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1. Introduction 

In a classical graph, any vertex or edge have two situations, namely, it is either in the graph or it 

is not in the graph and it is not sufficient to model uncertain optimization problems. Therefore, 

real-life problems are not suitable to model using classical graphs. Hence the fuzzy set arises, which 

is an extension of classical set; here the objects have varying membership degrees. Vague sets are 

regarded as a special case of context-dependent fuzzy sets. At first, vague set theory was 

investigated by Gau and Buehrer [36] that is an extension of fuzzy set theory. The classical fuzzy set 

handles only the membership degree, but intuitionistic fuzzy handles independent membership 

degree and non-membership degree for any element with the only requirement is that the sum of 

non-membership and membership degree values is not greater than one [16].  

On the other hand, to hold this indeterminate and inconsistent information, the neutrosophic 

set is introduced by F. Smarandache and has been studied extensively (see [31]-[35]). Neutrosophic 

set and related notions have weird applications in many different fields. In the definition of 

neutrosophic set, the indeterminacy value is quantified explicitly and truth-membership, 

false-membership and indeterminacy-membership are stated as exactly independent provided sum 

of these values belonging to 0 and 3. Neutrosophic soft rough graphs with applications are 

established in [10]. Neutrosophic soft relations and neutrosophic refined relations with their 

properties are studied in [15, 20]. Single valued neutrosophic graph are studied in [17, 18]. Some 

types of neutrosophic graphs and co-neutrosophic graphs are discussed in [23]. Neutrosophic vague 

set is first initiated in [11]. Al-Quran and Hassan in [7] introduced the notion of neutrosophic vague 

soft expert set as a generalization of neutrosophic vague set and soft expert set in order to revise the 

application in decision-making in real-life problems. Intuitionistic bipolar neutrosophic set and its 

application to graphs are established in [28]. Further, neutrosophic vague graphs are investigated in 
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[27]. Motivated by the articles [11, 27, 28, 29], we introduce the concept of operations on 

neutrosophic vague graphs. The main contributions in this manuscript are given below:   

 Operations on neutrosophic vague graphs are established. In Section 2, basic definitions     

regarding to neutrosophic vague graphs are explained with an example.  

 In Section 3, Cartesian product, lexicographic product, cross product, strong product 

and composition of neutrosophic vague graph are illustrated with examples. Finally, a 

conclusion is elaborated with future direction. 

2. Preliminaries 

In this section, basic definitions and example are given, which is used to prove the main results.  

Definition 2.1 [36] A vague set 𝔸 on a non empty set 𝕏  is a pair (𝕋𝔸, 𝔽𝔸), where 𝕋𝔸: 𝕏 → [0,1] 

and 𝔽𝔸: 𝕏 → [0,1] are true membership and false membership functions, respectively, such that  

 0 ≤ 𝕋𝔸(x) + 𝔽𝔸(x) ≤ 1 for every x ∈ 𝕏.  

Let 𝕏 and 𝕐  be two non-empty sets. A vague relation R of 𝕏 to 𝕐  is a vague set R on 𝕏 × 𝕐 

that is R = (𝕋R, 𝔽R), where 𝕋R: 𝕏 × 𝕐 → [0,1],   𝔽R: 𝕏 × 𝕐 → [0,1] and satisfies the condition:  

 0 ≤ 𝕋R(x, y) + 𝔽R(x, y) ≤ 1 for any x, y ∈ 𝕏.  

Definition 2.2 [12] Let 𝔾∗ = (𝕍, 𝔼) be a graph. A pair 𝔾 = (𝕁, 𝕂) is called a vague graph on 𝔾∗, 

where 𝕁 = (𝕋𝕁, 𝔽𝕁) is a vague set on 𝕍 and 𝕂 = (𝕋𝕂, 𝔽𝕂) is a vague set on 𝔼 ⊆ 𝕍 × 𝕍 such that for 

each xy ∈ 𝔼,  

 𝕋𝕂(xy) ≤ min{𝕋𝕁(x), 𝕋𝕁(y)} and 𝔽𝕂(xy) ≥ max {𝔽𝕁(x), 𝔽𝕁 (y)}.  

Definition 2.3 [31] A Neutrosophic set 𝔸 is contained in another neutrosophic set 𝔹, (i.e) 𝔸 ⊆ 𝔹 if 

∀x ∈ 𝕏, 𝕋𝔸(x) ≤ 𝕋𝔹(x), 𝕀𝔸(x) ≥ 𝕀𝔹(x)and 𝔽𝔸(x) ≥ 𝔽𝔹(x).  

Definition 2.4 [20, 31] Let 𝕏 be a space of points (objects), with generic elements in 𝕏 denoted by x. 

A single valued neutrosophic set 𝔸 in 𝕏 is characterised by truth-membership function 𝕋𝔸(x), 

indeterminacy-membership function 𝕀𝔸(x) and falsity-membership-function 𝔽𝔸(x), 

For each point x in 𝕏, 𝕋𝔸(x), 𝕀𝔸(x), 𝔽𝔸(x) ∈ [0,1]. Also  

 𝔸 = {〈x, 𝕋𝔸(x), 𝕀𝔸(x), 𝔽𝔸(x)〉} and 0 ≤ 𝕋𝔸(x), +𝕀𝔸(x) + 𝔽𝔸(x) ≤ 3.  

Definition 2.5 [6, 18] A neutrosophic graph is defined as a pair 𝔾∗ = (𝕍, 𝔼)  where  

(i) 𝕍 = {v1, v2, . . , vn} such that 𝕋1 ∶ 𝕍 → [0,1], 𝕀1 ∶ 𝕍 → [0,1] and 𝔽1 ∶ 𝕍 → [0,1] denote the 

degree of truth-membership function, indeterminacy function and falsity-membership function, 

respectively, and  

 0 ≤ 𝕋1(v) + 𝕀1(v) + 𝔽1(v) ≤ 3,  

       (ii) 𝔼 ⊆ 𝕍 × 𝕍 where 𝕋2 ∶ 𝔼 → [0,1], 𝕀2 ∶ 𝔼 → [0,1] and 𝔽2 ∶ 𝔼 → [0,1] are such that  

 𝕋2(uv) ≤ min{𝕋1(u), 𝕋1(v)}, 

𝕀2(uv) ≤ min{𝕀1(u), 𝕀1(v)}, 

𝔽2(uv) ≤ max{𝔽1(u), 𝔽1(v)} 

and 0 ≤ 𝕋2(uv) + 𝕀2(uv) + 𝔽2(uv) ≤ 3, ∀uv ∈ 𝔼.  

Definition 2.6 [11] A Neutrosophic Vague Set 𝔸NV (NVS in short) on the universe of discourse 𝕏 

written as  

 𝔸NV = {〈x, 𝕋̂𝔸NV
(x), 𝕀̂𝔸NV

(x), 𝔽̂𝔸NV
(x)〉, x ∈ 𝕏},  

whose truth-membership, indeterminacy membership and falsity-membership function are defined 

as  
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 𝕋̂𝔸NV
(x) = [𝕋−(x), 𝕋+(x)], 𝕀̂𝔸NV

(x) = [𝕀−(x), 𝕀+(x)]and 𝔽̂𝔸NV
(x) = [𝔽−(x), 𝔽+(x)], 

where 𝕋+(x) = 1 − 𝔽−(x), 𝔽+(x) = 1 − 𝕋−(x), and 0 ≤ 𝕋−(x) + 𝕀−(x) + 𝔽−(x) ≤ 2.  

Definition 2.7 [11] The complement of NVS 𝔸NV is denoted by 𝔸NV
c  and it is defined by  

 𝕋̂𝔸NV

c (x) = [1 − 𝕋+(x),1 − 𝕋−(x)], 

 𝕀̂𝔸NV

c (x) = [1 − 𝕀+(x),1 − 𝕀−(x)], 

 𝔽̂𝔸NV

c (x) = [1 − 𝔽+(x),1 − 𝔽−(x)]. 

Definition 2.8 [11] Let 𝔸NV and 𝔹NV be two NVSs of the universe 𝕌. If for all ui ∈ 𝕌,  

 𝕋̂𝔸NV
(ui) ≤ 𝕋̂𝔹NV

(ui), 𝕀̂𝔸NV
(ui) ≥ 𝕀̂𝔹NV

(ui), 𝔽̂𝔸NV
(ui) ≥ 𝔽̂𝔹NV

(ui),  

then the NVS, 𝔸NV are included in 𝔹NV, denoted by 𝔸NV ⊆ 𝔹NV where 1 ≤ i ≤ n.  

Definition 2.9 [11] The union of two NVSs , 𝔸NV and 𝔹NV,  is a NVSs, 𝔻NV, written as 𝔻NV =

𝔸NV ∪ 𝔹NV whose truth-membership function, indeterminacy-membership function and 

false-membership function are related to those of 𝔸NV and 𝔹NV by  

 𝕋̂𝔻NV
(x) = [max(𝕋𝔸NV

− (x), 𝕋𝔹NV

− (x)), max(𝕋𝔸NV

+ (x), 𝕋𝔹NV

+ (x))] 

 𝕀̂𝔻NV
(x) = [min(𝕀𝔸NV

− (x), 𝕀𝔹NV

− (x)), min(𝕀𝔸NV

+ (x), 𝕀𝔹NV

+ (x))] 

 𝔽̂𝔻NV
(x) = [min(𝔽𝔸NV

− (x), 𝔽𝔹NV

− (x)), min(𝔽𝔸NV

+ (x), 𝔽𝔹NV

+ (x))]. 

Definition 2.10 [11] The intersection of two NVSs, 𝔸NV and 𝔹NV is a NVSs, 𝔻NV, written as 𝔻NV =

𝔸NV  ∩ 𝔹NV ,  whose truth-membership function, indeterminacy-membership function and 

false-membership function are related to those of 𝔸NV  and 𝔹NV  by  

𝕋̂𝔻NV
(x) = [min(𝕋𝔸NV

− (x), 𝕋𝔹NV

− (x)), min(𝕋𝔸NV

+ (x), 𝕋𝔹NV

+ (x))] 

     𝕀̂𝔻NV
(x) = [max(𝕀𝔸NV

− (x), 𝕀𝔹NV

− (x)), max(𝕀𝔸NV

+ (x), 𝕀𝔹NV

+ (x))] 

    𝔽̂𝔻NV
(x) = [max(𝔽𝔸NV

− (x), 𝔽𝔹NV

− (x)), max(𝔽𝔸NV

+ (x), 𝔽𝔹NV

+ (x))]. 

Definition 2.11 [27] Let G∗ = (R, S) be a graph. A pair 𝔾 = (𝔸, 𝔹) is called a neutrosophic vague 

graph (NVG) on G∗ or a neutrosophic vague graph where 𝔸 = (𝕋̂𝔸, 𝕀̂𝔸, 𝔽̂𝔸) is a neutrosophic vague 

set on R and 𝔹 = (𝕋̂𝔹, 𝕀̂𝔹, 𝔽̂𝔹)is a neutrosophic vague set S ⊆ R × R where  

 (1)     R = {v1, v2, . . . , vn} such that 𝕋𝔸
−: R → [0,1], 𝕀𝔸

−: R → [0,1], 𝔽𝔸
−: R → [0,1] which satisfies the 

condition 𝔽𝔸
− = [1 − 𝕋𝔸

+], 

𝕋𝔸
+: R → [0,1], 𝕀𝔸

+: R → [0,1], 𝔽𝔸
+: R → [0,1]  which satisfies the condition 𝔽𝔸

+ = [1 − 𝕋𝔸
−]  

denotes the degree of truth membership function, indeterminacy membership and falsity 

membership of the element vi ∈ R, and  

 0 ≤ 𝕋𝔸
−(vi) + 𝕀𝔸

−(vi) + 𝔽𝔸
−(vi) ≤ 2 

 0 ≤ 𝕋𝔸
+(vi) + 𝕀𝔸

+(vi) + 𝔽𝔸
+(vi) ≤ 2. 

(2) S ⊆ R × R where  

 𝕋𝔹
−: R × R → [0,1],  𝕀𝔹

−: R × R → [0,1],  𝔽𝔹
−: R × R → [0,1] 

 𝕋𝔹
+: R × R → [0,1],  𝕀𝔹

+: R × R → [0,1],  𝔽𝔹
+: R × R → [0,1] 

denotes the degree of truth membership function, indeterminacy membership and falsity 

membership of the element vivj ∈ S, respectively and such that,  

0 ≤ 𝕋𝔹
−(vivj) + 𝕀𝔹

−(vivj) + 𝔽𝔹
−(vivj) ≤ 2 

0 ≤ 𝕋𝔹
+(vivj) + 𝕀𝔹

+(vivj) + 𝔽𝔹
+(vivj) ≤ 2. 

 

 such that  
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𝕋𝔹
−(vivj) ≤ min{𝕋𝔸

−(vi), 𝕋𝔸
−(vj)} 

𝕀𝔹
−(vivj) ≤ min{𝕀𝔸

−(vi), 𝕀𝔸
−(vj)} 

𝔽𝔹
−(vivj) ≤ max{𝔽𝔸

−(vi), 𝔽𝔸
−(vj)} 

 and similarly  

𝕋𝔹
+(vivj) ≤ min{𝕋𝔸

+(vi), 𝕋𝔸
+(vj)} 

𝕀𝔹
+(vivj) ≤ min{𝕀𝔸

+(vi), 𝕀𝔸
+(vj)} 

𝔽𝔹
+(vivj) ≤ max{𝔽𝔸

+(vi), 𝔽𝔸
+(vj)}. 

Example 2.12 Consider a neutrosophic vague graph G = (R, S)  such that 𝔸 = {a, b, c} and 𝔹 =

{ab, bc, ca} are defined by 

â = T[0.5,0.6], I[0.4,0.3], F[0.4,0.5],        b̂ = T[0.4,0.6], I[0.7,0.3], F[0.4,0.6], 

ĉ = T[0.4,0.4], I[0.5,0.3], F[0.6,0.6] 

a− = (0.5,0.4,0.4), b− = (0.4,0.7,0.4), c− = (0.4,0.5,0.6) 

𝐚+ = (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟓),  𝐛+ = (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟔),  𝐜+ = (𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟔). 

 

 

 

 

 

  

 

 

 

𝐹𝑖𝑔𝑢𝑟𝑒 1: NEUTROSOPHIC VAGUE GRAPH  

3. Operations on Neutrosophic Vague Graphs 

In this section, the results on operations of neutrosophic vague graphs with example are established.  

Definition 3.1 The Cartesian product of two NVGs G1 and G2 is denoted by the pair G1 × G2 =

(R1 × R2, S1 × S2) and defined as  

 TA1×A2

− (kl) = TA1

− (k) ∧ TA2

− (l) 

 IA1×A2

− (kl) = IA1

− (k) ∧ IA2

− (l) 

 FA1×A2

− (kl) = FA1

− (k) ∨ FA2

− (l) 

 TA1×A2

+ (kl) = TA1

+ (k) ∧ TA2

+ (l) 

 IA1×A2

+ (kl) = IA1

+ (k) ∧ IA2

+ (l) 

 FA1×A2

+ (kl) = FA1

+ (k) ∨ FA2

+ (l), 



Neutrosophic Sets and Systems, Vol. 35, 2020  372  

 

 

S. Satham Hussain, Saeid Jafari, Said Broumi and N. Durga “Operations on Neutrosophic Vague Graphs” 

 

 for all (k, l) ∈ R1 × R2. 

 

The membership value of the edges in G1 × G2 can be calculated as,  

 (1)  TB1×B2

− (kl1)(kl2) = TA1

− (k) ∧ TB2

− (l1l2) 

      TB1×B2

+ (kl1)(kl2) = TA1

+ (k) ∧ TB2

+ (l1l2), 

  

 (2)   IB1×B2

− (kl1)(kl2) = IA1

− (k) ∧ IB2

− (l1l2) 

     IB1×B2

+ (kl1)(kl2) = IA1

+ (k) ∧ IB2

+ (l1l2), 

  

 (3)   FB1×B2

− (kl1)(kl2) = FA1

− (k) ∨ FB2

− (l1l2) 

     FB1×B2

+ (kl1)(kl2) = FA1

+ (k) ∨ FB2

+ (l1l2), 

 for all k ∈ R1, l1l2 ∈ S2.  

 (4)  TB1×B2

− (k1l)(k2l) = TA2

− (l) ∧ TB2

− (k1k2) 

     TB1×B2

+ (k1l)(k2l) = TA2

+ (l) ∧ TB2

+ (k1k2), 

  

 (5)  IB1×B2

− (k1l)(k2l) = IA2

− (l) ∧ IB2

− (k1k2) 

     IB1×B2

+ (k1l)(k2l) = IA2

+ (l) ∧ IB2

+ (k1k2), 

  

 (6)   FB1×B2

− (k1l)(k2l) = FA2

− (l) ∨ FB2

− (k1k2) 

     FB1×B2

+ (k1l)(k2l) = FA2

+ (l) ∨ FB2

+ (k1k2), 

 for all k1k2 ∈ S1, l ∈ R2.  

 

Example 3.2 Consider G1 = (R1, S1) and G2 = (R2, S2) are two NVGs of G = (R, S), as represented 

in Figure 2, now we get G1 × G2 as follows see Figure 3. 

 

k̂1 = T[0.5,0.6], I[0.6,0.4], F[0.4,0.5], k̂2 = T[0.4,0.6], I[0.7,0.3], F[0.4,0.6], 

k̂3 = T[0.6,0.4], I[0.3,0.7], F[0.6,0.4],k̂4 = T[0.4,0.4], I[0.4,0.6], F[0.6,0.6] 

l̂1 = T[0.4,0.4], I[0.5,0.3], F[0.6,0.6], l̂2 = T[0.5,0.6], I[0.4,0.3], F[0.4,0.5], 

l̂3 = T[0.4,0.6], I[0.7,0.3], F[0.4,0.6] 

k1
− = (0.5,0.6,0.4), k2

− = (0.4,0.7,0.4), k3
− = (0.6,0.3,0.6),k4

− = (0.4,0.4,0.6) 

k1
+ = (0.6,0.4,0.5), k2

+ = (0.6,0.3,0.6), k3
+ = (0.4,0.7,0.4),k4

− = (0.4,0.6,0.6) 

l1
− = (0.4,0.5,0.6), l2

− = (05,0.4,0.4), l3
− = (0.4,0.7,0.4) 

𝐥𝟏
+ = (𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟔), 𝐥𝟐

+ = (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟓), 𝐥𝟑
+ = (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟔). 
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Figure 2: NEUTROSOPHIC VAGUE GRAPH 
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Figure 3: CARTESIAN PRODUCT OF NEUTROSOPHIC VAGUE GRAPH 

Theorem 3.3 The Cartesian product G1 × G2 = (R1 × R2, S1 × S2) of two NVG G1 and G2 is also the 

NVG of G1 × G2.  

Proof. We consider two cases. 

Case 1: for k ∈ R1, l1l2 ∈ S2,  

 T̂(B1×B2)((kl1)(kl2)) = T̂A1
(k) ∧ T̂B2

(l1l2) 

                    ≤ T̂A1
(k) ∧ [T̂A2

(l1) ∧ T̂A2
(l2)] 

                    = [T̂A1
(k) ∧ T̂A2

(l1)] ∧ [T̂A1
(k) ∧ T̂A2

(l2)] 

                    = T̂(A1×A2)(k, l1) ∧ T̂(A1×A2)(k, l2) 

  

 Î(B1×B2)((kl1)(kl2)) = ÎA1
(k) ∧ ÎB2

(l1l2) 

                            ≤ ÎA1
(k) ∧ [ÎA2

(l1) ∧ ÎA2
(l2)] 

                    = [ÎA1
(k) ∧ ÎA2

(l1)] ∧ [ÎA1
(k) ∧ ÎA2

(l2)] 

                       = Î(A1×A2)(k, l1) ∧ Î(A1×A2)(k, l2) 

  

 F̂(B1×B2)((kl1)(kl2)) = F̂A1
(k) ∨ F̂B2

(l1l2) 

                    ≤ F̂A1
(k) ∨ [F̂A2

(l1) ∨ F̂A2
(l2)] 

                     = [F̂A1
(k) ∨ F̂A2

(l1)] ∨ [F̂A1
(k) ∨ F̂A2

(l2)] 

                    = F̂(A1×A2)(k, l1) ∨ F̂(A1×A2)(k, l2) 

for all kl1, kl2 ∈ G1 × G2. 

Case 2: for k ∈ R2, l1l2 ∈ S1.  

 T̂(B1×B2)((l1k)(l2k)) = T̂A2
(k) ∧ T̂B1

(l1l2) 

                    ≤ T̂A2
(k) ∧ [T̂A1

(l1) ∧ T̂A1
(l2)] 

                         = [T̂A2
(k) ∧ T̂A1

(l1)] ∧ [T̂A2
(k) ∧ T̂A1

(l2)] 

                    = T̂(A1×A2)(l1, k) ∧ T̂(A1×A2)(l2, k) 

  

 Î(B1×B2)((l1k)(l2k)) = ÎA2
(k) ∧ ÎB1

(l1l2) 
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                      ≤ ÎA2
(k) ∧ [ÎA1

(l1) ∧ ÎA1
(l2)] 

                    = [ÎA2
(k) ∧ ÎA1

(l1)] ∧ [ÎA2
(k) ∧ ÎA1

(l2)] 

                    = Î(A1×A2)(l1, k) ∧ Î(A1×A2)(l2, k) 

  

 F̂(B1×B2)((l1k)(l2k)) = F̂A2
(k) ∨ F̂B1

(l1l2) 

                    ≤ F̂A2
(k) ∨ [F̂A1

(l1) ∨ F̂A1
(l2)] 

                    = [F̂A2
(k) ∨ F̂A1

(l1)] ∨ [F̂A2
(k) ∨ F̂A1

(l2)] 

                    = F̂(A1×A2)(l1, k) ∨ F̂(A1×A2)(l2, k) 

for all l1k, l2k ∈ G1 × G2 .  

Definition 3.4 The Cross product of two NVGs G1 and G2 is denoted by the pair G1 ⋆ G2 = (R1 ⋆

R2, S1 ⋆ S2) and is defined as  

 (i)TA1⋆A2

− (kl) = TA1

− (k) ∧ TA2

− (l) 

            IA1⋆A2

− (kl) = IA1

− (k) ∧ IA2

− (l) 

    FA1⋆A2

− (kl) = FA1

− (k) ∨ FA2

− (l) 

    TA1⋆A2

+ (kl) = TA1

+ (k) ∧ TA2

+ (l)  

    IA1⋆A2

+ (kl) = IA1

+ (k) ∧ IA2

+ (l) 

    FA1⋆A2

+ (kl) = FA1

+ (k) ∨ FA2

+ (l), 

 for all k, l ∈ R1 ⋆ R2.  

 (ii)T(B1⋆B2)
− (k1l1)(k2l2) = TB1

− (k1k2) ∧ TB2

− (l1l2) 

     I(B1⋆B2)
− (k1l1)(k2l2) = IB1

− (k1k2) ∧ IB2

− (l1l2) 

     F(B1⋆B2)
− (k1l1)(k2l2) = FB1

− (k1k2) ∨ FB2

− (l1l2) 

 (iii)T(B1⋆B2)
+ (k1l1)(k2l2) = TB1

+ (k1k2) ∧ TB2

+ (l1l2) 

     I(B1⋆B2)
+ (k1l1)(k2l2) = IB1

+ (k1k2) ∧ IB2

+ (l1l2) 

     F(B1⋆B2)
+ (k1l1)(k2l2) = FB1

+ (k1k2) ∨ FB2

+ (l1l2), 

 for all k1k2 ∈ S1, l1l2 ∈ S2.  

Example 3.5 Consider 𝐆𝟏 = (𝐑𝟏, 𝐒𝟏) and 𝐆𝟐 = (𝐑𝟐, 𝐒𝟐) as two NVG of 𝐆 = (𝐑, 𝐒) respectively, (see 

Figure 2). We obtain the cross product of 𝐆𝟏 ⋆ 𝐆𝟐 as follows (see Figure 4). 

 

 

 

 

 

 

 

Figure 4: CROSS PRODUCT OF NEUTROSOPHIC VAGUE GRAPH 
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Theorem 3.6 The cross product G1 ⋆ G2 = (R1 ⋆ R2, S1 ⋆ S2) of two NVG G1 and G2 is an the NVG 

of G1 ⋆ G2.  

Proof. For all k1l1, k2l2 ∈ G1 ⋆ G2  

 T̂(B1⋆B2)((k1l1)(k2l2)) = T̂B1
(k1k2) ∧ T̂B2

(l1l2) 

                      ≤ [T̂A1
(k1) ∧ T̂A1

(k2)] ∧ [T̂A2
(l1) ∧ T̂A2

(l2)] 

                      = [T̂A1
(k1) ∧ T̂A2

(l1)] ∧ [T̂A1
(k2) ∧ T̂A2

(l2)] 

                      = T̂(A1⋆A2)(k1l1) ∧ T̂(A1⋆A2)(k2, l2) 

  

 Î(B1⋆B2)((k1l1)(k2l2)) = ÎB1
(k1k2) ∧ ÎB2

(l1l2) 

                      ≤ [ÎA1
(k1) ∧ ÎA1

(k2)] ∧ [ÎA2
(l1) ∧ ÎA2

(l2)] 

                      = [ÎA1
(k1) ∧ ÎA2

(l1)] ∧ [ÎA1
(k2) ∧ ÎA2

(l2)] 

                      = Î(A1⋆A2)(k1l1) ∧ Î(A1⋆A2)(k2, l2) 

  

 F̂(B1⋆B2)((k1l1)(k2l2)) = F̂B1
(k1k2) ∨ F̂B2

(l1l2) 

                      ≤ [F̂A1
(k1) ∨ F̂A1

(k2)] ∨ [F̂A2
(l1) ∨ F̂A2

(l2)] 

                      = [F̂A1
(k1) ∨ F̂A2

(l1)] ∨ [F̂A1
(k2) ∨ F̂A2

(l2)] 

                      = F̂(A1⋆A2)(k1l1) ∨ F̂(A1⋆A2)(k2, l2). 

 This completes the proof.  

Definition 3.7 The lexicographic product of two NVGs G1 and G2 is denoted by the pair G1 • G2 =

(R1 • R2, S1 • S2) and defined as  

 (i)T(A1•A2)
− (kl) = TA1

− (k) ∧ TA2

− (l) 

    I(A1•A2)
− (kl) = IA1

− (k) ∧ IA2

− (l) 

    F(A1•A2)
− (kl) = FA1

− (k) ∨ FA2

− (l) 

    T(A1•A2)
+ (kl) = TA1

+ (k) ∧ TA2

+ (l) 

    I(A1•A2)
+ (kl) = IA1

+ (k) ∧ IA2

+ (l) 

    F(A1•A2)
+ (kl) = FA1

+ (k) ∨ FA2

+ (l), 

 for all kl ∈ R1 × R2  

 (ii)T(B1•B2)
− (kl1)(kl2) = TA1

− (k) ∧ TB2

− (l1l2) 

    I(B1•B2)
− (kl1)(kl2) = IA1

− (k) ∧ IB2

− (l1l2) 

    F(B1•B2)
− (kl1)(kl2) = FA1

− (k) ∨ FB2

− (l1l2) 

    T(B1•B2)
+ (kl1)(kl2) = TA1

+ (k) ∧ TB2

+ (l1l2) 

    I(B1•B2)
+ (kl1)(kl2) = IA1

+ (k) ∧ IB2

+ (l1l2) 

    F(B1•B2)
+ (kl1)(kl2) = FA1

+ (k) ∨ FB2

+ (l1l2), 

 for all k ∈ R1, l1l2 ∈ S2.  

 (iii)T(B1•B2)
− (k1l1)(k2l2) = TB1

− (k1k2) ∧ TB2

− (l1l2) 

       I(B1•B2)
− (k1l1)(k2l2) = IB1

− (k1k2) ∧ IB2

− (l1l2) 

     F(B1•B2)
− (k1l1)(k2l2) = FB1

− (k1k2) ∨ FB2

− (l1l2) 

     T(B1•B2)
+ (k1l1)(k2l2) = TB1

+ (k1k2) ∧ TB2

+ (l1l2) 

     I(B1•B2)
+ (k1l1)(k2l2) = IB1

+ (k1k2) ∧ IB2

+ (l1l2) 

     F(B1•B2)
+ (k1l1)(k2l2) = FB1

+ (k1k2) ∨ FB2

+ (l1l2),  for all k1k2 ∈ S1, l1l2 ∈ S2.  



Neutrosophic Sets and Systems, Vol. 35, 2020  377  

 

 

S. Satham Hussain, Saeid Jafari, Said Broumi and N. Durga “Operations on Neutrosophic Vague Graphs” 

 

Example 3.8 The lexicographic product of NVG G1 = (R1, S1) and G2 = (R2, S2) shown in Figure 2 

is defined as G1 • G2 = (R1 • R2, S1 • S2) and is presented in Figure 5.  

 

 

 

Figure 5: LEXICOGRAPHIC PRODUCT OF NEUTROSOPHIC VAGUE GRAPH 
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Theorem 3.9 The lexicographic product G1 • G2 = (R1 • R2, S1 • S2) of two NVG G1 and G2 is the 

NVG of G1 • G2.  

Proof. We have two cases. 

Case 1: For k ∈ R1, l1l2 ∈ S2,  

 T̂(B1•B2)((kl1)(kl2)) = T̂A1
(k) ∧ T̂B2

(l1l2) 

                     ≤ T̂A1
(k) ∧ [T̂A2

(l1) ∧ T̂A2
(l2)] 

                    = [T̂A1
(k) ∧ T̂A2

(l1)] ∧ [T̂A1
(k) ∧ T̂A2

(l2)] 

                    = T̂(A1•A2)(k, l1) ∧ T̂(A1•A2)(k, l2) 

  

 Î(B1•B2)((kl1)(kl2)) = ÎA1
(k) ∧ ÎB2

(l1l2) 

                    ≤ ÎA1
(k) ∧ [ÎA2

(l1) ∧ ÎA2
(l2)] 

                    = [ÎA1
(k) ∧ ÎA2

(l1)] ∧ [ÎA1
(k) ∧ ÎA2

(l2)] 

                    = Î(A1•A2)(k, l1) ∧ Î(A1•A2)(k, l2) 

  

 F̂(B1•B2)((kl1)(kl2)) = F̂A1
(k) ∨ F̂B2

(l1l2) 

                    ≤ F̂A1
(k) ∨ [F̂A2

(l1) ∨ F̂A2
(l2)] 

                    = [F̂A1
(k) ∨ F̂A2

(l1)] ∨ [F̂A1
(k) ∨ F̂A2

(l2)] 

                    = F̂(A1•A2)(k, l1) ∨ F̂(A1•A2)(k, l2) 

for all kl1, kl2 ∈ S1 × S2. 

Case 2: For all k1l1 ∈ S1, k2l2 ∈ S2,  

 T̂(B1•B2)((k1l1)(k2l2)) = T̂B1
(k1k2) ∧ T̂B2

(l1l2) 

                      ≤ [T̂A1
(k1) ∧ T̂A1

(k2)] ∧ [T̂A2
(l1) ∧ T̂A2

(l2)] 

                      = [T̂A1
(k1) ∧ T̂A2

(l1)] ∧ [T̂A1
(k2) ∧ T̂A2

(l2)] 

                        = T̂(A1•A2)(k1l1) ∧ T̂(A1•A2)(k2, l2) 

  

 Î(B1•B2)((k1l1)(k2l2)) = ÎB1
(k1k2) ∧ ÎB2

(l1l2) 

                     ≤ [ÎA1
(k1) ∧ ÎA1

(k2)] ∧ [ÎA2
(l1) ∧ ÎA2

(l2)] 

                     = [ÎA1
(k1) ∧ ÎA2

(l1)] ∧ [ÎA1
(k2) ∧ ÎA2

(l2)] 

                     = Î(A1•A2)(k1l1) ∧ Î(A1•A2)(k2, l2) 

  

 F̂(B1•B2)((k1l1)(k2l2)) = F̂B1
(k1k2) ∨ F̂B2

(l1l2) 

                      ≤ [F̂A1
(k1) ∨ F̂A1

(k2)] ∨ [F̂A2
(l1) ∨ F̂A2

(l2)] 

                      = [F̂A1
(k1) ∨ F̂A2

(l1)] ∨ [F̂A1
(k2) ∨ F̂A2

(l2)] 

                      = F̂(A1•A2)(k1l1) ∨ F̂(A1•A2)(k2, l2) 

for all k1, l1 ∈ k2, l2 ∈ R1 • R2.  

Definition 3.10 The strong product of two NVG G1 and G2 is denoted by the pair G1 ⊠ G2 = (R1 ⊠

R2, S1 ⊠ S2) and defined as  

 (i)T(A1⊠A2)
− (kl) = TA1

− (k) ∧ TA2

− (l) 

    I(A1⊠A2)
− (kl) = IA1

− (k) ∧ IA2

− (l) 

    F(A1⊠A2)
− (kl) = FA1

− (k) ∨ FA2

− (l) 
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    T(A1⊠A2)
+ (kl) = TA1

+ (k) ∧ TA2

+ (l) 

    I(A1⊠A2)
+ (kl) = IA1

+ (k) ∧ IA2

+ (l) 

    F(A1⊠A2)
+ (kl) = FA1

+ (k) ∨ FA2

+ (l) 

 for all kl ∈ R1 ⊠ R2 

 

 (ii)T(B1⊠B2)
− (kl1)(kl2) = TA1

− (k) ∧ TB2

− (l1l2) 

    I(B1⊠B2)
− (kl1)(kl2) = IA1

− (k) ∧ IB2

− (l1l2) 

    F(B1⊠B2)
− (kl1)(kl2) = FA1

− (k) ∨ FB2

− (l1l2) 

    T(B1⊠B2)
+ (kl1)(kl2) = TA1

+ (k) ∧ TB2

+ (l1l2) 

    I(B1⊠B2)
+ (kl1)(kl2) = IA1

+ (k) ∧ IB2

+ (l1l2) 

    F(B1⊠B2)
+ (kl1)(kl2) = FA1

+ (k) ∨ FB2

+ (l1l2), 

 for all k ∈ R1, l1l2 ∈ S2.  

 (iii)TB1⊠B2

− (k1l)(k2l) = TA2

− (l) ∧ TB2

− (k1k2) 

     IB1⊠B2

− (k1l)(k2l) = IA2

− (l) ∧ IB2

− (k1k2) 

     FB1⊠B2

− (k1l)(k2l) = FA2

− (l) ∨ FB2

− (k1k2) 

     TB1⊠B2

+ (k1l)(k2l) = TA2

+ (l) ∧ TB2

+ (k1k2) 

             IB1⊠B2

+ (k1l)(k2l) = IA2

+ (l) ∧ IB2

+ (k1k2) 

           FB1⊠B2

+ (k1l)(k2l) = FA2

+ (l) ∨ FB2

+ (k1k2), 

 for all k1k2 ∈ S1, l ∈ R2.  

 (iv)T(B1⊠B2)
− (k1l1)(k2l2) = TB1

− (k1k2) ∧ TB2

− (l1l2) 

     I(B1⊠B2)
− (k1l1)(k2l2) = IB1

− (k1k2) ∧ IB2

− (l1l2) 

     F(B1⊠B2)
− (k1l1)(k2l2) = FB1

− (k1k2) ∨ FB2

− (l1l2) 

     T(B1⊠B2)
+ (k1l1)(k2l2) = TB1

+ (k1k2) ∧ TB2

+ (l1l2) 

     I(B1⊠B2)
+ (k1l1)(k2l2) = IB1

+ (k1k2) ∧ IB2

+ (l1l2) 

     F(B1⊠B2)
+ (k1l1)(k2l2) = FB1

+ (k1k2) ∨ FB2

N (l1l2), 

for all k1k2 ∈ S1, l1l2 ∈ S2.  

Example 3.11 The strong product of NVG G1 = (R1, S1) and G2 = (R2, S2) shown in Figure 2 is 

defined as G1 ⊠ G2 = (S1 ⊠ S2, T1 ⊠ T2) and is presented in Figure 6.  
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Figure 6: STRONG PRODUCT OF NEUTROSOPHIC VAGUE GRAPH 

 

Theorem 3.12 The strong product G1 ⊠ G2 = (R1 ⊠ R2, S1 ⊠ S2) of two NVG G1 and G2 is a NVG 

of G1 ⊠ G2.  

Proof. There are three cases: 

Case 1: for k ∈ R1, l1l2 ∈ S2,  

 T̂(B1⊠B2)((kl1)(kl2)) = T̂A1
(k) ∧ T̂B2

(l1l2) 

                     ≤ T̂A1
(k) ∧ [T̂A2

(l1) ∧ T̂A2
(l2)] 

                     = [T̂A1
(k) ∧ T̂A2

(l1)] ∧ [T̂A1
(k) ∧ T̂A2

(l2)] 

                     = T̂(A1⊠A2)(k, l1) ∧ T̂(A1⊠A2)(k, l2) 

  

 Î(B1⊠B2)((kl1)(kl2)) = ÎA1
(k) ∧ ÎB2

(l1l2) 

                    ≤ ÎA1
(k) ∧ [ÎA2

(l1) ∧ ÎA2
(l2)] 

                    = [ÎA1
(k) ∧ ÎA2

(l1)] ∧ [ÎA1
(k) ∧ ÎA2

(l2)] 

                       = Î(A1⊠A2)(k, l1) ∧ Î(A1⊠A2)(k, l2) 

  

 F̂(B1⊠B2)((kl1)(kl2)) = F̂A1
(k) ∨ F̂B2

(l1l2) 

                    ≤ F̂A1
(k) ∨ [F̂A2

(l1) ∨ F̂A2
(l2)] 

                    = [F̂A1
(k) ∨ F̂A2

(l1)] ∨ [F̂A1
(k) ∨ F̂A2

(l2)] 

                    = F̂(A1⊠A2)(k, l1) ∨ F̂(A1⊠A2)(k, l2), 

 for all kl1, kl2 ∈ R1 ⊠ R2. 

Case 2: for k ∈ R2, l1l2 ∈ S1,  

 T̂(B1⊠B2)((l1k)(l2k)) = T̂A2
(k) ∧ T̂B1

(l1l2) 
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                     ≤ T̂A2
(k) ∧ [T̂A1

(l1) ∧ T̂A1
(l2)] 

                       = [T̂A2
(k) ∧ T̂A1

(l1)] ∧ [T̂A2
(k) ∧ T̂A1

(l2)] 

                     = T̂(A1⊠A2)(l1, k) ∧ T̂(A1⊠A2)(l2, k) 

  

 Î(B1⊠B2)((l1k)(l2k)) = ÎA2
(k) ∧ ÎB1

(l1l2) 

                    ≤ ÎA2
(k) ∧ [ÎA1

(l1) ∧ ÎA1
(l2)] 

                    = [ÎA2
(k) ∧ ÎA1

(l1)] ∧ [ÎA2
(k) ∧ ÎA1

(l2)] 

                    = Î(A1⊠A2)(l1, k) ∧ Î(A1⊠A2)(l2, k) 

  

 F̂(B1⊠B2)((l1k)(l2k)) = F̂A2
(k) ∨ F̂B1

(l1l2) 

                     ≤ F̂A2
(k) ∨ [F̂A1

(l1) ∨ F̂A1
(l2)] 

                     = [F̂A2
(k) ∨ F̂A1

(l1)] ∨ [F̂A2
(k) ∨ F̂A1

(l2)] 

                     = F̂(A1⊠A2)(l1, k) ∨ F̂(A1⊠A2)(l2, k) 

for all l1k, l2k ∈ R1 ⊠ R2. 

Case 3: for k1, k2 ∈ S1, l1l2 ∈ S2  

 T̂(B1⊠B2)((k1l1)(k2l2)) = T̂B1
(k1k2) ∧ T̂B2

(l1l2) 

                      ≤ [T̂A1
(k1) ∧ T̂A1

(k2)] ∧ [T̂A2
(l1) ∧ T̂A2

(l2)] 

                      = [T̂A1
(k1) ∧ T̂A2

(l1)] ∧ [T̂A1
(k2) ∧ T̂A2

(l2)] 

                      = T̂(A1⊠A2)(k1l1) ∧ T̂(A1⊠A2)(k2, l2) 

  

 Î(B1⊠B2)((k1l1)(k2l2)) = ÎB1
(k1k2) ∧ ÎB2

(l1l2) 

                      ≤ [ÎA1
(k1) ∧ ÎA1

(k2)] ∧ [ÎA2
(l1) ∧ ÎA2

(l2)] 

                      = [ÎA1
(k1) ∧ ÎA2

(l1)] ∧ [ÎA1
(k2) ∧ ÎA2

(l2)] 

                      = Î(A1⊠A2)(k1l1) ∧ Î(A1⊠A2)(k2, l2) 

  

 F̂(B1⊠B2)((k1l1)(k2l2)) = F̂B1
(k1k2) ∨ F̂B2

(l1l2) 

                        ≤ [F̂A1
(k1) ∨ F̂A1

(k2)] ∨ [F̂A2
(l1) ∨ F̂A2

(l2)] 

                       = [F̂A1
(k1) ∨ F̂A2

(l1)] ∨ [F̂A1
(k2) ∨ F̂A2

(l2)] 

                       = F̂(A1⊠A2)(k1l1) ∨ F̂(A1⊠A2)(k2, l2), 

for all l1k1, l2k1 ∈ R1 ⊠ R2. 

Definition 3.13 The composition of two NVG G1 and G2 is denoted by the pair G1 ∘ G2 = (R1 ⊠

R2, S1 ∘ S2) and defined as  

 (i)T(A1∘A2)
− (kl) = TA1

− (k) ∧ TA2

− (l) 

    I(A1∘A2)
− (kl) = IA1

− (k) ∧ IA2

− (l) 

    F(A1∘A2)
− (kl) = FA1

− (k) ∨ FA2

− (l) 

    T(A1∘A2)
+ (kl) = TA1

+ (k) ∧ TA2

+ (l) 

                    I(A1∘A2)
+ (kl) = IA1

+ (k) ∧ IA2

+ (l) 

    F(A1∘A2)
+ (kl) = FA1

+ (k) ∨ FA2

+ (l) 

 for all kl ∈ R1 ∘ R2.  

 (ii)T(B1∘B2)
− (kl1)(kl2) = TA1

− (k) ∧ TB2

− (l1l2) 
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     I(B1∘B2)
− (kl1)(kl2) = IA1

− (k) ∧ IB2

− (l1l2) 

     F(B1∘B2)
− (kl1)(kl2) = FA1

− (k) ∨ FB2

− (l1l2) 

     T(B1∘B2)
+ (kl1)(kl2) = TA1

+ (k) ∧ TB2

+ (l1l2) 

      I(B1∘B2)
+ (kl1)(kl2) = IA1

+ (k) ∧ IB2

+ (l1l2) 

     F(B1∘B2)
+ (kl1)(kl2) = FA1

+ (k) ∨ FB2

+ (l1l2), 

 for all k ∈ R1, l1l2 ∈ S2.  

 (iii)TB1∘B2

− (k1l)(k2l) = TA2

− (l) ∧ TB2

− (k1k2) 

   IB1∘B2

− (k1, l)(k2, l) = IA2

− (l) ∧ IB2

− (k1k2) 

   FB1∘B2

− (k1, l)(k2, l) = FA2

− (l) ∨ FB2

− (k1k2) 

   TB1∘B2

+ (k1, l)(k2, l) = TA2

+ (l) ∧ TB2

+ (k1k2) 

   IB1∘B2

+ (k1, l)(k2, l) = IA2

+ (l) ∧ IB2

+ (k1k2) 

   FB1∘B2

+ (k1, l)(k2, l) = FA2

+ (l) ∨ FB2

+ (k1k2), 

 for all k1k2 ∈ S1, l ∈ R2.  

 (iv)T(B1∘B2)
− (k1l1)(k2l2) = TB1

− (k1k2) ∧ TA2

− (l1) ∧ TA2

− (l2) 

     I(B1∘B2)
− (k1l1)(k2l2) = IB1

− (k1k2) ∧ IA2

− (l1) ∧ IA2

− (l2) 

     F(B1∘B2)
− (k1l1)(k2l2) = FB1

− (k1k2) ∨ FA2

− (l1) ∨ FA2

− (l2) 

      T(B1∘B2)
+ (k1l1)(k2l2) = TB1

− (k1k2) ∧ TA2

+ (l1) ∧ TA2

+ (l2) 

      I(B1∘B2)
+ (k1l1)(k2l2) = IB1

+ (k1k2) ∧ IA2

+ (l1) ∧ IA2

+ (l2) 

      F(B1∘B2)
+ (k1l1)(k2l2) = FB1

+ (k1k2) ∨ FA2

+ (l1) ∨ FA2

+ (l2), 

 for all k1k2 ∈ S1, l1l2 ∈ S2.  

Example 3.14 The composition of NVG G1 = (R1, S1)  and G2 = (R2, S2)  shown in Figure 2 is 

defined as G1 ∘ G2 = (R1 ∘ R2, S1 ∘ S2) and is presented in Figure 7.  
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Figure 7: COMPOSITION OF NEUTROSOPHIC VAGUE GRAPH 

Theorem 3.15 Composition G1 ∘ G2 = (R1 ∘ R2, S1 ∘ S2) of two NVG G1 and G2 is the NVG of G1 ∘

G2.  

Proof. We divide the proof into three cases:  

Case:1 For k ∈ R1, l1l2 ∈ S2,  

 T̂(B1∘B2)((kl1)(kl2)) = T̂A1
(k) ∧ T̂B2

(l1l2) 

                     ≤ T̂A1
(k) ∧ [T̂A2

(l1) ∧ T̂A2
(l2)] 

                     = [T̂A1
(k) ∧ T̂A2

(l1)] ∧ [T̂A1
(k) ∧ T̂A2

(l2)] 

                     = T̂(A1∘A2)(k, l1) ∧ T̂(A1∘A2)(k, l2) 

  

  Î(B1∘B2)((kl1)(kl2)) = ÎA1
(k) ∧ ÎB2

(l1l2) 

                    ≤ ÎA1
(k) ∧ [ÎA2

(l1) ∧ ÎA2
(l2)] 

                    = [ÎA1
(k) ∧ ÎA2

(l1)] ∧ [ÎA1
(k) ∧ ÎA2

(l2)] 

                    = Î(A1∘A2)(k, l1) ∧ Î(A1∘A2)(k, l2) 

  

 F̂(B1∘B2)((kl1)(kl2)) = F̂A1
(k) ∨ F̂B2

(l1l2) 

                    ≤ F̂A1
(k) ∨ [F̂A2

(l1) ∨ F̂A2
(l2)] 

                    = [F̂A1
(k) ∨ F̂A2

(l1)] ∨ [F̂A1
(k) ∨ F̂A2

(l2)] 

                     = F̂(A1∘A2)(k, l1) ∨ F̂(A1∘A2)(k, l2) 

 for all kl1, kl2 ∈ R1 ∘ R2. 

Case 2: for k ∈ R2, l1l2 ∈ S1,  

 T̂(B1∘B2)((l1k)(l2k)) = T̂A2
(k) ∧ T̂B1

(l1l2) 

                    ≤ T̂A2
(k) ∧ [T̂A1

(l1) ∧ T̂A1
(l2)] 

                    = [T̂A2
(k) ∧ T̂A1

(l1)] ∧ [T̂A2
(k) ∧ T̂A1

(l2)] 

                    = T̂(A1∘A2)(l1, k) ∧ T̂(A1∘A2)(l2, k) 
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 Î(B1∘B2)((l1k)(l2k)) = ÎA2
(k) ∧ ÎB1

(l1l2) 

                       ≤ ÎA2
(k) ∧ [ÎA1

(l1) ∧ ÎA1
(l2)] 

                    = [ÎA2
(k) ∧ ÎA1

(l1)] ∧ [ÎA2
(k) ∧ ÎA1

(l2)] 

                    = Î(A1∘A2)(l1, k) ∧ Î(A1∘A2)(l2, k) 

  

 F̂(B1∘B2)((l1k)(l2k)) = F̂A2
(k) ∨ F̂B1

(l1l2) 

                    ≤ F̂A2
(k) ∨ [F̂A1

(l1) ∨ F̂A1
(l2)] 

                    = [F̂A2
(k) ∨ F̂A1

(l1)] ∨ [F̂A2
(k) ∨ F̂A1

(l2)] 

                    = F̂(A1∘A2)(l1, k) ∨ F̂(A1∘A2)(l2, k),  for all l1k, l2k ∈ R1 ∘ R2. 

Case 3: For k1k2 ∈ S1, l1, l2 ∈ R2 such that l1 ≠ l2,  

 T̂(B1∘B2)((k1l1)(k2l2)) = T̂B1
(k1, k2) ∧ T̂A2

(l1) ∧ T̂A2
(l2) 

                      ≤ [T̂A1
(k1) ∧ T̂A1

(k2)] ∧ [T̂A2
(l1) ∧ T̂A2

(l2)] 

                      = [T̂A1
(k1) ∧ T̂A2

(l1)] ∧ [T̂A1
(k2) ∧ T̂A2

(l2)] 

                      = T̂(A1∘A2)(k1l1) ∧ T̂(A1∘A2)(k2l2) 

  

 Î(B1∘B2)((k1l1)(k2l2)) = ÎB1
(k1, k2) ∧ ÎA2

(l1) ∧ ÎA2
(l2) 

                     ≤ [ÎA1
(k1) ∧ ÎA1

(k2)] ∧ [ÎA2
(l1) ∧ ÎA2

(l2)] 

                     = [ÎA1
(k1) ∧ ÎA2

(l1)] ∧ [ÎA1
(k2) ∧ ÎA2

(l2)] 

                     = Î(A1∘A2)(k1l1) ∧ Î(A1∘A2)(k2l2) 

  

 F̂(B1∘B2)((k1l1)(k2l2)) = F̂B1
(k1, k2) ∨ F̂A2

(l1) ∨ F̂A2
(l2) 

                      ≤ [F̂A1
(k1) ∨ F̂A1

(k2)] ∨ [F̂A2
(l1) ∨ F̂A2

(l2)] 

                      = [F̂A1
(k1) ∨ F̂A2

(l1)] ∨ [F̂A1
(k2) ∨ F̂A2

(l2)] 

                      = F̂(A1∘A2)(k1l1) ∨ F̂(A1∘A2)(k2l2),  for all k1l1, k2l2 ∈ R1 ∘ R2.  

Conclusion 

 Graph theory is an extremely useful tool in studying and modeling several applications in 

computer science, engineering, genetics, decision-making, economics, etc. An extension of 

intuitionistic fuzzy graph is regarded as a single-valued neutrosophic graph which is very useful to 

formulate the appropriate real life situation. In this research article, the operations on neutrosophic 

vague graphs have been established. Moreover, Cartesian product, lexicographic product, cross 

product, strong product and composition of neutrosophic vague graph have been investigated and 

the given concepts are demonstrated through examples. Furthermore, in future, we are able to 

investigate the domination number and isomorphic properties of the NVGs. 
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