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1. Introduction 

In present scenario the classical theory of mathematics can’t be handling 
uncertainties, vagueness or impreciseness of mathematical problem
world define many approaches to understand or define it. 
mathematical formulation of a fuzzy set (FS)
grade. Sometimes the membership function in FS was not suitable one to describe the ambiguity of a 
problem.  

After development of FS theory 
about the belongingness and non-belongingness 
fuzzy set (IFS) theory, which included the degree of membership and 
function of each element in the set. 
in recent scenario [17, 20]. In real life decision making problems, the theory of FS and IFS is much 
applicable, IFS approach in the solution of transportation problems 
23]. 

The basic theme of a transportation problem is to find a direct connection 
destination in minimum time with minimum cost. Hitchcock [
the basic results of transportation problem by simplex method, which was recognized as special 
mathematical module. Since in early stage th
demand and supply were on the crisp values. In present time the real life transportation 
uncertain, uncontrolled factors as the transportation cost, supply and demand are

In that period many research problems related t
in which some are partial fuzzy and some are fully fuzzy. A FTP in which cost demand and supply
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In the present paper, we introduced the concept of single valued trapezoidal neutrosophic 
which is generalization of single valued neutrosophic number. A generalization of crisp, fuzzy 

and intuitionistic fuzzy sets represents as neutrosophic sets, which have uncertainty, inconsistent, and 
leteness information in real world problem. De-neutrosophication is a process to convert 

neutrosophic number into a crisp number for practical applications. For unbalanced neutrosophic 
transportation problem, we also use here minimum row column method and set a comparison among 
crisp and neutrosophic optimal solutions. Here we use two models of transportation problems to 
understand the applications in neutrosophic environment. 

Number, Single valued trapezoidal neutrosophic number, De-neutro
neutrosophic transportation problem. 

In present scenario the classical theory of mathematics can’t be handling the 
vagueness or impreciseness of mathematical problems. Many researchers around the 

world define many approaches to understand or define it. In 1965, Zadeh [37] first time introduce the 
cal formulation of a fuzzy set (FS) as a set with its membership function or membership 

rship function in FS was not suitable one to describe the ambiguity of a 

theory in various fields of uncertainty, Atanassov [1] 
belongingness in fuzzy set and present it’s extension as intu

included the degree of membership and degree of 
function of each element in the set. More development of IFS theory in decision problems 

real life decision making problems, the theory of FS and IFS is much 
, IFS approach in the solution of transportation problems used by many researchers [15, 22, 

The basic theme of a transportation problem is to find a direct connection between source and 
destination in minimum time with minimum cost. Hitchcock [12] was first, who originally developed 
the basic results of transportation problem by simplex method, which was recognized as special 

e in early stage the transportation parameters like transportation cost, 
were on the crisp values. In present time the real life transportation 

as the transportation cost, supply and demand are in fuzzy values.
In that period many research problems related to fuzzy transportation problem (FTP

in which some are partial fuzzy and some are fully fuzzy. A FTP in which cost demand and supply
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of single valued trapezoidal neutrosophic 
which is generalization of single valued neutrosophic number. A generalization of crisp, fuzzy 

and intuitionistic fuzzy sets represents as neutrosophic sets, which have uncertainty, inconsistent, and 
neutrosophication is a process to convert 

For unbalanced neutrosophic 
a comparison among 

Here we use two models of transportation problems to 

neutrosophication, 

the different kind of 
s. Many researchers around the 

] first time introduce the 
as a set with its membership function or membership 

rship function in FS was not suitable one to describe the ambiguity of a 

Atanassov [1] in 1986, believe 
extension as intuitionistic 

degree of non-membership 
IFS theory in decision problems plays key role 

real life decision making problems, the theory of FS and IFS is much 
used by many researchers [15, 22, 

between source and 
] was first, who originally developed 

the basic results of transportation problem by simplex method, which was recognized as special 
transportation cost, 

were on the crisp values. In present time the real life transportation problems have 
in fuzzy values. 

FTP) were solved, 
in which some are partial fuzzy and some are fully fuzzy. A FTP in which cost demand and supply are 
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as fuzzy number is called fully FTP while in case of either cost, demand or supply are in fuzzy number, 
then it is FTP see [24, 7]. In a fuzzy solid transportation problem the parameters are trapezoidal fuzzy 
number (TrFN), introduced by Jim´enez and Verdegay [16] in 1999. For more research work about FTP, 
see [18, 19, 22, 25]. 

In current scenario, due to uncertainty, unawareness, vagueness, ambiguity in the constraints or 
some poor handling of data, the indeterminacy exists in transportation problems. The IFS theory can 
handle the problems of incomplete information but not the indeterminate and inconsistent information 
exists in transportation modal.  

The problems with inconsistent information or indeterminate cannot be handled by any evocation 
of fuzzy set, so to overpower of such problems, Smarandache [27] introduced the neutrosophic set (NS) 
in 1988, which was an extension of classical set, FS and IFS. The well applicable fundamentals of NS, to 
represent the indeterminacy and inconsistent information are truth-membership degree, indeterminacy 
membership degree, and falsity-membership degree. The NS becomes the IFS, if indeterminacy 
membership degree I(𝑥) of NS is equal to hesitancy degree h(𝑥) of IFS.  For practical applications and 
some technical references in NS, Wang et. al. [31] in 2010 introduced the idea of single valued 
neutrosophic set (SVNS). The notion of SVNS is more suitable and effective in solving many real life 
problems of decision making and supply chain management.  For more applications of FS, IFS and NS 
in some different fields see [1- 10, 14, 21, 29- 32, 34, 36]. 

Since the study of transportation models with optimal and effective cost play a key role in every 
real life situation. Many researchers formulated efficient mathematical models in various uncertain 
environments. For practical application, two models of neutrosophic transportation problem (NTP) 
with all entries such as cost, demand, and supply are as single valued trapezoidal neutrosophic number 
(SVTrNN). Here we also use minimum row column method (MRCM) for balance the unbalance crisp 
transportation problem (CTP) and NTP with some existing method.  

The main features of the paper are obtaining the optimal solutions of CTP and NTP after balancing 
with different methods and to compare the results. The paper is well organized in seven sections. In 
section first, introduction of the present paper with some earlier research are given.  In second section, 
the basics concepts of FS, IFS and NS are discussed and reviewed. In third section, introduce the de-
neutrosophication as score function to convert neutrosophic values into crisp values. Section fourth 
composes the classification and mathematical formulation of CTP & NTP of type-2 & 3. In fifth section, 
we introduce the procedures for solutions of CTP & NTP. In section six, seven and eight, we introduce 
two models of transportation with their solutions in different tables, their comparison, result and 
discussion. The conclusion and future aspects of research work exhibit in last section of the paper.   
 
2. Preliminaries 
 
2.1.  Some basic definitions and examples 
Definition 2.1.1. (FS [37]):  A FS A   of a non empty set X is defined as    

 { , ( ) / }AA x x x X where 

  ( )A x is called the membership function such that   ( ) : [0,1]A x X . 
 
Definition 2.1.2. (FN): A convex, normalized fuzzy set A  is called fuzzy number on the universal set of 
real numbers R, if the membership function  A of A  has the following belongingness:  

(i) 
A
 : Xμ    0,1    is continuous

 
 

(ii)  for all               , ,( ) 0,A x a dx   

(iii)  is strictly increasing on and strictly decreasing on        (   ,     ) ,A a b c dx  
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(iv) 
 

for all where           ,  ,   ( .) 1, aA x b c b c dx   

 
Definition 2.1.3. (TrFN[19]): A trapezoidal fuzzy number (TrFN) denoted as  ( , , , )A a b c d , with its 

membership function   ( )A x , on R, is given by  

 

   

   Ã 

 

x - a b - a

μ x =
d - x d - c

,     for a x < b
1,                         for b x < c

,     for c < x d
0,                           otherwise

 








 

                       
If b = c in TrFN  ( , , , )A a b c d , then it becomes TFN  ( , , )A a b d . 
 
Definition 2.1.4. An IFS in a non-empty set X is denoted by  IA and defined as

    
 , , : ,I I

I
A A

A x x X where    , : [0,1]I IA A
X , such that      0 , 1, .I IA A

x X  The degree of 

membership   IA
 and degree of non-membership  IA

are functions from X  to [0,1] in  IA . The degree of 

hesitation is defined as        ( ) 1 1,I IA A
h x x X  in  IA . 

 
Definition 2.1.5. (ITrFN [20]): An Intutinistic trapezoidal fuzzy number (ITrFN) is denoted by 

 
1 2 3 1 2 3 4

I
4a ,a ,a ,a )A = ( a ,a ,a ,a( )  where      1 1 2 3 4 4a a a a a a with membership function  IA

 and non-

membership function   IA
 defined by 

0 for

for

1 for

for

0 for

I

1

1
1 2

2 1

2 3A

4
3 4

4 3

4

,                 x < a ,

x - a
,         a x a ,

a - a

μ (x) ,                 a x a ,

a - x
,        a x a ,

a - a

,                 x > a .

=








 

 

 






      

1, for

for

0, for

for

1 for

I

1

1
1 2

2 1

2 3A

4
3 4

4 3

4

                x < a ,

x - a
,         a x a ,

a - a

(x)                  a x a ,

a - x
,        a x a ,

a - a

,                x >

ν

a .

=




  


 


 
















                    

If 2 3a a then ITrFN becomes ITFN denoted as A   
1 2 3 1 2 3( , , )( , , )I a a a a a a  where     1 1 2 3 3a a a a a .  

 
Definition 2.1.6. ([4]):  Let x be a generic element of a non empty set X.  A neutrosophic number  NA  in 
X is defined as      

 { , ( ), ( ), ( ) / },N N N
N

A A A
A x T x I x F x x X     ( ),NA

T x   ( )NA
I x  and   ( ) ] 0,1 [NA

F x where
  : ]0 ,1 [NA

T X ,   : ]0 ,1 [NA
I X  and   : ]0 ,1 [NA

F X   are functions of truth-membership,  

indeterminacy membership  and falsity-membership in  NA respectively also there is no restrictions on 
the sum of  ( ),NA

T x   ( )NA
I x  and   ( )NA

F x  so that       0 3N N NA A A
T (x) I (x) F (x) .  
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For the practical applications it is difficult to apply directly NS theory, hence the notion of SVNS  as 

well as single valued neutrosophic numbers [SVNN] introduced by Deli I., S¸uba Y[8] in 2014 .  
 
Definition 2.1.7. (SVNS [8]):  Let x be the generic point of a non-empty space X. A SVNS is denoted and 
defined as      

 { , ( ), ( ), ( ) / }N N N
N

A A A
A x T x I x F x x X , where for each point x in X, ( ),NA

T x  called truth 

membership ( )NA
I x  called indeterminacy membership and ( )NA

F x  called falsity membership function 

in [0, 1] and      0 ( ) ( ) ( ) 3N N NA A A
T x I x F x .  

For continuous SVNS  NA  can be written as 
    



 ( ), ( ) ( ,       ) / ,N N N

N

N
A A A

A

A T x I x xF Xx x      

When X is discrete, a SVNS  NA can be written as 



    


1
 ,    ( ), ( ) ( ) /  ,   N N N

n
N

i i i iA A A i
i

xA T x I x F x Xx             

 
Example 2.1.1. Let X be a space with capability 1x , trustworthiness 2x  and price 3x  in [0,1]. If expert 
wants “degree of good services”, “degree of indeterminacy” and degree of poor services”, then a SVNS 
 NA  of X  is defined as 

          
1 2 30.7 ,0.1,0.3 / 0.4,0.2, 0.7 / 0.5,0.1,0.6 / .NA x x x  

 
Definition 2.1.8.  An    ( , , ) cut  set of SVNS  NA , a crisp subset of R is defined by 

           


, , { : ( ) , ( ) , ( ) }N
A A AA x T x I x F x      

where        0 1,0 1,0 1  and      0 3.  
 
Definition 2.1.9. A SVNS      

 { , ( ), ( ), ( ) : }N N N
N

A A A
A x T x I x F x x X is called neut-normal, if there exist at 

least three points 1 2 3, ,x x x X  such that     1 2 3( ) 1, ( ) 1, ( ) 1.N N NA A A
T x I x F x  

 
Definition 2.1.10. A SVNS      

 { , ( ), ( ), ( ) : }N N N
N

A A A
A x T x I x F x x X  is called neut-convex set on the real 

line;  if the following conditions are satisfied 1 2 3  , ,x x x R  and   [0,1]  

(i)        1 2 1 2( (1 ) ) min( ( ), ( ))N N NA A A
T x x T x T x  

(ii)       1 2 1 2( (1 ) ) max( ( ), ( ))N N NA A A
I x x I x I x  

(iii)      1 2 1 2( (1 ) ) max( ( ), ( ))N N NA A A
F x x F x F x  

 
Definition 2.1.11. (SVTrNN [8]):  A single valued trapezoidal neutrosophic number (SVTrNN) 

    1 2 3 4( , , , ); , , a
N

a aa a a a a w u v is a special NS on the real line R, whose truth-membership ( )T x
Na

, 

indeterminacy-membership ( )I x
Na

, and a falsity-membership ( )F x
Na

are given as follows: 
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( )
for

for
( )

( )
for

0 for

1

1 2
2 1

2 3

4

3 4
4 3

4 1

( x - a w
,        a x a ,

a - a

w ,                   a x a ,
T x

a - x w
,        a x a ,

a - a

,                       x > a   

=

and x < a











 

 

 










N

N

N

N

a

a
a

a

 

( )
for

for
( )

( )
for

1 for

2 1 a
1 2

2 1

2 3a

3 4 a
3 4

4 3

4 1

a - x+ x - a u
,       a x a ,

a - a

u ,                               a x a ,
I x

x - a + a - x u
,       a x a ,

a - a

,                                x > a   and x

=

< a

 

 























N

N

N

N
a

 

( )
for

for
( )

( )
for

1 for and

N

N

N

N
a











 

 

 








2 1 a
1 2

2 1

2 3a

3 4 a
3 4

4 3

4 1

a - x+ x - a v
,       a x a ,

a - a

v ,                               a x a ,
F x

x - a + a - x v
,         a x a ,

a - a

,                                   x > a     x < a

=  

 
where   ,  ,a auw and av  denotes the maximum truth-membership degree, minimum-indeterminacy 
membership degree and minimum falsity-membership degree in [0,1] respectively  and 1 2 3 4, , ,a a a a R

such that   1 2 3 4 .a a a a  When      1 1 2 3 40, ( , , , ); , , aa aa a a a a a w u v is called positive SVTrNN, denoted 
by  0a , and if 4 0,a then     1 2 3 4( , , , ); , , aa aa a a a a w u v  becomes a negative SVTrNN, denoted by  0.a   

If     1 2 3 40 1a a a a ,  , , [0,1]a a aw u v , then a  called a normalized SVTrNN. When

= 1-I T F
  

,N N Na a a
 then SVTrNN reduces as TIFN. If 2 3 ,a a then SVTrNN is reduces single valued 

triangular neutrosophic number (SVTNN), denoted as     1 3 4( , , ); , , .a a aa a a a w u v  
 
Definition 2.1.12.  A single valued trapezoidal neutrosophic number (SVTrNN) with twelve 
components is defined and denoted as: 

     


1 2 3 4 1 2 3 4 1 2 3 4( , , , ); ( , , , ); ( , , , ); , ,N N N
N

A A A
A p p p p q q q q r r r r w u v  

where           1 1 1 2 2 2 3 3 3 4 4 4r q p r q p r q p r q p in which the quantity of the truth membership, 
indeterminacy membership and falsity membership are not dependent and is defined as follows: 
 

for

for
( )

for

0 for and

1

1 2
2 1

2 3

4

3 4
4 3

4 1

(x - p )w
,       p x p ,

p - p

w ,                 p x p ,
T x

(p - x)w
,       p x p ,

p - p

,                       x >

=

p     x < p

 

 











 








N

N

N

N

A

A
A

A

  



568                                                                                        Neutrosophic Sets and Systems, Vol. 35, 2020 

Rajesh Kumar Saini* 1 Atul Sangal 2 and Manisha3, Application of Single Valued Trapezoidal Neutrosophic Numbers 
in Transportation Problem 
 

2 1

1 2
2 1

3 4

- ( -
,     for   

-

,                            for   

,     for   
-

1,                        

=

         for   >   and <

x u
x

u x

u
x

x x












 

 

  
 








2 3

3 4

4 3

4 1

)
,

,
( )

( )
,

N

N

N

N

A

A
A

A

q x q
q q

q q
q q

I x
x q q x

q q
q q

q q

 

2 1

1 2
2 1

3 4

- ( -
,     for   

-

,                            for   

,     for   
-

1,                                 for   >   and 

=

<

x
x

x

x

x x
















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where        
0 ( ) ( ) ( ) 3,  .N N N

N
A A A

T x I x F Ax x    

 
Definition 2.1.13. The parametric form  NA of SVTrNN for some        0 1,0 1,0 1  and 

     0 3  is defined as                     


, ,( ) [ ( ), ( ), ( ), ( ), ( ), ( )]N N N N N N
N

A A A A A A
A T T I I F F ,  

where      
   
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
4 4 3( ) ( )N

N
A

A

T p p p
w

 




  
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
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
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Example 2.1.2. let us take (7 ,12,16,22),(6,11,15, 20),(5,10,14,19); 0.4,0.6,0.6   NA . The parametric 
representation is    0.4 ( ) 7 12.5  T   ,  0.4 ( ) 22 15  T   ,   

0.6 ( ) 18.5 12.5  I   ,  0.6 ( ) 7.5 12.5  I   ,  

0.6 ( ) 17.5 12.5  F   , 0.6 ( ) 6.5 12.5  F    
For different values of , ,    the degree of truthfulness, degree of indeterminacy and degree of 

falsity shown in table 1 and their graphical representation in figure 2:   
Table 1 

α,β,γ  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
 ( )NA

T  7.00 8.25 9.50 10.75 12.00 13.25 14.50 15.75 17.00 18.25 19.50 

 ( )NA
T  22.00 20.50 19.5 17.50 16.00 14.50 13.00 11.50 10.00 8.50 7.00 

 ( )NA
I  18.5 17.25 16.00 14.75 13.50 12.25 11.00 9.75 8.50 7.25 6 

 ( )NA
I  7.50 8.75 10.00 11.25 12.50 13.75 15.00 16.25 17.50 18.75 20.00 

 ( )NA
F  17.5 16.25 15.00 13.75 12.50 11.25 10.00 8.75 7.50 6.25 5.00 

 ( )NA
F  6.50 7.75 9.00 10.25 11.50 12.75 14.00 15.25 16.50 17.75 19.50 
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Figure 2: Graphical representation of 
    


1 2 3 4 1 2 3 4 1 2 3 4( , , , ); ( , , , ); ( , , , ); , ,N N N

N
A A A

A p p p p q q q q r r r r w u v  

where 1 1 1 2 2 2 3 3 3 4 4 4          r q p r q p r q p r q p  
 
2.2. Operational Laws on SVTrNN 
 
Definition 2.2. 1. If  NA and  NB are two SVTrNN with twelve components having truth-membership 
 ( )NA

T x ,  ( )NB
T x , indeterminacy-membership   ( ), ( )N NA B

I x I x  and falsity-membership   ( ), ( )N NA B
F x F x

 
respectively and three real numbers in [0.1], such as  

                  


1 2 3 4 1 2 3 4 1 2 3 4( , , , ); ( , , , ); ( , , , ); , ,N N N
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A A A
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                  


1 2 3 4 1 2 3 4 1 2 3 4( , , , ); ( , , , ); ( , , , ); , ,N N N
N

B B B
B p p p p q q q q r r r r w u v  

Addition of SVTrNN: 
                          
                         

  
1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4
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( , , , ); , ,N N N N N N

N N N

A B A B A B

C A B p p p p p p p p q q q q q q q q
r r r r r r r r w w u u v v

 

Negative of SVTrNN: If     


1 2 3 4 1 2 3 4 1 2 3 4( , , , ); ( , , , ); ( , , , ); , ,N N N
N

A A A
A p p p p q q q q r r r r w u v , then  
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
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N
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Subtraction of SVTrNN: 

  
                         
                         

 
1 4 2 3 3 2 4 1 1 4 2 3 3 2 4 1

1 4 2 3 3 2 4 1

( , , , )( , , , );
( , , , ); , ,N N N N N N

N N

A B A B A B

A B p p p p p p p p q q q q q q q q
r r r r r r r r w w u u v v

 

Multiplication of SVTrNN:       
                       
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Scalar multiplication of SVTrNN: 
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Inverse of SVTrNN:       
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Division of SVTrNN:       
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Example 2.2.1.  let   (7 ,11,16,21),(6,10,15, 20),(5,9,14,19); 0.4,0.6,0.6NA    and 

(6,11,13, 20),(5,10,12,18),(3,8,11,16); 0.3,0.6,0.7NB    be two SVTrNN, then 
(13,22,29, 41),(11,20, 27, 38),(8,17 ,25,35); 0.4,0.6,0.6N NA B      
( 13, 2,5,15),( 12, 2,5,15),( 11, 2,6,16); 0.4,0.6,0.6N NA B            

 
. (42,121,208,420),(30,100,180,360),(15,72,154, 304); 0.4,0.6,0.6N NA B      
/ (0.35,0.85,1.45,3.50),(0.33,0.83,1.50, 4.00,(0.31,0.81,1.75,6.33); 0.4,0.6,0.6N NA B      

5 (35,55,80,105),(30,50,75,100),(25,45,70,95); 0.4,0.6,0.6NA     
 

3. De-Neutrosophication by using score function 
 

We use the score and accuracy functions of a SVTrNN, is defined by an expert [31] to compare any 
two SVTrNN.  So that the score function is defined as 

             
     
 

  
 1 2 3 4 1 2 3 4 1 2 3 4( ) 2

12 N N N
N

A A A

p p p p q q q q r r r r
S A w u v  

and accuracy function is 

         
     
 

  
 1 2 3 4 1 2 3 4( ) 2

4 N N N
N

A A A

p p p p q q q q
A w u vA  

 
Example 3.1. Let (7 ,11,16,21),(6,10,15,20),(5,10,14,19); 0.4,0.6,0.6NA     then ( ) 4.4NS A    and 

( ) 0.7NA  A  
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Definition 3.1. (Comparison of SVTrNN). Let  NA  and  NB  be any two SVTrNN, then one has the 
following: 

(a)    ( ) ( )    N N N NS A S B A B   

(b) If  ( ) ( )N N
S SS A S B  and if   

(i)  ( ) ( )N NA BA A  then  N NA B  
(ii)  ( ) ( )N NA BA A  then  N NA B  
(iii)  ( ) ( )N NA BA A  then  N NA B  

 
Example  3.2.  Let (6,10,16,20),(5,9,14,19),(3,8,12,18); 0.3,0.6,0.7NA   

  and 
(7 ,11,16,21),(6,15,14, 20),(5,10,14,19); 0.3,0.6,0.7NB           
(8,11,16,22),(6,15,14, 21),(5,10,14,20); 0.3,0.6,0.7NC     be two SVTrNN, then 

( ) 3.00NS A   , ( ) 1.25NA A ,  ( ) 0.4NS B , ( ) 0.0NB A , and ( ) 0.4NS C   , ( ) 0.25NC A ,  
which implies that if   ( ) ( )N NS A S B   then  N NA B  

Also   ( ) ( )N NS B S C  and ( ) ( )N NB C A A  then N NB C  . 
 
4.  Neutrosophic Transportation Problem (NTP) and its Mathematical formulation 
 
4.1. Classification of NTP 
 
Definition 4.1.1.  In a TP, if atleast one parameter such as cost, demand or supply is in form of 
neutrosophic numbers, the TP is termed as NTP. 
 
Definition 4.1.2. A NTP having neutrosophic availabilities and neutrosophic demand but crisp cost, is 
classified as NTP of type-1.  
 
Definition 4.1.3. The NTP having crisp availabilities and crisp demand but neutrosophic cost, is 
classified as NTP of type-2.  
 
Definition 4.1.4.  If all the specifications of TP such as cost, demand and availabilities are combination 
of crisp, triangular or trapezoidal neutrosophic numbers, then NTP classified as NTP of type-3.  
 
Definition 4.1.5.  If all the specifications of TP must be in neutrosophic numbers form, then TP is said to 
be NTP of type-4 or fully NTP. 
 
4.2. Mathematical Formulation of NTP  
 

The TP is very important for transporting goods from one source to another destination. In TP if 
ambiguity occurs in cost, demand or supply then it is more difficult to solve it. To handle this type of 
impreciseness in cost to transferred product from ith sources to jth destination or uncertainty in supply 
and demand the decision maker introduce NTP of SVTrNN.   

Here we consider two models in which the decision maker is unsettled about the specific values i.e. 
cost from ith sources to jth destination and also certainty or uncertainty in supply or demand of the 
product, so that a new type of TP is introduced namely NTP with parameters like cost, demand and 
supply as SVTrNN.  The NTP with assumptions and constraints is defined as the number of unites N

ijx  
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and the neutrosophic cost N
ijc  are transported from ith sources to jth destination. For balance NTP 

 

 
0 0

m n
N N
i j

i j
a b  i.e. total supply is equal to total demand. 

For the formulation of NTP the following assumptions and constraints are required: 
m  Total number of source point 
n  Total number of destination point 
i  Table of source (for all m)  
j  Table of destination (for all n) 

N
ijx  Number of transported neutrosophic unites from ith source to jth destination 

N
ijc  Neutrosophic cost of one unit transported from ith source to jth destination 
N
ia  Available neutrosophic supply quantity from ith source   
N
jb         Required neutrosophic demand quantity to  jth destination  

ijc  Crisp cost of one unit quantity 

ijx  Number of transported crisp unites from ith source to jth destination 

ia  Available crisp supply quantity from ith source   

jb         Required crisp demand quantity to  jth destination  

Modal I 
In NTP the objective is to minimize the cost of transported product from source to destination. The 

mathematical formulation of NTP with uncertain transported units and transportation cost, demand 
and supply is: 

 (P1)  
 

 

0 0

0

0

Minimum   

Subject to      sources  1,  2,  3,  . . . , , 

                   ,   destination   1,  2,  3,  . . . , ,      

                 

,

 0 ,

m n
N N N

ij ij
i j

n
N N
ij i

j

m
N N
ij j

i
N
ij

i m

j

x c

x a

x b

x

 





 





 









  

 





Z

n

     1,  2,  3,  . . . , ,  1,  2,  3,  . . . , .i m j   n
 

Modal II 
The mathematical formulation of NTP with uncertain transported units and transportation cost but 

curtained about demand and supply is termed a NTP of type-2 is: 

(P2)        
 

 

0 0

0

0

Minimum   

Subject to      sources  1,  2,  3,  . . . , , 

                       destination   1,  2,  3,  . . . , ,      

                         

,

,

0, 1

m n
N N

ij ij
i j

n

ij i
j

m

ij j
i

ij

i m

j

x c

x

x

x i

a

b

 











 

 

 







 Z

n

,  2,  3,  . . . , ,  1,  2,  3,  . . . , .m j  n
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5.    Procedure for Proposed Algorithms for solution of CTP and NTP  
 
5.1. Basic Assumptions of the Proposed Algorithms  

The total transportation cost does not depends on the mode of transportation and distance, also the 
framework of the problem will be denoted by either crisp or SVTrNN.  

If or
 

    
0 0

  ,  ,
m n

N N
i j

i j
b ia j , then first one can make sure to balance the TP as 

 

   
0 0

   ,,
m n

N N
i j

i j
b ia j ,   

 
5.2.   Steps for solution of CTP after balancing by existing method 
 
Step5.2.1. To change the each neutrosophic cost  ,Niijjc  neutrosophic supply N

ia and neutrosophic 

demand N
jb  of NTP in cost matrix to crisp values, we use here score function method i.e. 

we convert these by using ( )NS A . 
Step5.2.2.  For balance TP, verify that the sum of demands is equal to the sum of supply i.e. 

0 0
 ,,  

m n

i j
i j

i ja b
 

    .  If or
0 0

   ,,
m n

i j
i j

ja b i
 

      , then first one can make sure to balance the TP 

by adding a row or column with zero entries in cost matrix [30].   
Step5.2.3.  After conversion of NTP into TP, choose the minimum entry in each row and subtract it to 

all other entries in that row. The same way is applicable in each column to find minimum 
one zero in each row and each column in TP matrix. For better (see table 4 and table 6). 

Step5.2.4.  Verify that the sum of demands is greater than the supply in each row and the sum of 
supplies are greater than the demand in each column, if ok go on step 5.2.6, otherwise go 
on step 5.2.5. 

Step5.2.5.  Draw the horizontal and vertical lines that cover all the zeros and equal to minimum 
number of order of matrix or reduced table. Now if number of lines is less than to the 
minimum number, revise table by choose the least element which is not under horizontal 
or vertical line and add it to the entry at the cross point of the lines. Again go to step 5.2.3 to 
check the condition. 

Step5.2.6.  To allot the maximum possible units of supply or demand in the cost cell, choose a cell of 
maximum cost in the reduced cost matrix. If the maximum cost exists more than one place, 
choose any one cell of maximum supply or demand.  

Step5.2.7.  If none cell occur for the maximum cost then go for next maximum. If such cell does not 
occur for any value, then choose any cell at random, whose reduced cost is zero. 

Step5.2.8.  From the reduced table omit the row which are fully exhausted or column which are fully 
satisfied, then repeats steps and again. Repeat the procedure until all the demand units and 
all the supply units are fully received respectively. 

 
The procedure for the solution of NTP by using existing method is same as steps in 5.2, while the 

cost, demand, supply and solution vales are in SVTrNN. 
 
5.3. Steps for solution of CTP after balancing by MRCM  

 
For balance the unbalance CTP, we use MRCM which is generalization of method in [27]. We use 

the following steps for solution of CTP by MRCM: 
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Step5.3.1. Convert neutrosophic cost  ,Niijjc  neutrosophic supply N
ia and neutrosophic demand N

jb  of 

NTP in cost matrix to crisp values by using score function ( )NS A i.e NTP convert into CTP. 
Step5.3.2 If CTP is unbalance then to make it balance one by applying the steps of MRCM that is if 

sum of supply is less then to the sum of demand, then add a row of minimum costs in each 
row with a supply equal to sum of supplies and add a column of minimum costs in each 
column with demand equal to the difference value from sum of all supplies differ to sum of 
demand. The same is applicable when sum of demand is less than the sum of supply. i.e. 

     and excess supply,1 1
0 0

          
m n

m i n j
i j

a a b a 
 

     
  

or        and excess demand. 
1

1 1
0

         
n

n j m

m

j i
ib b a b

 
     

 
The unit transportation costs are taken as follows: 

( 1) ( 1)1 1
   min  ,  1 ,            min ,  1 ,i n ij m j ijj n i m
c c i m c c j n    

          

and ( 1)( 1),  1 ,  1 ,      0.ij ji m nc c i m j n c           

Step5.3.3 Obtain optimal solution of converted CTP after balance it by existing method using excel 
solver. Let the crisp optimal solution be ,  1 1,  1 1.ijx i m j n       

Step5.3.4  By assuming '
1  0m   and using the relation  ' ' '  i j ij       for basic variables, find the 

values of all the dual variables ' ,  1i i m     and  ' ,   1 1, j j n      

Step5.3.5. According to MRCM, '
i i     and '

j j     for  1 ,1i m j n    , obtain only central rank 

zero duals. After that in terms of original supply iS and demand jM find the neutrosophic 

optimal solution of the problem. 
 
5.4.   Steps for solution of NTP after balancing by MRCM  
 
Step5.4.1. Convert neutrosophic cost  ,Niijjc  neutrosophic supply N

ia and neutrosophic demand N
jb  of 

NTP in cost matrix to crisp values by using score function ( )NS A  to check either it is balance 
or unbalance. 

Step5.4.2 If NTP is unbalance than same procedure as in 5.3 is applicable. i.e. 

     and excess supply, 
 

     1 1
0 0

          
m n

N N N N
m i n j

i j
a a b a

  

or        and excess demand.  
 

    1 1
0 1

         
n

N N N N
n j

i
m i

m

j
b b a b

 
The unit transportation costs are taken as follows: 

( 1) ( 1)1 1
    min  ,  1 ,              min  ,  1 ,N N N N

i n ij m j ijj n i m
c c i m c c j n    

          

and ( 1)( 1) ,  1 ,  1 ,       0.N N N
ij ji m nc c i m j n c           

Step5.4.3 Obtain optimal solution of NTP by excel solver. Let the neutrosophic optimal solution 
obtained be       ,  1 1,  1 1.N

ijx i m j n  

Step5.4.4  By assuming '
1  0N

m   and using the relation  ' ' '  N N N
i j ij       for basic variables, find the 

values of all the dual variables ' ,  1N
i i m     and  ' ,   1 1, N

j j n      
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Step5.4.5. According to MRCM, 'N N
i i     and 'N N

j j     for  1 ,1i m j n    , obtain only central rank 

zero duals.  
 
6. Numerical Example  
 
6.1. Modal I (NTP of type-3) 

 
Let us consider a NTP with three sources say 1S , 2S , 3S  in which wheat are initially stored and 

ready to transport in three flour mills namely 1M , 2M , 3M with unit transportation cost, demand and 
supply are as SVTrNN. The input data of SVTrNN -TP given in table 2 as follows: 

                   
Table 2  

 1M  2M  3M  Supply 

1S  0.2(3,5,7.5,11)
(2,4,7 ,10) ;0.4
(1,3.5,6,9) 0.8

 
 
 
 
 

 
0.3(2,4.5,10,15)

(0.5,3.5,8,14) ;0.5
(0,2.5,6,12) 0.8

 
 
 
 
 

 
0.2(1,5,9,14.5)

( 3,3.5,8,12) ;0.5
( 4,2,7,11) 0.7

 
 
 
 
 




 
0.4(9,17,26,36)

(6,14,23,33) ;0.7
(3,11,20,30) 0.7

 
 
 
 
 

 

2S  0.4(1,7,11.5,16)
( 1,5,10,14) ;0.5
( 3,3,8.5,12) 0.7

 
 
 
 
 




 
0.5(1,6,9.5,12)

( 1,4,8.5,11) ;0.7
( 2,2,8,10) 0.8

 
 
 
 
 




 
0.3( 1,4,8,15)

( 2,3,6,12) ;0.6
( 3,2,5,11) 0.6

 
 
 
 
 





 
0.3(7,17,25,31)

(3,12,22.5,29) ;0.6
(1,10,19.5,27) 0.7

 
 
 
 
 

 

3S  0.2(3,6,9,12)
(2,5,8,11) ;0.4
(1,4,7 ,10) 0.8

 
 
 
 
 

 
0.2( 1,3.5,9,12)

( 2,2.5,7 ,11) ;0.4
( 4,1,5,10) 0.8

 
 
 
 
 





 
0.2(0,5,8,14)

( 2,3,7 ,12) ;0.6
( 4,1,6,10) 0.6

 
 
 
 
 




 
0.3(9,16,22,31)

(5,14,20,27) ;0.6
(1,12,18,23) 0.7

 
 
 
 
 

 

Demand 0.3(12,21,30,37)
(9,19,28,34) ;0.6
(6,16,25,33) 0.7

 
 
 
 
 

 
0.4(10,16,22,27)

(5,14,20,25) ;0.7
(0,12,18,23) 0.7

 
 
 
 
 

 
0.2(7,12,19,27)

(4,11,18,24) ;0.6
(1,9,15,21) 0.6

 
 
 
 
 

 
 

 
6.2.  Neutrosophic optimal solution with score function method 

 
One can use score function to convert SVTrNN cost, demand and supply to obtain the crisp 

numbers in TP of table 2 as follows: 

 1 2 3 4 1 2 3 4 1 2 3 4( ) 2
12 N N N

N
A A A

p p p p q q q q r r r r
S A w u v

            
     
 

  
  

Here         11

(3,5,7.5,11) 0.2
3 5 7.5 11 2 4 7 10 1 3.5 6 9(2,4,7,10) ;0.4 0.2 0.6 0.2 1.33

12
0.8(1,3.5,6,9)

NS c
 
 
 
 
  
 

            
       

 
  

 12 1.25NS c   ,  13 = -0.58NS c ,  21 1.08NS c   ,  22 1.00NS c   ,  23 0.67NS c   ,  31 1.50NS c   ,

 32 0.50NS c   ,  33 0.50NS c   ,  1 4.33NS a   ,  2 3.67NS a   ,  3 3.50NS a   ,  1 5.83NS b   , 

 2 3.50NS b   ,   3 3.17NS b   . 

 
After converting cost, demand and supply of NTP from SVTrNN to the crisp numbers by using 

score function method, the unbalance CTP cost matrix is given in table 3: 
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Table 3 
 1M  2M  3M  Supply 

1S  -1.33 -1.25 -0.58 -4.33 

2S  -1.08 -1.00 -0.67 -3.67 

3S  -1.50 -0.50 -0.50 -3.50 

Demand -5.83 -3.50 -3.17  
           

By using the steps in 5.2, the optimal crisp solution of CTP and their allotment of demand and 
supply in cost matrix shown in table 4: 

Table 4 
 1M  2M  3M  Supply 

1S  -1.33(-2.16) -1.25(-2.17) -0.58 -4.33 

2S  -1.08(-3.67) -1.00 -0.67 -3.67 

3S  -1.50 -0.50(-0.33) -0.50(-3.17) -3.50 

4S  0 0(-1.00) 0 -1.00 

Demand -5.83 -3.50 -3.17   
 

The complete solution of CTP is 11x = -2.16, 12x = -2.17, 21x = -3.67, 32x = -0.33, 33x = -3.17, 42x = -1.00,

and = 11.30Z . The corresponding optimal solution of NTP with allotment of SVTrNN is shown in table 
5 as follows: 

Table 5 
 1M  2M  3M  Supply 

1S  0.3(-19,-4,13,30)
(-20,-3.5,16,31) ;0.6
(-21,-3.5,15,32) 0.7

 
 
 
 
 

 
0.3(-21,4,30,55)

(-25,-2,26.5,53) ;0.6
(-29,-4,23.5,51) 0.7

 
 
 
 
 

 
 
- 

 
- 

2S  0.3(7,17,25,31)
(3,12,22.5,29) ;0.6
(1,10,19.5,27) 0.7

 
 
 
 
 

 
 
- 

 
- 

 
- 

3S   
- 

0.2(-18,-3,10,24)
(-19,-4,9,23) ;0.6
(-20,-3,9,22) 0.6

 
 
 
 
 

 
0.2(7,12,19,27)

(4,11,18,24) ;0.6
(1,9,15,21) 0.6

 
 
 
 
 

 
 
- 

4S   
- 

0.3(-69,-24,21,66)
(-71,-21.5,26,69) ;0.6
(-73,-20.5,25,72) 0.7

 
 
 
 
 

 
 
- 

 
- 

Demand - - - - 
 

  i.e.           

0.3(-19,-4,13,30) (-21,4,30,55)

(-20,-3.5,16,31) ;0.6 (-25

(-21,-3.5,15,32) 0.7

0.2 0.3(3,5,7.5,11) (2,4.5,10,15)
(2,4,7,10) ;0.4 (0.5,3.5,8,14) ;0.5
(1,3.5,6,9) (0,2.5,6,12)0.8 0.8

NZ
     
     

     
     
     


0.3

,-2,26.5,53) ;0.6

(-29,-4,23.5,51) 0.7

0.3(7,17,25,31)

(3,12,22.5,29) ;0.6

(1,10,19.5,27) 0.7

0.4(1,7,11.5,16) ( 1,3.5,9,12)
( 1,5,10,14) ;0.5 ( 2,2.5,7,11)
( 3,3,8.5,12) ( 4,1,0.7

 
 
 
 
 

   
   

    
   
   


 
 

0.2(-18,-3,10,24)

(-19,-4,9,23) ;0.6

(-20,-3,9,22) 0.6

0.2(7,12,19,27)

(4,11,18,24) ;0.6

(1,9,15,21) 0.6

0.2
;0.4

5,10) 0.8

0.2(0,5,8,14) (0,0,
( 2,3,7,12) ;0.6
( 4,1,6,10) 0.6

   
   

   
   
   

   
   

    
   
   




0.3(-69,-24,21,66)

(-71,-21.5,26,69) ;0.6

(-73,-20.5,25,72) 0.7

0.20,0)
(0,0,0,0) ;0.6
(0,0,0,0) 0.6

   
   
   
   
   
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0.4(-74,187.5,927,2317)

(-25.5,62,738,1999) ;0.4 -194.54
(52,13.75,531.75,1654) 0.6

= =NZ
 
 
 
 
 


  

 
Now for application of MRCM, we use steps in 5.3 to balance the unbalance CTP of table 2 as 

follows in table 6: 
Table 6 

 1M  2M  3M  4M  Supply 

1S  0.2(3,5,7.5,11)
(2,4,7,10) ;0.4
(1,3.5,6,9) 0.8

 
 
 
 
 

 
0.3(2,4.5,10,15)

(0.5,3.5,8,14) ;0.5
(0,2.5,6,12) 0.8

 
 
 
 
 

 
0.2(1,5,9,14.5)

( 3,3.5,8,12) ;0.5
( 4,2,7 ,11) 0.7

 
 
 
 
 




 
0.2(1,5,9,14.5)

( 3,3.5,8,12) ;0.5
( 4,2,7 ,11) 0.7

 
 
 
 
 




 0.4(9,17,26,36)
(6,14,23,33) ;0.7
(3,11,20,30) 0.7

 
 
 
 
 

 

2S  0.4(1,7,11.5,16)
( 1,5,10,14) ;0.5
( 3,3,8.5,12) 0.7

 
 
 
 
 




 
0.5(1,6,9.5,12)

( 1,4,8.5,11) ;0.7
( 2,2,8,10) 0.8

 
 
 
 
 




 
0.3( 1,4,8,15)

( 2,3,6,12) ;0.6
( 3,2,5,11) 0.6

 
 
 
 
 





 
0.3( 1,4,8,15)

( 2,3,6,12) ;0.6
( 3,2,5,11) 0.6

 
 
 
 
 





 0.3(7,17,25,31)
(3,12,22.5,29) ;0.6
(1,10,19.5,27) 0.7

 
 
 
 
 

 

3S  0.2(3,6,9,12)
(2,5,8,11) ;0.4
(1,4,7,10) 0.8

 
 
 
 
 

 
0.2( 1,3.5,9,12)

( 2,2.5,7 ,11) ;0.4
( 4,1,5,10) 0.8

 
 
 
 
 





 
0.2(0,5,8,14)

( 2,3,7,12) ;0.6
( 4,1,6,10) 0.6

 
 
 
 
 




 
0.2(0,5,8,14)

( 2,3,7,12) ;0.6
( 4,1,6,10) 0.6

 
 
 
 
 




 0.3(9,16,22,31)
(5,14,20,27) ;0.6
(1,12,18,23) 0.7

 
 
 
 
 

 

4S  0.4(1,7,11.5,16)
( 1,5,10,14) ;0.5
( 3,3,8.5,12) 0.7

 
 
 
 
 




 
0.2( 1,3.5,9,12)

( 2,2.5,7 ,11) ;0.4
( 4,1,5,10) 0.8

 
 
 
 
 





 
0.2(0,5,8,14)

( 2,3,7 ,12) ;0.6
( 4,1,6,10) 0.6

 
 
 
 
 




 0.2(0,0,0,0)
(0,0,0,0) ;0.6
(0,0,0,0) 0.6

 
 
 
 
 

 
 
 
 
 
 

0.3(25,50,73,98)
(14,40,65.5,89) ;0.6
(5,33,57.5,80) 0.7

 

D
e

m
a
n
d

 
0.3(12,21,30,37)

(9,19,28,34) ;0.6
(6,16,25,33) 0.7

 
 
 
 
 

 0.4(10,16,22,27)
(5,14,20,25) ;0.7
(0,12,18,23) 0.7

 
 
 
 
 

 
0.2(7,12,19,27)

(4,11,18,24) ;0.6
(1,9,15,21) 0.6

 
 
 
 
 

 
0.3(-41,29,97,167)

(-55,14,87,160) ;0.6
(-67,8,78,153) 0.7

 
 
 
 
 

  
 

 
After converting cost, demand and supply of NTP in table 6 from SVTrNN to the crisp numbers by 

using score function method, the balance CTP cost matrix is given in table 7: 
 
Table 7 

 1M  2M  3M  4M  Supply 

1S  -1.33 -1.25 -0.58 -0.58 -4.33 

2S  -1.08 -1.00 -0.67 -0.67 -3.67 

3S  -1.50 -0.50 -0.50 -0.50 -3.50 

4S  -1.08 -0.50 -0.50 0 -11.50 

Demand -5.83 -3.50 -3.17 -10.50   
 

The complete allotment of demand and supply in cost matrix of CTP shown in table 8: 
 
Table 8 

 1M  2M  3M  4M  Supply 

1S  -1.33(-1.16) -1.25 -0.58(-3.17) -0.58 -4.33 

2S  -1.08(-3.67) -1.00 -0.67 -0.67 -3.67 

3S  -1.50 -0.50(-3.50) -0.50 -0.50 -3.50 

4S  -1.08(-1.00) -0.50 -0.50 0(-10.50) -11.50 

Demand -5.83 -3.50 -3.17 -10.50   



578                                                                                        Neutrosophic Sets and Systems, Vol. 35, 2020 

Rajesh Kumar Saini* 1 Atul Sangal 2 and Manisha3, Application of Single Valued Trapezoidal Neutrosophic Numbers 
in Transportation Problem 
 

 
The optimal crisp solution and minimum cost of balance CTP of table 8 is 11 1.16x   , 13 3.17,x  

21 3.67,x   32 3.50,x   41 1.00,x    44 10.50x    and 10.18Z .  
Similarly after balance the unbalance NTP by MRCM, the corresponding optimal solution of 

balance NTP with allotment of SVTrNN is shown in table 9 as follows: 
 
Table 9 

 1M  2M  3M  4M  Supply 

1S  (-18,-2,14,29) 0.4
(-18,-4,12,29) ;0.6
(-18,-4,11,29) 0.6

 
 
 
 
  
 

 - (7,12,19,27) 0.2
(4,11,18,24) ;0.6
(1,9,15,21) 0.6

 
 
 
 
  
 

 
 
- 

 
- 

2S  (7,17,25,31) 0.3
(3,12,22.5,29) ;0.6
(1,10,19.5,27) 0.7

 
 
 
 
  
 

  
- 

 
- 

 
- 

 
- 

3S   
- 

0.3(9,16,22,31)
(5,14,20,27) ;0.6
(1,12,18,23) 0.7

 
 
 
 
 

  
- 

 
- 

 
- 

4S  0.3(-142,-47,44,139)

(-146,-47,51.5,144) ;0.6

(-148,-45,49.5,147) 0.7

 
 
 
 
 

 
 
- 

 
- 

0.3(-41,29,97,167)
(-55,14,87,160) ;0.6
(-67,8,78,153) 0.7

 
 
 
 
 

  
- 

Demand  - - - - 
 
0.4(-18,-2,14,29) (7,12,19,27)

(-18,-4,12,29) ;0.6 (4,11,18,2

(-18,-4,11,29) 0.6

. .
0.2 0.2(3,5,7.5,11) (1,5,9,14.5)

(2,4,7 ,10) ;0.4 ( 3,3.5,8,12) ;0.5
(1,3.5,6,9) ( 4,2,7,11)0.8 0.7

NZ
     
     

     
     
     





0.2

4) ;0.6

(1,9,15,21) 0.6

0.3(7,17,25,31)

(3,12,22.5,29) ;0.6

(1,10,19.5,27) 0.7

.
0.4(1,7,11.5,16) ( 1,3.5,9,12)

( 1,5,10,14) ;0.5 ( 2,2.5,7 ,11)
( 3,3,8.5,12) ( 4,1,5,10)0.7

 
 

 
 
 

     
     

     
    
     


 
 

0.3(9,16,22,31)

(5,14,20,27) ;0.6

(1,12,18,23) 0.7

0.3(-142,-47,44,139)

(-146,-47,51.5,144) ;0

(-148,-45,49.5,147)

.

.

0.2
;0.4
0.8

0.4(1,7 ,11.5,16)
( 1,5,10,14) ;0.5
( 3,3,8.5,12) 0.7

 
 

  
  

 

   
   

    
   
   




0.3(-41,29,97,167)

.6 (-55,14,87,160) ;0.6

(-67,8,78,153)0.7 0.7

.
0.2(0,0,0,0)

(0,0,0,0) ;0.6
(0,0,0,0) 0.6

   
   

    
   
   

 

this implies   
(-191,-104,1267.5,3802.5) 0.4
(85,-117.5,1108,3297) ;0.4 417.77

0.6(415,-89,847.5,2810)

NZ =
 
    
 
 

  

 
 
6.3. Model II (NTP of type-2)   

For solution of NTP of type-2 i.e. a problem in which costs are in SVTrNN while demand and 
supply are given in crisp numbers. Here we are taking the problem in table 2 in which costs are in 
SVTrNN while demand and supply are as crisp numbers given as follows in table 10: 
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Table 10 
 1M  2M  3M  Supply 

1S  0.2(3,5,7.5,11)
(2,4,7 ,10) ;0.4
(1,3.5,6,9) 0.8

 
 
 
 
 

 
0.3(2,4.5,10,15)

(0.5,3.5,8,14) ;0.5
(0,2.5,6,12) 0.8

 
 
 
 
 

 
0.2(1,5,9,14.5)

( 3,3.5,8,12) ;0.5
( 4,2,7,11) 0.7

 
 
 
 
 




 
-4.33 

2S  0.4(1,7,11.5,16)
( 1,5,10,14) ;0.5
( 3,3,8.5,12) 0.7

 
 
 
 
 




 
0.5(1,6,9.5,12)

( 1,4,8.5,11) ;0.7
( 2,2,8,10) 0.8

 
 
 
 
 




 
0.3( 1,4,8,15)

( 2,3,6,12) ;0.6
( 3,2,5,11) 0.6

 
 
 
 
 





 
-3.67 

3S  0.2(3,6,9,12)
(2,5,8,11) ;0.4
(1,4,7,10) 0.8

 
 
 
 
 

 
0.2( 1,3.5,9,12)

( 2,2.5,7,11) ;0.4
( 4,1,5,10) 0.8

 
 
 
 
 





 
0.2(0,5,8,14)

( 2,3,7 ,12) ;0.6
( 4,1,6,10) 0.6

 
 
 
 
 




 
-3.50 

Demand -5.83 -3.50 -3.17  
 
The optimal crisp solution of NTP type-2 is shown in table 11 as follows: 

Table 11 
 1M  2M  3M  Supply 

1S  -2.16 -2.17 - -4.33 

2S  -3.67 - - -3.67 

3S  - -0.33 -3.17 -3.50 

4S  - -1.00 - -3.50 

Demand -5.83 -3.50 -3.17  
 
The corresponding neutrosophic solution of NTP type-2 is: 

 

        
2

(3,5,7.5,11) (2,4.5,10,15) (1,7,11.5,16)0.2 0.3 0.4
2.16 (2,4,7,10) ; 0.4 2.17 (0.5,3.5,8,14) ; 0.5 3.67 ( 1,5,10,14) ; 0.5

0.8 0.8 0.7(1,3.5,6,9) (0,2.5,6,12) ( 3,3,8.5,12)

0.33

N
tZ

     
                 
          

 



( 1,3.5,9,12) (0,5,8,14) ( 14.16, 63.27, 108.44, 163.37)0.2 0.2
( 2,2.5,7,11) ; 0.4 3.17 ( 2,3,7,12) ; 0.6 (5.26, 44.93, 93.68, 145.07)

0.8 0.6( 4,1,5,10) ( 4,1,6,10) (22.85, 27.5, 77.87, 124.

        
             
          

0.2
; 0.6 15.89
0.65

   
2)

 
   
 
 

 

 
Similarly after balance the unbalance NTP of type-2 by MRCM, the corresponding optimal 

neutrosophic solution of balance NTP of type-2 with allotment is as follows:         

   

2

(3,5,7.5,11) 0.2 (1,5,9,14.5) 0.2 (1,7,11.5,16) 0.4 ( 1,
1.16 (2,4,7,10) ;0.4 3.67 ( 3,3.5,8,12) ; 0.5 3.17 ( 1,5,10,14) ; 0.5 3.50

(1,3.5,6,9) 0.8 ( 4,2,7,11) 0.7 ( 3,3,8.5,12) 0.7

N
tZ

      
     

              
           


3.5,9,12) 0.2

( 2,2.5,7,11) ;0.4
( 4,1,5,10) 0.8

(1,7,11.5,16) 0.4 (0,0,0,0) 0.2 7.82,65.59,121.85,174.70
1.00 ( 1,5,10,14) ; 0.5 10.50 (0,0,0,0) ;0.6 19.

( 3,3,8.5,12) 0.7 (0,0,0,0) 0.6

 
 
 

  

   
   

         
      

0.2
86,47.09,103.68,152.52 ; 0.6 14.35

40.03,27.41,85.60,135.85 0.6

 
 

 
  
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7. Comparative Study 
Real life application of single valued trapezoidal neutrosophic numbers in transportation problem 

have been solved by some existing and proposed MRCM methods. In present paper, the minimum cost 
obtained through proposed method with some existing method discussed in [30] have been 
summarized in table 12. From the table it is clear that minimum cost obtained by using MRCM is better 
than to the existing method in both either crisp or in neutrosophic environment. Figure 3 shows the 
graphical representation of the minimum crisp or neutrosophic cost degree of satisfaction by different 
approaches.  

 
Comparison 

 
 
 

Model 
I  

Balance by existing method  Balance by MRCM 
Crisp cost of 

CTP 
= 11.30Z   

The neutrosophic cost of 
NTP 

0.4(-74,187.5,927,2317)
(-25.5,62,738,1999) ;0.4
(52,13.75,531.75,1654) 0.6

=NZ
 
 
 
 
 



corresponding Crisp cost 
of  NTP 

= -194.54NZ  

 
 
 
 
 

Crisp cost of  
CTP 

10.18Z  
 

The neutrosophic cost of 
NTP 

0.4( 191, 104,1267.5,3802.5)
(85, 117.5,1108,3297) ;0.4
(415, 89,847.5,2810) 0.6

NZ
 
 
 
 
 

 





 corresponding Crisp cost of  
NTP 

417.77NZ    

      
 

Model 
II  

The neutrosophic cost of NTP 

2

( 14.16, 63.27, 108.44, 163.37) 0.2
(5.26, 44.93, 93.68, 145.07) ;0.6

0.6(22.85, 27.5, 77.87, 124.52)

N
tZ

     
     
    

  

 The neutrosophic cost of NTP 

2

7.82,65.59,121.85,174.70
19.86,47.09,103.68,152.52
40.03,27.41,85.60,135.85

0.2
;0.6
0.6

N
tZ

 
 

  
  

  

corresponding Crisp cost of  NTP 

2
15.89N

tZ   
 
 

corresponding Crisp cost of  NTP  

2
14.35N

tZ   

 

 
Figure 3: Comparision of results with proposed MRCM and existing method 
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8.  Result and discussion  
 

In this present study the optimal transportation crisp cost and optimal transportation neutrosophic 
cost of unbalanced NTP using MRCM is minimum than the existing method in [30]. It is also verified 
that in de-neutrosophication, the crisp values before and after conversion from neutrosophic to crisp 
and crisp to neutrosophic  are different in score function method.  

For the real life applications one can find the degree of result.  The best of minimum neutrosophic 

cost of unbalanced NTP is 
(-191,-104,1267.5,3802.5) 0.4
(85,-117.5,1108,3297) ;0.4

0.6(415,-89,847.5,2810)

NZ =
 
 
 
 
 

   i.e. total minimum transportation cost 

lies between  -191 to 3802.5 for level of truthfulness or acceptance, 85 to 3297 for level of indeterminacy 
and 415 to 2810 for level of falsity. The degree of truthfulness or acceptance, degree of indeterminacy 
and degree of falsity is defined as ( ) 100

NZ
w 

T
x , ( ) 100

NZ
u 

I
x  and ( ) 100

NZ
v 

F
x  respectively, where x 

denotes the total cost and  

for -191

for 104
( )

for 1267.5 3802.5

0.4( 191) , 104
191 104

0.4, 1267.5
0.4(3802.5 ) ,
3802.5 1267.5
0,

NZ

x

w
x


  


 




 


T

            x ,

                                      - x ,
x

       x ,

                                      for otherwise.









      

 

for -117.5

for -117.5 1108
( )

for 1108

( 117.5 ) 0.4( 85) , 85
62 25.5

0.4,
( 1108) 0.4(3297 ) , 3297

3297 1108
0,

NZ

x x

u
x x

   
 


 


  

 


I

          x ,

                                                          x ,
x

        x ,

           for otherwise.









                                                  

  

for - 89 415

for - 89 847
( )

for 847 2810

( 89 ) 0.6( 415) ,
13.75 52

0.6,
( 847) 0.6(2810 ) ,

2810 847
0,

NZ

x x

v
x x

   
 


 


  

 


F

          x ,

                                                       x ,
x

       x ,

                         for otherwise.









                                  

 

 

Degree



x
 -100 0 500 1000 2000 3000 

100
NZ

w 
T

 40.0 40.0 40.0 40.0 30.0 12.6 

100
NZ

u 
T

 40.0 40.0 40.0 40.0 64.4 91.8 

100
NZ

v 
T

 60.0 60.0 60.0 63.1 83.4 0 

 
With the help of degree of truthfulness, degree of indeterminacy and degree of falsity, we can 

conclude the total neutrosophic cost from the range of -191 to 3802.5 for truthfulness, 85 to 3297 for 
indeterminacy and 415 to 2810 for falsity to scheduled the transportation and budget allocation.  
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9. Conclusions 
In recent scenario the applied mathematical modeling with uncertainty or vagueness is necessity of 

the society. Nowadays the concept of neutrosophic number is very popular to handle such type of 
problems. In this  research paper, we study of unbalance NTP and introduced a new approach MRCM 
for optimal solution with the concept of single valued trapezoidal neutrosophic number of twelve 
components from different viewpoints. Also the optimal neutrosophic solution and minimum cost 
obtained by using MRCM is better than by using some existing methods. The proposed method 
provides the more practical structure and considers the various characteristics of transportation 
problems in neutrosophic environment. In future the proposed MRCM is applied to the unbalance 
multi-attribute transportation problem, assignment problems and multilevel programming problem in 
neutrosophic environment. The present research will be a mile stone for transportation problems with 
generalization of the pick value of truth, indeterminacy and falsity functions by considering, which are 
very important for uncertainty theory.  
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