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Abstract. In a wide spectrum of mathematical issues, the presence of a fixed point (FP) is equal to the presence 

of a appropriate map solution. Thus in several fields of math and science, the presence of a fixed point is im-

portant. Furthermore, an interesting field of mathematics has been the study of the existence and  uniqueness 

of common fixed point (CFP) and coincidence points of mappings fulfilling the contractive conditions. There-

fore, the existence of a FP is of significant importance in several fields of mathematics and science. Results of 

the FP, coincidence point (CP) contribute conditions under which maps have solutions. The aim of this paper 

is to explore these conditions (mappings) used to obtain the FP, CP and CFP of a neutrosophic soft set. We study 

some of these mappings (conditions) such as contraction map, L-lipschitz map, non-expansive map, compatible 

map, commuting map, weakly commuting map, increasing map, dominating map, dominated map of a neu-

trosophic soft set. Moreover we introduce some new points like a coincidence point, common fixed point and 

periodic point of neutrosophic soft mapping. We establish some basic results, particular examples on these 

mappings and points. In these results we show the link between FP and CP. Moreover we show the importance 

of mappings for obtaining the FP, CP and CFP of neutrosophic soft mapping. 

 

Keyword. Neutrosophic set, fuzzy neutrosophic soft mapping, fixed point, coincidence point. 

_________________________________________________________________________________ 

 
1. Introduction 

It is well known fact that fuzzy sets (FS) [1], complex fuzzy sets (CFS) [2], intuitionistic fuzzy sets (IFSs), 

the soft sets [3], fuzzy soft sets (FSS) and the fuzzy parameterized fuzzy soft sets (FPFS-sets) [4], [5] have been 

used to model the real life problems in various fields like in medical science, environments, economics, engi-

neering, quantum physics and psychology etc. 

In ,1965 L. A. Zadeh [1] introduced a FS, which is the generalization of a crisp set. A grade value of a crisp set 

is either 1 or 0 but a grade value of fuzzy set has all the values in closed interval  ].1,0[  A FS plays a central 

role in modeling of real world problems. There are a lot of applications of FS theory in various branches of 

science such as in engineering, economics, medical science, mathematical chemistry, image processing, non-

equilibrium thermodynamics etc. The concept for IFSs is provided in [3] which are generalizations of FS. An 

IFS P can be expressed as },:)(),(,,{ XP PP    where )(vP  represents the degree of mem-

bership, )(vP  represents the degree of non-membership of the element .X  FPFS-sets is the extension of 

a FS and soft set proposed in [4], [5] .  FPFS-sets maintain a proper degree of membership to both elements and 

parameters. 

The notion of a complex CFS, the extension of the fuszy set, was introduced by Ramot et, al., [2]. A CFS mem-

bership function has all the values in the unit disk. A complex fuzzy set is used for representing two-dimen-

sional phenomena and plays an important role in periodic phenomena. Complex fuzzy set is used in signals 

and systems to identify a reference signal out of large signals detected by a digital receiver. Moreover it is used 

for expressing complex fuzzy solar activity (solar maximum and solar minimum) through the average number 
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of sunspot. 

Smarandache [6], [7] has given the notion of a neutrosophic set (NS). A NS is the extension of a crisp set, FS and 

IFS. In NS, truth membership (TM), falsity membership (FM) and indeterminacy membership (IM) are inde-

pendent. In decision-making problems, the indeterminacy function is very significant. A NS and its extensions 

plays a vital role in many fields such as decision making problems, educational problems, image processing, 

medical diagnosis and conflict resolution. Moreover the field of neutrosophic probability, statistics, measures 

and logic have been developed in [8]. The generalization of fuzzy logic (FL) has been suggested by Smarandache 

in [8] and is termed as neutrosophic logic (NL). A proposition in NL is true ),(t  indeterminate )(i  and false 

)( f  are real values from the ranges .,, FIT  FIT ,,  and also the sum of fit ,,  are not restricted. In neutro-

sophic logic, there is indeterminacy term, which have no other logics, such as intuitionistic logic (IL), FL, bool-

ean logic (BL) etc. Neutrosophic probability (NP) [8] is the extension of imprecise probability and classical prob-

ability. In NP, the chance occurs by an event is %t  true, %i  indeterminate and %f  false where fit ,,  varies 

in the subsets IT ,  and F  respectively. Dynamically these subsets are functions based on parameters, but they 

are subsets on a static basis. In NP ,3sup_ n  while in classical probability .1sup_ n  The extension of 

classical statistics is neutrosophic statistics [8] which is the analysis of events described by NP. There are twenty 

seven new definitions derived from NS, neutrosophic statistics and a neutrosophic probability. Each of these 

are independent. The sets derived from NS are intuitionistic set, paradoxist set, paraconsistent set, nihilist set, 

faillibilist set, trivialist set, and dialetheist set. Intuitionistic probability and statistics, faillibilist probability and 

statistics,tautological probability and statistics, dialetheist probabilityand statistics, paraconsistent probability 

and statistics, nihilist probability and statistics and trivialist probability and statistics are derived from neuto-

sophic probability and statistics. N. A. Nabeeh [9] suggested a technique that would promote a personal selec-

tion process by integrating the neutrosophic analytical hierarchy process to show the ideal solution among 

distinct options with order preference tevhnique similar to an ideal solution (TOPSIS). M. A. Baset [10] intro-

duced a new type of neutrosophy technique called type 2 neutrosophic numbers. By combining type 2 neutro-

sophic number and TOPSIS, they suggested a novel method T2NN-TOPSIS which is very useful in group deci-

sion making. They researched a multi criteria group decision making technique of the analytical network pro-

cess method and Visekriterijusmska Optmzacija I Kommpromisno Resenje method under neutrosophic envi-

ronment that deals high order imprecision and incomplete information [11]. M. A. Baet suggested a new strat-

egy for estimating the smart medical device selecting process in a GDM in a vague decision environment. Neu-

trosophic with TOPSIS strategy is used in decision-making processes to deal with incomplete information, 

vagueness and uncertainty, taking into account the decision requirements in the information gathered by deci-

sion-makers [12]. They suggested the robust ranking method with NS to manage supply chain management 

(GSCM) performance and methods that have been widely employed to promote environmental efficiency and 

gain competitive benefits. The NS theory was used to manage imprecise understanding, linguistic imprecision, 

vague data and incomplete information [13]. Moreover M. A. Baset [14] et, al., used NS for assessment technique 

and decision-making to determine and evaluate the factors affecting supplier selection of supply chain man-

agement. T. Bera [15] et, al., defined a neutrosophic norm on a soft linear space known as neutrosophic soft 

linear space. They also modified the concept of neutrosophic soft (Ns) prime ideal over a ring. They presented 

the notion of Ns completely semi prime ideals, Ns completely prime ideals and Ns prime K-ideals [16]. Moreo-

ver T. Bera [17] introduced the concept of compactness and connectedness on Ns topological space along with 

their several characteristics. R. A. Cruz [18] et, al., discussed P-intersection, P- union, P-AND and P-OR of neu-

trosophic cubic sets and their related properties. N. Shah [19] et, al., studied neutrosophic soft graphs. They 

presented a link between neutorosophic soft sets and graphs. Moreover they also discussed the notion of strong 

neutosophic soft graphs. 

Smarandache [20] discussed the idea of a single valued neutrosophic set (SVNS). A SVNS defined as for any 
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space of points set 'U  with 𝑢 in ,'U  a SVNS W  in ,'U  the truth membership, false memebership and inde-

terminac membership functions denoetd as ,AT  
AF  and 

AI  respectively with ,AT AF , ]1,0[AI  for each u  

in '.U  A SVNS W is expressed as ,,/)(),(),( XFITW WWWX
   when X  is continous. For a dis-

crete case, a SVNS can be expressed as ,/)(),(),(
1

iiFiIiTW
n

i




  .Xi  Later, Maji [21] gave a new 

concept neutrosophic soft set (NSS). For any initial universal set W  and any parameters set E  with EA   

and )(WP  represents all the NS of W . The order set ),( A  is said to be the soft NS over W  where 

).(: WPA   Arockiarani et al., [22] introduced fuzzy neutrosophic soft topological space and presents 

main results of fuzzy neutrosophic soft topological space. Later on the researchers linked the above theories 

with different field of sciences. 

The purpose of this paper is to study the mappings such as contraction mapping, expansive mapping, non-

expansive mapping, commuting mapping, and weakly commuting mapping used to attain the FP, CP and CFP 

of a neutrosophic soft set. We present some basic resultsnd particular examples of fixed points, coincidence 

points, common fixed points in which contraction mapping, expansive mapping, non-expansive mapping, com-

muting mapping, and weakly commuting mapping are used. 

2. Preliminaries 

We will discuss here the basic notions of NS and neutrosophic soft sets. We will also discuss some new 

neutrosophic soft mappings such as contraction mapping, increasing mapping, dominated mapping, dominat-

ing mapping, K-lipschitz mapping, non-expansive mapping, commuting mapping, weakly compatible map-

ping. Moreover we will study periodic point, common fixed point, coinciding point of neutrosophic soft-map-

ping. Here )( 

EUSN


 is the collection of all neutrosophic soft points. 

Definition 2.1 [7] Let U  be any universal set, with generic element .U   A NS 


N  is defined by 

},,)(),(),(,{ UFITN
NNN

  



 where   1,0:,, UFIT  and  

                                                     .3)()()(0    

NNN

FIT  

)(),(  

NN

IT  and )(

N

F  denote TM, IM and FM functions respectively. In   ,11,1,0 
  where   is 

it's non-standard part and 1  is it's standard part. Likely ,00 
    is it's non-standard part and 0 is it's 

standard part. It is difficult to employ these values in real life applications. Hence we take all the values of 

neutrosophic set from subset ].1,0[   

Definition 2.2 [23] Let 𝐸 and 𝑊 be the set of parameters and initial universal set respectively. Let the power set 

of 𝑊  is denoted by 𝑃(𝑊).  Then a pair ),( A  is called soft set (SS) over  𝑊,  where EA  and 

).(: WPA    

Definition 2.3 [21] Let 𝐸 and 𝑊 be the set of parameters and initial universal set respectively. Suppose that the 

set of all neutrosophic soft set (NSS) is denoted as )(WSN


. Then for E , a pair ),(   is called a SSN


 

over W , where )(: WSN


  is a mapping. 

Definition 2.4 [24] Let 𝐸 and 𝑊 be the set of parameters and initial universal set respectively. Suppose that the 

set of all NSS is denoted as )(WSN


. A NSS 


N  over W  is a set which defined by a set valued function 

N



representing a mapping ).(: WSNE
N



   

N

  is known as approximate function of the ).(WSN


 The 
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neutrosophic soft set can be written as: 

                               }:}):)(),(),(,{,{( )()()( EeWFITeN eee
NNN

  


 

where )(),(),(  NNN FIT   represents the  TM, IM and FM functions of )(e
N
  respectively and has val-

ues in ].1,0[  Also  

                                                     .3)(),(),(0 )()()(    eee
NNN

FIT


 

Definition 2.5 [22] Let U   be any universal set. The fuzzy neutrosophic set (fn-s) N   is defined as 

                                                    },)(),(),(,{ XFITN NNN     

where )(),(),(  NNN FIT   represents the TM, IM and FM functions respectively and

].1,0[:,, NFIT  Also .3)()()(0    NNN FIT   

Definition 2.6 [22] Let 𝐸 and 𝑊 be the set of parameters and initial universal set respectively. Suppose that the 

set of all fuzzy neutrosophic soft set (FNS-set) is denoted as )( 

EUSFN


. Then for E , a pair ),(   is said 

to be a FNS-set over W , where )(: WSN


  is a mapping. 

Definition 2.7 [25] Let 
BA   ,  be two fuzzy neutrosophic soft set. An fuzzy neutrosophic soft (FNS) relation 

  from 
A  to 

B  is known as FNS mapping if the two conditions are fulfilled. 

i.   For every ,
1

AA  


 there exists ,

1
BB  


 where 



 
11

,
BA

 are FNS elements. 

ii.   For empty fuzzy FNS element in ,A  the )( A  is also empty FNS element. 

Definition 2.8 [25] Let ),( RWFNSA  
 be a FNS-set and 

AA  :  an FNS-mapping. A fuzzy neu-

trosophic element 


A  is called a fixed point of   if .)(  AA     

Criterion [26], [27] Let )(WSN


 be the set of all neutrosophic points over ).,( EW   Then the neutrosophic soft 

metric on based of neutrosophic points is defined as )()(: EE WSNWSNd


  having the following prop-

erties. 

).1M  0),(  



BAd  for all ).(, EBA WSN


 

   

).2M  .0),( 

BABAd     

).3M  ).,(),( 

ABBA dd     

).4M  ).,(),(),( 

BCCABA ddd     

Then )),(( dUSN E




 is said to be neutrosophic soft metric space. Here 


BA    implies  


BABA

IITT
 

 ,  and .
BA

FF
 

  

3. Mappings on Neutrosophic Soft Set 

Here, we introduced some new neutrosophic soft mappings such as contraction mapping, increasing 

mapping, dominated mapping, dominating mapping, K-lipschitz mapping, non-expansive mapping, commut-

ing mapping, weakly compatible mapping. Also we introduced periodic point, common fixed point, coinciding 

point of neutrosophic soft-mapping. Here  )( 

EUSN


 is the collection of all neutrosophic soft points. 
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Definition 3.1 Let    be a mapping from )( 

EUSN


 to ).( 

EUSN


 Then   is called neutrosophic soft contrac-

tion if ),())(),((   BABA kdd    for all )(, 

  EBA USNF


  and ).1,0[k  Where k  is called 

contraction factor. 

Example 3.1 Let },,{ 311 U  be any initial universal set and },{ 21  BAR . Define a NSS 


A  

and 


B  as below: 

})}7.0,8.0,1.0,,3.0,9.0,1.0,,6.0,7.0,3.0,{,(

}),4.0,2.0,1,,4.0,7.0,6.0,,3.0,1.0,8.0,{,{(

3212

3211



  A

 

and 

})}.7.0,8.0,1.0,,9.0,3.0,2.0,,6.0,3.0,1.0,{,(

}}),4.0,2.0,1,,6.0,8.0,1,,1.0,7.0,9.0,{,{(

3212

3211



  B

 

The distance defined [27] as 

})|)()(||)()(||)()({(|min))(),((
1

212121

21 p

BBBBBBi

p

ii

p

ii

p

iiAA TTIITTd  




  

).1( p  

In this example, we take ,1p  now 

).,(2.0

)8.0)(2.0(

16.0

3.05.08.0

|9.06.0||3.08.0||2.01|

|)()(|

|)()(||)()(|

|})()(|

|)()(||)()({|min))((),((

2

1

1

1

21

2121

21

2121

2

1

1

1

22

2222



























































AA

ii

iiiiAA

d

FF

IITT

FF

IITTd

BB

BBBB

BB

BBBBi

 

 

Here ,2.0k  so   is a contraction. 

Definition 3.2 Let    be a mapping from )( EWSN


 to ).( EWSNF


 Then   is called neutrosophic soft non-

expansive mapping if ),())(),((   BABA kdd    for all )(, EBA WSN


 

  and .1k   

Example 3.2 Let },,{ 321 W  and },{ 21  BAR . Define a neutrosophic soft sets 


A  and 


B  

as follows: 

})}7.0,6.0,4.0,,3.0,9.0,1.0,,6.0,7.0,3.0,{,(

}),6.0,4.0,2.0,,4.0,7.0,6.0,,2.0,1.0,1,{,{(

3212

3211



  A

 

 

and 
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})}.7.0,6.0,4.0,,9.0,3.0,2.0,,6.0,3.0,1.0,{,(

}}),6.0,4.0,2.0,,6.0,5.0,1,,2.0,5.0,1,{,{(

3212

3211



  B

 

 

).,(1

)5.0)(1(

5.0

1.02.02.0

|7.06.0||6.04.0||4.02.0|

|)()(|

|)()(||)()(|

|})()(|

|)()(||)()({|min))((),((

2

1

1

1

21

2121

21

2121

2

1

1

1

33

3333


























































AA

ii

iiii
xAA

d

FF

IITT

FF

IITTd

BA

BABB

BB

BBBBi

 

 

Here ,1k  so   is non-expansive. 

Definition 3.3 Let   be a mapping from )( EWSN


 to ).( EWSN


 Then   is called neutrosophic soft k-Lip-

schitz mapping if ),())(),((   BABA kdd    for all )(, EBA WSNF


 

   and .0k   

Example 3.3 Let },,{ 321 W  and },{ 21  BAR . Define a NSS 


A   and 


B  as below: 

})}7.0,6.0,4.0,,3.0,9.0,1.0,,4.0,6.0,5.0,{,(

}),6.0,4.0,2.0,,4.0,7.0,6.0,,3.0,4.0,3.0,{,{(

3212

3211



  A

 

 

and 

})}.9.0,3.0,1,,9.0,2.0,3.0,,5.0,7.0,5.0,{,(

}}),6.0,4.0,2.0,,3.0,6.0,1,,3.0,4.0,1,{,{(

3212

3211



  B
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).,(2

)5.0)(2(

1

2.03.05.0

|5.03.0||7.04.0||5.01|

|)()(|

|)()(||)()(|

|})()(|

|)()(||)()({|min))((),((

2

1

1

1

21

2121

21

2121

2

1

1

1

11

1111

?


























































AA

ii

iiiiAA

d

FF

IITT

FF

IITTd

BA

BABB

BB

BBBBi

 

 

Here ,2k  so   is k-lipschitz. 

Note: Every neutrosophic soft contraction mapping is neutrosophic soft K-lipschitz mapping but its converse 

does not hold. 

Definition 3.4 Let  be a mapping from )( EWSN


 to ).( EWSN


 Then   is said to be neutrosophic soft kanan 

contraction if ))](,())(,([))(),((   BBAABA ddkd   for all )(, EBA WSN


 

  and 

).,0[
2
1k  Where k  is called contraction factor. 

Definition 3.5 Let   and   be two mappings from )( 

EUSN


 to )( 

EUSN


. Then   and   are called neu-

trosophic soft commuting mapping if ))(())((   AA    for all  ).( 

  EA USN


   

 Definition 3.6 Let   and   be two mappings from )( 

EUSN


 to )( 

EUSN


. Then   and   are called neu-

trosophic soft weakly commuting mapping if ))(),(()))(()),(((   AAAA dd    for all 

).( 

  EA USN


   

Definition 3.7 Let   and   be two mappings from )( 

EUSN


 to )( 

EUSN


. If for 
  

0

)(
AAn

 and 

  
0

)(
AAn

 as n  and ).(,
0

  EAA
USN

n




 Then it is called neutrosophic soft compatible map-

ping if .0)))(()),(((lim  


  AA
n

d   

Definition 3.8 Let  , )()(:   EE USNUSN


  be two mappings. If there is )( 

  EA USN


  such that 

,)()(   AAA    then )( 

  EA USN


  is called common fixed point neutrosophic soft mappings. 

Definition 3.9 If 


A  is a fixed point of ),()(:   EE USNUSN


  then 


A  is also a fixed point 
k that is 

 AA

k

  )(  for all ).( 

  EA USN


  So 


A  is called periodic point of neutrosophic soft mapping   and 

k  is called period of .   

Remark Every fixed point of neutrosophic soft mapping is a periodic point but every periodic point of neutro-

sophic soft mapping is not a fixed point. 

Definition 3.9 Let  ,   be two mappings from )( 

EUSN


 to ).( 

EUSN


 If ,)()(   BAA    for all 
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).(, 

  EBA USNF


  Then 


A  is called coincidence point of   and   and 


B  is called point of coinci-

dence for   and .   

Definition 3.10 Let )()(:   EE USNUSN


  be a mapping. Then   is said to be neutrosophic soft increas-

ing map if for any 


BA    implies )()(   BA    for all ).(, 

  EBA USN


   

Definition 3.11 Let )()(:   EE USNUSN


  be a mapping. Then   is said to be neutrosophic soft domi-

nated map if 
 AA   )(  for all ).( 

  EA USN


   

Definition 3.12 Let )()(:   EE USNUSN


  be a mapping. Then   is said to be neutrosophic soft domi-

nating map if )(   AA     for all ).( 

  EA USN


   

4. Main Results 

Banach Contraction Theorem 

Proposition 1 Let )( 

EUSN


 be a non-empty set of neutrosophic points and )),(( dUSN E




 be a complete neu-

trosophic soft metric space. Suppose   is a mapping from )( 

EUSN


 to )( 

EUSN


 be contraction. Then fixed 

point of   exists and unique. 

Proof Let )(
0

  EA
USN




 be arbitrary. Define )(
01

   
AA

 and by continuing we have a sequence in the 

form ).(
1

  



nn AA

 Now 

).,(

.

.

.

),(

))(),((

),(

))(),((

),(

))(),((),(

01

32

32

21

21

1

11

3

2

2








































































AA

n

AA

AA

AA

AA

AA

AAAA

dk

dk

dk

dk

kd

kd

dd

nn

nn

nn

nn

nn

nnnn

 

Now for ,, 0nnm   we have 
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. as 0),(

),(
1

),(]...1[

),(...),(),(

),(...),(),(),(

1

01

01

010101

12111

12

11










































nd

d
k

k

dkkkk

dkdkdk

dddd

nn

mmnnnnnn

AA

AA

n

AA

nmn

AA

m

AA

n

AA

n

AAAAAAAA











 

So 



nA

 is a cauchy sequence in ),),(( dUSN E




 but )),(( dUSN E




 is complete, so there exists  

)( 

  EA USN


  such that 0),(  





AAn

d  as .n  Now 

).,(

))(),(())(,(
1




























 

AA

AAAA

n

nn

kd

dd
 

On taking limit as ,n  we get 

.0)),((  







 AAd  

But 

.0)),((  







 AAd  

So 

.)(

0)),((





























AA

AAd
 

So  




A  is the FP of .   

Now we have to show that 




A  is unique. Suppose there exists another FP )( 

  EB USN


  such that 

.)( 





   BB  Now 

.0),()1(

),(

))(),((),(









































 

BA

BA

BABA

dk

kd

dd

 

Here 0)1(  k , so 

.0),( ??  



BAd  

But 

.0),(

0),(

























BA

BA

d

d
 

Hence ,


  

BA  so the fixed point is unique. 

Proposition 2 Let )),(( dUSN E




 be a complete neutrosophic soft metric space. Suppose   be a mapping from 

)( 

EUSNF


to )( 

EUSNF


 satisfies the contraction ),())(),((
1111

   
BAB

m

A

m kdd  for all  

),(,
11

  EBA
USN




 where )1,0[k  and m  is any natural number. Then   has a FP. 
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 Proof It follows from banach contraction theorem that 
m  has unique a FP that is  .)(

11

  
AA

m
 Now 

).(

))((

)())((

1

1

11

1























 

A

A

m

A

m

A

m

 

By the uniqueness of FP, we have .)(
11

  
AA

  

Proposition 3 Let )),(( dUSN E




 be a complete neutrosophic soft metric space. Suppose  ,  satisfy 

)](,())(,([))(,())(,())(),((
1111111111

   
ABBABBAABA

ddddd  for all  

)(,
11

  EBA
USNF




 with  ,,  are non-negative and .1   Then   and   have a unique FP. 

 Proof Let )(
1

  EA
USN




 be a fixed point of   that is .)(
11

  
AA

 We need to show that  .)(
11

  
AA

 

Now 

))(,()(,(

)],())(,([))(,(),(

))](,())(,([))(,())(,(

))(),(())(,(

1111

11111111

11111111

1111

































AAAA

AAAAAAAA

AAAAAAAA

AAAA

dd

dddd

dddd

dd

0))(,()1(
11

 

 
AA

d  

Since  ,0)1(     so  

.0))(,(
11

 

 
AA

d  

But 

0))(,(
11

 

 
AA

d  

hence 

.0))(,(
11

 

 
AA

d  

Thus .)(
11

  
AA

  

 Proposition 4 Let )( 

EUSN


 be a non-empty set of neutrosophic points and )),(( dUSN E




 be a complete neu-

trosophic soft metric space. Suppose   is a mapping from )( 

EUSN


 to )( 

EUSN


 be kanan contraction. Then 

fixed point of   exists and unique. 

 Proof Let )(
0

  EA
USN




 be arbitrary. Define )(
01

   
AA

 and by continuing we have a sequence in the 

form ).(
1

  



nn AA

 Now 
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
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d
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for  k
kh



1   

).,(

.

.

.

),(

),(

),(),(

01

32

21

11

3

2





































AA

n

AA

AA

AAAA

dh

dh

dh

hdd

nn

nn
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For  nm    

. as 0),(

),()
1

1
(
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

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0)),((  
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thus 
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


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Hence )( 

  EA USN


  is a FP of .   
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

  be another FP. Now 
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)2(.0),(  






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From )1(  and )2(  we have 

.0),(  









BAd  

Hence .


  

BA   

 Proposition 5 Let )()(:,   EE USNUSN


  be weakly compatible maps. If   and   have unique coin-

cidence point. Then   and   have unique common fixed point (CFP). 

 Proof Suppose there is )(
1

  EA
USN




 such that .)()(
111

   
BAA

 Since   and   are weakly 

compatible, so ))(())((
11

   
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 for all ).(
1
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
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 Now 

)).(())(()()(
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So 



1B
 is also coincidence point (CP) of   and ,  but 




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 is the unique CP of   and , so 
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So )(
1

  EB
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
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 is CFP. 

Proposition 6 Let )),(( dUSN E




 be a complete metric space and )()(:   EE USNUSN


  be a mapping 

satisfies )),(())(),((
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2    
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kdd  for all )(
1

  EA
USN




 and ).1,0[k  Then fixed point of 

  is singleton. 

Proof Let )(
0

  EA
USN




 be arbitrary and defines (
1

n

An

  


()
0

  A
).


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 Now 
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Hence the FP is unique. 

Proposition 7 Let )()(:,   EE USNUSN


  be commuting maps. If   and   have unique coincidence 

point. Then   and   have unique common fixed point. 

Proof Suppose there is )(
1

  EA
USN




 such that )).(())((
11

   
AA

 Since   and   have unique co-

incidence point, so let .)()(
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BAA

 Now 
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Here )(
1

  EB
USN


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 is also a coincidence point, but )(
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USN




 is unique coincidence point, so 
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Hence )(
1

  EB
USN




 is also a fixed point. 

Proposition 8 Every neutrosophic soft identity map is non-expansive. 

Proof Suppose that I  from )( 

EUSN


 to )( 

EUSN


 be a neutrosophic soft identity map such that  



 
11

)(
AA

I  for all ).(
1

  EA
USN




 Now 

),())(),((
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

 
BABA

dIId  

Here ,1k  so I is non-expansive map. 

5. Conclusion 

In this paper, we have discussed some new mappings of NSS and some basic results and particular 

examples. Like fixed point, here also present some new concepts of points that is coincidence point, periodic 

point and CFP. 

FP theory has a lot of applications in control and communicating system. FP theory is an important mathemat-

ical instrument used to demonstrate the existence of a solution in mathematical economics and game theory. So 

the notion of a neutrosophic soft fixed point can be used in these areas. For stabilization of dynamic systems, 
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neutrosophic soft fixed point can be used. In addition, dynamic programming may employ the notion of pres-

ence and uniqueness of the common solution of neutrosophic soft set. 
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