜎𝑅𝜇(𝑡₁ + 𝑇₁ − 𝑡₃ − (

𝜇

2
))        (15) 

Shortage cost:  Since the model undergoes shortages so we observe shortages during [t₂, T₁]. 

    𝑆𝐶 = 𝑐₂ ∫ −𝑄(𝑡)𝑑𝑡
𝑡3

𝑡2
+ 𝑐₂ ∫ −𝑄(𝑡)𝑑𝑡

𝑇1

𝑡3
= (

𝑐2𝑅𝜇

2
) [𝐵(𝑡₃ − 𝑡₂)² + (𝑟𝜎 − 1)(𝑇₁ − 𝑡₃)²]  (16) 

Lost cost:  Due to urgency of demand the consumer opt to another shop so there is a chance for loss in sale 

during the shortages period [t₂, t₃]. Thus the lost cost for one replenishment interval is (LC). 

𝐿𝐶 = 𝑐₃(1 − 𝐵) ∫ 𝑅𝜇𝑑𝑡
𝑡3

𝑡2
= 𝑐₃(1 − 𝐵)𝑅𝜇(𝑡₃ − 𝑡₂)             (17) 
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The present value of total cost is (TC): 

    𝑇𝐶 = (𝐷𝐶 + 𝑃𝐶 + 𝐻𝐶 + 𝐿𝐶 + 𝑃𝐷𝐶 + 𝑆𝐶) ∑ 𝑒−(𝑖−1)𝑘𝑇

𝑚

𝑖=1

≈ (𝐷𝐶 + 𝑃𝐶 + 𝐿𝐶 + 𝑆𝐶 + 𝑃𝐷𝐶 + 𝐻𝐶) (
1 − 𝑒−𝑘𝑚𝑇

1 − 𝑒−𝑘𝑇
) 

= 𝑅𝜇 [(
𝑑

2
) (𝑟𝜎(2𝑡1 − 𝜇) − (2𝑡2 − 𝜇)) + 𝑐1𝜎 (𝑡1 + 𝑇1 – 𝑡3 −

𝜇

2
) + 𝑐3(1 − 𝐵)(𝑡3 − 𝑡2) + (

𝑐2

2
) [𝐵(𝑡3 − 𝑡2)2 +

(𝑟𝜎 − 1)(𝑇1 − 𝑡3)2] + (
𝜎𝑎𝑟𝑐𝑅−𝑏

2−𝑏
) [(𝑏 − 1)𝜇1−𝑏 + (2 − 𝑏)𝜇−𝑏(𝑡1 + 𝑇1 − 𝑡3)] + ℎ [(𝑟𝜎 − 1) {𝜉 + (

𝑡1

2
) (𝑡1 − 𝜇) −

(
𝛼{𝜇𝛽(𝑡1−𝛾)𝛽+2−𝑡1(𝜇−𝛾)𝛽+2+(−1)(𝛽)𝛼𝛾𝛽+2𝑡1}

𝜇(𝛽+1)(𝛽+2)
) +

(𝛼(
𝜇

2
−𝛾))(𝑡1−𝛾)𝛽+1

𝛽+1
} − (

(𝑡2−𝑡1)2

2
) + (

𝛼[(𝑡1−𝛾)𝛽+1(𝑡2−𝛾)−(𝑡1−𝛾)(𝑡2−𝛾)𝛽+1]

𝛽+1
) +

𝑄𝑚 (𝑡2 − 𝑡1 − (
𝛼(𝑡2−𝛾)𝛽+1

𝛽+1
) + 𝛼(𝑡1 − 𝛾)𝛽 ((

𝑡1−𝛾

𝛽+1
) − 𝑡2 − 𝑡1))]] (

1−𝑒−𝑘𝑚𝑇

1−𝑒−𝑘𝑇 )      (18) 

𝑊ℎ𝑒𝑟𝑒 

𝑏 ≠ 2, 𝜉 =
𝜇3

6
−

𝛼𝛽(𝜇 − 𝛾)𝛽+3

2(𝛽 + 2)(𝛽 + 3)
(

𝛾(𝛽 + 5)

𝛽 + 1
+ 𝜇) +

(−1)𝛽𝛼𝛾𝛽+2

(𝛽 + 1)(𝛽 + 2)
(𝜇 −

𝛾

𝛽 + 3
− 1)

+
𝛼(𝜇 − 𝛾)𝛽+1(𝛾2 + 2𝛾 − 𝜇)

2(𝛽 + 1)
+

𝛼(𝜇 − 𝛾)𝛽+2

𝛽 + 2
 

     

We observe that TC is a function of t₁,t₂,t₃ and m. But for the sake of simplicity we simplified t₂ and t₃ in terms 

of t₁ and r. 

Considering eq.(7), eq.(8) and the condition Q(t₁)=Qm we get t₂ in terms of t₁, and r. Expanding the 

exponential terms and neglecting the second and higher order terms of α and after simplifying the above two 

equations we get, 

𝑡₂ = (𝑟𝜎 − 1)[
𝜇

2
−

𝛼

𝜇(𝛽+1)(𝛽+2)
{(𝜇 − 𝛾)𝛽+2 − (−1)𝛽𝛾𝛽+2}] + 𝑟𝜎[𝑡₁ +

𝛼(𝑡1−𝛾)𝛽+1

𝛽+1
]               (19) 

Also considering (11), and Q(T₁)=0, we get t₃ in terms of t₁,and r. 

 

𝐵𝑃𝜇(𝑡₃ − 𝑡₂) = (𝛾 − 1)𝑅𝜇(𝑇₁ − 𝑡₃) 

      𝑡₃ =
1

𝐵+𝑟𝜎−1
((𝑟𝜎 − 1)𝑇₁ + 𝐵𝑡₂)                  (20) 

    Thus the total cost TC is function of t₁, r and m. 

Optimization process 

The following technique is derived to obtain the optimal value of t₁, r and m. 

    Step 1: Start by choosing a discrete value of m, a positive integer number. 

    Step 2: Take the partial derivative of total cost TC(t₁, r, m) with respect to t₁ and r and equate it to zero, 

the necessary condition for optimality is 
𝜕𝑇𝐶(𝑡1,𝑟,𝑚)

𝜕𝑡1
= 0  𝑎𝑛𝑑  

𝜕𝑇𝐶(𝑡1,𝑟,𝑚)

𝜕𝑟
= 0 . 
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    Step 3: For different values of m, Obtain the optimum value of the time taken t₁* and reliability r* from 

the above two equation. Then substituting the value of t₁*, r* and m in equation [18] and obtain TC(t₁*,r*,m) 

    Step 4: Repeat step 2 and step 3 for different values of m and obtain the TC(t₁*,r*,m). The minimum value 

of TC is obtained for optimum value of m*. Thus (t₁*,r*,m*) and TC(t₁*,r*,m*) are the optimal solution of our 

model. It satisfies the following condition: 

𝛥𝑇𝐶(t1
∗ , r∗, m∗ − 1)  <  0 <  𝛥𝑇𝐶(t1

∗ , r∗, m∗ + 1) 

   Where 𝛥𝑇𝐶(t1
∗ , r∗, m∗)  =  𝑇𝐶(t1

∗ , r∗, m∗ + 1)  −  𝑇𝐶(t1
∗ , r∗, m∗) 

    Step 5: To confirm that the objective function is convex, the derived value of TC(t1
∗ , r∗, m∗) must satisfy 

the sufficient condition: 

 

 (

𝜕2𝑇𝐶(𝑡1,𝑟)

𝜕𝑡1
2

𝜕2𝑇𝐶(𝑡1,𝑟)

𝜕𝑟𝜕𝑡1

𝜕2𝑇𝐶(𝑡1,𝑟)

𝜕𝑡1𝜕𝑟

𝜕2𝑇𝐶(𝑡1,𝑟)

𝜕𝑟2

) > 0 𝑎𝑛𝑑
𝜕2𝑇𝐶(𝑡1,𝑟)

𝜕𝑡1
2 > 0 𝑜𝑟 

𝜕2𝑇𝐶(𝑡1,𝑟)

𝜕𝑟2 > 0       (21) 

    Since TC* is very complicated with high powers so it is not possible to show the analytic validity of 

eq.(21). For this reason the above inequality is assessed by a numerical example. 

 

4.2    Effect of Neutrosophication of parameter in proposed inventory model 

 

    Neutrosophic number actually deals with the conception of three different kinds of membership 

function related with real life scenario. It consists of truth, hesitation and falseness of an imprecise number. 

In this model we have considered purchase cost (c₁), holding cost (h) and inflation (k) as neutrosophic fuzzy 

number since in reality all the parameters are uncertain and contains a dilemma in decision maker's mind. So 

we try to manifest the model by introducing neutrosophication in the above cost and rates, and thus observe 

the effect of the above by comparing it with crisp model. The neutrosophic form of holding cost, purchase 

cost and inflation are represented by ℎ̃, 𝑐₁̃ and �̃�. Thus   

ℎ̃ = < (ℎ₁ − 𝜀₁, ℎ₁, ℎ₁ + 𝜀₂: 𝜇), (ℎ₂ − 𝜀₁, ℎ₂, ℎ₂ + 𝜀₂: 𝜗), (ℎ₃ − 𝜀₁, ℎ₃, ℎ₃ + 𝜀₂: 𝜁) > , 

𝑐₁̃ =< (𝑐₁₁ − 𝜀₁, 𝑐₁₁, 𝑐₁₁ + 𝜀₂: 𝜇), (𝑐₁₂ − 𝜀₁, 𝑐₁₂, 𝑐₁₂ + 𝜀₂: 𝜗), (𝑐₁₃ − 𝜀₁, 𝑐₁₃, 𝑐₁₃ + 𝜀₂: 𝜁) >, 

�̃�  =< (𝑘₁ − 𝜀₁, 𝑘₁, 𝑘₁ + 𝜀₂: 𝜇), (𝑘₂ − 𝜀₁, 𝑘₂, 𝑘₂ + 𝜀₂: 𝜗), (𝑘₃ − 𝜀₁, 𝑘₃, 𝑘₃ + 𝜀₂: 𝜁) > 

𝑤ℎ𝑒𝑟𝑒 𝜇, 𝜗, 𝜁 ∈ [0,1] 𝑎𝑛𝑑 0 < 𝜀₁, 𝜀₂ < 1. 

This neutrosophic fuzzy number is implemented in this model and thus the total cost obtain using this 

neutrosophic number is 

𝑇𝐶𝑛𝑒𝑢(ℎ̃, 𝑐₁̃, �̃�) = 𝑅𝜇 [(
𝑑

2
) (𝑟𝜎(2𝑡1 − 𝜇) − (2𝑡2 − 𝜇)) + 𝑐₁̃𝜎 (𝑡1 + 𝑇1 – 𝑡3 −

𝜇

2
) + 𝑐3(1 − 𝐵)(𝑡3 − 𝑡2) +

(
𝑐2

2
) [𝐵(𝑡3 − 𝑡2)2 + (𝑟𝜎 − 1)(𝑇1 − 𝑡3)2] + (

𝜎𝑎𝑟𝑐𝑅−𝑏

2−𝑏
) [(𝑏 − 1)𝜇1−𝑏 + (2 − 𝑏)𝜇−𝑏(𝑡1 + 𝑇1 − 𝑡3)] + ℎ̃ [(𝑟𝜎 − 1) {𝜉 +

(
𝑡1

2
) (𝑡1 − 𝜇) − (

𝛼{𝜇𝛽(𝑡1−𝛾)𝛽+2−𝑡1(𝜇−𝛾)𝛽+2+(−1)(𝛽)𝛼𝛾𝛽+2𝑡1}

𝜇(𝛽+1)(𝛽+2)
) +

(𝛼(
𝜇

2
−𝛾))(𝑡1−𝛾)𝛽+1

𝛽+1
} − (

(𝑡2−𝑡1)2

2
) +
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(
𝛼[(𝑡1−𝛾)𝛽+1(𝑡2−𝛾)−(𝑡1−𝛾)(𝑡2−𝛾)𝛽+1]

𝛽+1
) + 𝑄𝑚 (𝑡2 − 𝑡1 − (

𝛼(𝑡2−𝛾)𝛽+1

𝛽+1
) + 𝛼(𝑡1 − 𝛾)𝛽 ((

𝑡1−𝛾

𝛽+1
) − 𝑡2 − 𝑡1))]] (

1−𝑒−�̃�𝑚𝑇

1−𝑒−�̃�𝑇
) 

                                                 (22) 

Using removal area technique (Chakraborty et. al. [3]) the de- neutrosophic numbers are 

ℎ𝑛𝑒𝑢�̃� =
ℎ1 + ℎ2 + ℎ3

3
−

𝜀1 + 𝜀2

4
, (𝑐1)𝑛𝑒𝑢𝐷

̃ =
𝑐11 + 𝑐12 + 𝑐13

3
−

𝜀1 + 𝜀2

4
, 𝑎𝑛𝑑 𝑘𝑛𝑒𝑢�̃� =

𝑘1 + 𝑘2 + 𝑘3

3
−

𝜀1 + 𝜀2

4
. 

    So we substitute the value of  hneuD, (c1)neuD and kneuD  and obtain the total cost in neutrosophic 

domain. 

    Thus by de-neutrosophication we get 

𝑇𝐶𝑛𝑒𝑢(ℎ̃, 𝑐1̃, �̃�) = 𝑅𝜇 [(
𝑑

2
) (𝑟𝜎(2𝑡1 − 𝜇) − (2𝑡2 − 𝜇)) + (𝑐1)𝑛𝑒𝑢𝐷

̃ 𝜎 (𝑡1 + 𝑇1 – 𝑡3 −
𝜇

2
) + 𝑐3(1 − 𝐵)(𝑡3 − 𝑡2) + (

𝑐2

2
) [𝐵(𝑡3 −

𝑡2)2 + (𝑟𝜎 − 1)(𝑇1 − 𝑡3)2] + (
𝜎𝑎𝑟𝑐𝑅−𝑏

2−𝑏
) [(𝑏 − 1)𝜇1−𝑏 + (2 − 𝑏)𝜇−𝑏(𝑡1 + 𝑇1 − 𝑡3)] + ℎ𝑛𝑒𝑢�̃� [(𝑟𝜎 − 1) {𝜉 + (

𝑡1

2
) (𝑡1 − 𝜇) −

(
𝛼{𝜇𝛽(𝑡1−𝛾)𝛽+2−𝑡1(𝜇−𝛾)𝛽+2+(−1)(𝛽)𝛼𝛾𝛽+2𝑡1}

𝜇(𝛽+1)(𝛽+2)
) +

(𝛼(
𝜇

2
−𝛾))(𝑡1−𝛾)𝛽+1

𝛽+1
} − (

(𝑡2−𝑡1)2

2
) + (

𝛼[(𝑡1−𝛾)𝛽+1(𝑡2−𝛾)−(𝑡1−𝛾)(𝑡2−𝛾)𝛽+1]

𝛽+1
) +

𝑄𝑚 (𝑡2 − 𝑡1 − (
𝛼(𝑡2−𝛾)𝛽+1

𝛽+1
) + 𝛼(𝑡1 − 𝛾)𝛽 ((

𝑡1−𝛾

𝛽+1
) − 𝑡2 − 𝑡1))]] (

1−𝑒−𝑘𝑛𝑒𝑢𝐷
̃ 𝑚𝑇

1−𝑒−𝑘𝑛𝑒𝑢𝐷
̃ 𝑇

)                      (23) 

5.  Numerical Example 

The model is illustrated by an example. A new brand item follows the demand rate as ramp type function of 

time where the produced items are directly affected by reliability(r) of production process. The manufacturer 

maintains the production rate 1.3 times the demand rate where demand factor is considered as 12 unit per 

cycle. Also the items deteriorate with time is in the form of αβ(t − γ)β−1, (where γ = 0.6 unit and α=0.001,β=1) 

which cost 1$ per unit time. The purchase cost of the raw material of the item is 3.5$ per unit item and 100$ is 

used for setting up for the production cycle. To hold the item in store the retailer has to pay 0.4$ per unit 

item. During shortages, which cost 3.2$, let 0.75 fraction of stock demand get backordered as the rest sales are 

lost. The cost for penalty (lost in sell) is 15$. The model is considered under 15 years of planning horizon with 

various replenishment cycle i.e., m=2,3,4,5 and discounting rate of inflation as 12%. 

Therefore, the data considered to illustrate the models are as follows: 

𝑐₁ = 3.5, 𝑐₂ = 3.2, 𝑐₃ = 15, ℎ = 0.4, 𝑑 = 1, 𝐵 = 0.75, 𝐻 = 15, 𝑇 = 𝐻/𝑚, 𝜇 = 1.2, 𝜎 = 1.3, 𝛼 = 0.001, 𝛽 = 1, 𝛾

= 0.6, 𝑎 = 3, 𝑏 = 0.8, 𝑐 = 2, 𝑘 = 0.12, 𝑅 = 12, 𝑆 = 100. 

Table 1: Optimal solution of inventory model for different replenishment 

m  T in year t1* in year  t2* in year t3* in year reliability (r*)     TC*   

2 7.5 7.175 7.452 7.454 0.799 806.54 

3 5 4.571 4.883 4.894 0.828 738.13 

4 3.75 3.249 3.579 3.603 0.864 717.58 

5* 3* 2.451* 2.789* 2.83* 0.909* 715.26* 
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From the table 1 it is observed that the optimal solution is obtained (i.e., total cost is minimum) if we consider 

short replenishment cycles. This is realistic because if we decrease the time of the production then it 

produces less items and hence the total cost of the inventory decreases. It is also observed the better quality 

items are produced at shorter replenishment cycle i.e., the reliability (r) of the items increases in shorter 

production or replenishment cycle. This occurs because if we take small cycle then at the end of each cycle 

their is maintenance in production system happens regularly and thus the reliability of the items increases. 

                          

Figure 2: Graphical presentation of production         Figure 3: Graphical presentation of reliability 

           cycle vs total cost                       vs total cost. 

We observe from the figure 2 that for smaller production cycle (i.e., for large value of m), the optimal total 

cost (TC) decreases with optimal cost at m = 5. 

In figure 3 we observe that the as reliability (r) increases then the total cost (TC) decreases. This holds because 

as reliability increases the demand of the item in the market increases as a result the cost per unit item 

decreases and hence the total cost decreases. 

The above result is desirable because in the competitive market the business strategies of the manufacturer is 

to work in small cycle and producing highly reliable items at less cost. 

 

Figure 4: Graphical representation of total cost vs reliability and production time 
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Figure 4 gives the 3-dimensional plot of the total cost, reliability and no. of replenishment cycle in crisp 

model. In this figure we observe that reliability (r) increases for large value of m where the total cost (TC) 

decreases, i.e., highly reliable items are produced during small replenishment cycle at less cost, which is 

desirable in producer-oriented EPQ model. This is obvious as, in small cycle, the machinery gets upgraded 

and ameliorated eventually at the end of each cycle, and hence better quality of items are produced at much 

faster rate and thus cost per unit items decreases and hence the total costing of the inventory decreases. 

In reality few parameters are uncertain and thus there is a dilemma in decision maker's mind. Thus instead 

of considering the model in crisp domain let us consider the model in neutrosophic domain and examine the 

same example as above. Here we have considered purchase cost (c₁), holding cost (h) and inflation (k) as 

triangular neutrosophic fuzzy number. Thus the neutrosophic numbers of the above parameters are     𝑘₁ =

0.125, 𝑘₂ = 0.118, 𝑘₃ = 0.132, ℎ₁ = 0.38, ℎ₂ = 0.4, ℎ₃ = 0.42, 𝑐₁₁ = 2.5, 𝑐₁₂ = 2.45. 𝑐₁₃ = 2.55, 𝜀₁ = 0.005, 𝜀₂ =

0.007. 

    𝑇ℎ𝑒𝑛, 𝑐₁̃  =< (2.495,2.5,2.507), (2.445,2.45,2.457), (2.545,2.55,2.557) >, 

    ℎ̃ =< (0.375,0.38,0.387), (0.395,0.4,0.407), (0.415,0.42,0.427) > 𝑎𝑛𝑑  

    �̃� =< (0.12,0.125,0.132), (0.113,0.118,0.125), (0.127,0.132,0.139) >. 

Thus we obtained table 2 under neutrosophic arena for the optimal solution of the model for different 

replenishment cycle. 

Table 2: Optimal time and cost of inventory model under neutrosophic domain 

m  T in year t1* in year  t2* in year t3* in year reliability (r*)     TC*   

2 7.5 7.172 7.448 7.451 0.799 802.45 

3 5 4.569 4.886 4.897 0.829 733 

4 3.75 3.247 3.58 3.605 0.865 711.87 

5* 3* 2.449* 2.789* 2.83* 0.91* 709.11* 

Thus if we compare table 1 and table 2 it is observed that the total cost (TC) decreases if we consider the 

model in neutrosophic arena. This is desirable as few parameters has hesitation factor in decision maker's 

mind and thus this model under neutrosophic domain gives us better result. 

 

6.   Sensitivity Analysis 

 

The retailer should be aware of the effect in the total cost for any changes in the parameter. In order to 

examine the implications of these changes, the sensitivity analysis will be helpful for decision-making. Using 

the numerical example as given in the preceding section, we perform the sensitivity analysis by changing 

few crisp parameters by -10%, -5%, 5% and 10% by taking one parameter at time and keeping the other 

parameter fixed. As per Table 1 we observe that optimal solution is obtained when we consider small 

replenishment cycle. So we perform the sensitivity analysis for m=5. 
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Table 3. Sensitivity analysis of some parameters 

Parameters Change 

(%)  

t1* in year  t2*in year t3* in year reliability 

(r*) 

    TC*   % change   

of TC* 

 -10 2.642 2.933 2.44 0.878 677.95 -5.5 

c₁ -5 2.557 2.872 2.894 0.892 696.78 -2.65 

 5 2.313 2.677 2.748 0.932 733.29 2.46 

 10 2.122 2.517 2.64 0.968 750.71 4.72 

 -10 2.398 2.776 2.825 0.93 711.92 -0.47 

h -5 2.425 2.761 2.808 0.91 713.67 -0.22 

 5 2.475 2.796 2.834 0.9 716.7 0.2 

 10 2.498 2.803 2.838 0.892 718.01 0.38 

 -10 2.451 2.789 2.83 0.909 687.65 -4.02 

S -5 2.451 2.789 2.83 0.909 701.45 -1.97 

 5 2.451 2.789 2.83 0.909 729.06 1.89 

 10 2.451 2.789 2.83 0.909 742.87 3.72 

 -10 2.617 2.903 2.918 0.975 681.84 -4.9 

σ -5 2.533 2.844 2.871 0.939 698.61 -2.38 

 5 2.364 2.728 2.786 0.883 731.72 2.25 

 10 2.264 2.66 2.742 0.865 747.95 4.37 

 -10 2.398 2.771 2.819 0.923 681.47 -4.96 

μ -5 2.425 2.781 2.825 0.916 698.63 -2.38 

 5 2.475 2.798 2.836 0.903 731.35 2.2 

 10 2.498 2.805 2.841 0.897 746.92 4.24 

 -10 2.451 2.789 2.83 0.909 750.84 4.74 

k -5 2.451 2.789 2.83 0.909 732.63 2.37 

 5 2.451 2.789 2.83 0.909 698.69 -2.37 

 10 2.451 2.789 2.83 0.909 682.87 -4.74 

 -10 2.41 2.781 2.828 0.926 671.72 -6.48 

R -5 2.431 2.785 2.829 0.917 693.48 -3.14 

 5 2.471 2.794 2.832 0.901 737.05 2.96 

 10 2.49 2.799 2.834 0.894 758.86 5.74 

From the above table 3 it is observed that the model is highly sensitive to purchase cost, demand rate factor 

(R), moderately sensitive to setup cost, σ, μ, inflation (k) and less sensitive to holding cost. It is also noted 

that the model is insensitive to the shortage cost, lost in sale cost and deterioration cost. That means 

deterioration is not going to affect the model as much.   

(i) The model is highly sensitive to purchase cost i.e., if we increase purchase cost (c₁), the total cost increases. 

It is also noted that as the purchase cost increases, the reliability increases and production time decreases 

which means if we buy good quality raw material then we have better quality of finished good at less 

manufacturing time. Again the total cost TC increases with increase in demand factor R. This is obvious 
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because if demand increases means more items are produced and hence the production time and production 

cost also increases which leads to increase in total cost. 

(ii) The model is moderately sensitive to set up cost (S), σ, μ, inflation (k). Investing more money for 

upgradation of machineries, i.e., by increasing in set up cost (S), the total cost increases. It is noted that in our 

model the set up cost does not depends on reliability and production time. Again with the increase in 

production rate (σ) and production time (μ), the total cost increases. This is true because, if production time 

increases then more items are produced also if we increase the production rate then we have more finished 

good at less manufacturing time and thus in both the case the total cost increases. Also the toal cost decreases 

with increase in inflation (k). This is obvious because with the increase in inflation the time value of money 

increases and thus the total cost decreases in present day. 

(iii) It is noticed that as the holding cost (h) is a less sensitive parameter. With the increase in holding cost, the 

total cost increases. It is also observed that the production time also increases with increase in holding cost. It 

means that the items has to be held for longer time with high value of holding cost then obviously the total 

cost will increase. 

It has been observed that there are various parameters which are very less sensitive hence it is not included 

in the table.  

 

7.   Concluding remarks 

This paper developed an EPQ model for deteriorating item with reliability in production process and ramp 

type demand rate under crisp and neutrosophic domain. The model also considers shortages where part of 

the items gets backlogged and part of the sales are lost. The model coincides with practical situations since 

we have considered the effect of time value of money under finite time horizon. Also the model optimizes by 

considering the reliability of production process, as the reliability of production process increases, the total 

cost decreases. This model is cost effective because highly reliable items are obtained at less cost and which is 

desirable in managerial point of view. It is also observed that the highly reliable items are produced in small 

cycles. The paper also compares the model under two different environment, crisp and neutrosophic, and it 

is observed that the model works better in neutrosophic domain as compare to crisp environment. In this 

paper we have done sensitivity analysis in crisp environment to illustrate our example and we have noted 

that the minimum value of total cost is obtained for short replenishment cycle. This work could be extended 

by considering multi-layer supply chain lot sizing model with manufacturer end, retailer end under 

neutrosophic environment. Also we can extend this same model and can compare the model with 

neutrosophic number and hybrid plithogenic decision-making method. 

Further, in the forthcoming research, people can fruitfully execute and apply the idea of triangular 

neutrosophic into distinct research arenas like structural modeling, diagnostic problems, realistic 

modeling, recruitment based problems, pattern recognition etc. 
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