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—————————————————————————————————————————-

1. Introduction

Mathematical modeling of the real life space X requires that all the possible laws that can be defined

on X as well as all the possible axioms that can be defined on X should all be considered. In order to be

very close to reality, the laws as well as axioms on X should not be rigidly defined. The laws on X should

be so flexibly defined to make provisions for both totally inner-defined, totally outer-defined, partially-

defined and indeterminately-defined cases. Also, the axioms on X should be such that provisions

are made for both totally inner-defined, totally outer-defined, partially-defined and indeterminately-

defined cases. When the laws and axioms on X are totally inner-defined, they are called and referred

to as ClassicalLaws and ClassicalAxioms respectively. When the laws and axioms on X are partially-

defined, they are called and referred to as NeutroLaws and NeutroAxioms respectively. When the laws

and axioms on X are totally outer-defined, they are called and referred to as AntiLaws and AntiAxioms

respectively. Naturally, we have the neutrosophic triplets (Law, NeutroLaw, AntiLaw) and (Axiom,

NeutroAxiom, AntiAxiom) where NonLaw = NeutroLaw ∪ AntiLaw, NonAxiom = NeutroAxiom ∪

AntiAxiom, NeutroLaw ∩ AntiLaw = ∅ and NeutroAxiom ∩ AntiAxiom = ∅. These concepts have
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several applications in sciences, engineering, technology, soft computing, social sciences, psychology,

politics, sociology and humanities in general. For details on NeutroSociology the readers should see [14]

and [7–11,19] for more details on neutrosophy and applications.

Smarandache in [15–18] introduced and studied extensively the concepts of Neutro-Algebraic Struc-

tures and Anti-Algebraic Structures. Rezaei and Smarandache in [12] presented and studied Neutro-BE

Algebras and Anti-BE Algebras. Agboola et al. in [4] studied NeutroAlgebras and AntiAlgebras, in [5]

and [6], Agboola studied NeutroGroups and NeutroRings respectively. In [3], Agboola further studied

NeutroGroups, in [2], he studied AntiGroups and in [1], he further studied NeutroRings. In the present

paper, the concept of AntiRings is introduced. Several examples of AntiRings are presented. Specifi-

cally, certain types of AntiRings and their substructures are studied. It is shown that nonempty subsets

of an AntiRing can be AntiRings with algebraic properties different from the algebraic properties of the

parent AntiRing under the same binary operations. AntiIdeals, AntiQuotientRings and AntiRingHo-

momorphisms are studied with several examples. It is shown that the quotient of an AntiRing factored

by an AntiIdeal can exhibit algebraic properties different from the algebraic properties of the AntiRing.

2. Preliminaries

In this section, some definitions and results that will be used later in the paper are presented.

Definition 2.1. [15]

A classical operation is an operation well defined for all the set’s elements. A NeutroOperation is an

operation partially well defined, partially indeterminate, and partially outer defined on the given set

while an AntiOperation is an operation that is outer defined for all set’s elements.

A classical law/axiom defined on a nonempty set is a law/axiom that is totally true (i.e. true for all

set’s elements). A NeutroLaw/NeutroAxiom (or Neutrosophic Law/Neutrosophic Axiom) defined on a

nonempty set is a law/axiom that is true for some set’s elements [degree of truth (T)], indeterminate

for other set’s elements [degree of indeterminacy (I)], or false for the other set’s elements [degree of

falsehood (F)], where T, I, F ∈ [0, 1], with (T, I, F ) 6= (1, 0, 0) that represents the classical axiom, and

(T, I, F ) 6= (0, 0, 1) that represents the AntiAxiom while an AntiLaw/AntiAxiom defined on a nonempty

set is a law/axiom that is false for all set’s elements.

A PartialOperation on a set is an operation that is well defined for some elements of the set and

undefined for all the other elements of the set. A PartialAlgebra is an algebra that has at least one

PartialOperation, and all its axioms are classical.

A NeutroAlgebra is an algebra that has at least one NeutroOperation or one NeutroAxiom (axiom

that is true for some elements, indeterminate for other elements, and false for other elements), and no

AntiOperation or AntiAxiom while an AntiAlgebra is an algebra endowed with at least one AntiOper-

ation or at least one AntiAxiom. When a NeutroAlgebra has no NeutroAxiom, then it coincides with

the PartialAlgebra.
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Theorem 2.2. [15] The NeutroAlgebra is a generalization of PartialAlgebra.

Theorem 2.3. [12] Let U be a nonempty finite or infinite universe of discourse and let S be a finite

or infinite subset of U. If n classical operations (laws and axioms) are defined on S where n ≥ 1, then

there will be (2n − 1) NeutroAlgebras and (3n − 2n) AntiAlgebras.

Definition 2.4. [Classical ring] [13]

Let R be a nonempty set and let +, . : R × R → R be binary operations of the usual addition and

multiplication respectively defined on R. The triple (R,+, .) is called a classical ring if the following

conditions (R1−R9) hold:

(R1) x+ y ∈ R ∀x, y ∈ R [closure law of addition].

(R2) x+ (y + z) = (x+ y) + z ∀x, y, z ∈ R [axiom of associativity].

(R3) There exists e ∈ R such that x+ e = e+ x = x ∀x ∈ R [axiom of existence of neutral element].

(R4) There exists −x ∈ R such that x+ (−x) = (−x) + x = e ∀x ∈ G [axiom of existence of inverse

element]

(R5) x+ y = y + x ∀x, y ∈ R [axiom of commutativity].

(R6) x.y ∈ R ∀x, y ∈ R [closure law of multiplication].

(R7) x.(y.z) = (x.y).z ∀x, y, z ∈ R [axiom of associativity].

(R8) x.(y + z) = (x.y) + (x.z) ∀x, y, z ∈ R [axiom of left distributivity].

(R9) (y + z).x = (y.x) + (z.x) ∀x, y, z ∈ R [axiom of right distributivity].

If in addition we have,

(R10) x.y = y.x ∀x, y ∈ R [axiom of commutativity],

then (R,+, .) is called a commutative ring.

Definition 2.5. [1][NeutroSophication of the laws and axioms of the classical ring]

(NR1) There exist at least three duplets (x, y), (u, v), (p, q) ∈ R such that x+y ∈ R (inner-defined with

degree of truth T) and [u + v = indeterminate (with degree of indeterminacy I) or p + q 6∈ R

(outer-defined/falsehood with degree of falsehood F)] [NeutroClosure law of addition].

(NR2) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x+(y+z) = (x+y)+z

(inner-defned with degree of truth T) and [[p + (q + r)]or[(p + q) + r] = indeterminate (with

degree of indeterminacy I) or u+ (v + w) 6= (u+ v) + w (outer-defined/falsehood with degree

of falsehood F)] [NeutroAxiom of associativity (NeutroAssociativity)].

(NR3) There exists an element e ∈ R such that x+ e = x+ e = x (inner-defined with degree of truth

T) and [[x+ e]or[e+ x] = indeterminate (with degree of indeterminate I) or x+ e 6= x 6= e+ x

(outer-defined/falsehood with degree of falsehood F)] for at least one x ∈ R [NeutroAxiom of

existence of neutral element (NeutroNeutralElement)].

(NR4) There exists −x ∈ R such that x + (−x) = (−x) + x = e (inner-defined with degree of

truth T) and [[−x + x]or[x + (−x)] = indeterminate (with the degree of indeterminate I) or
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−x + x 6= e 6= x + (−x) (outer-defined/falsehood with degree of falsehood F)] for at least one

x ∈ R [NeutroAxiom of existence of inverse element (NeutroInverseElement)].

(NR5) There exist at least three duplets (x, y), (u, v), (p, q) ∈ R such that x+ y = y+x (inner-defined

with degree of truth T) and [[p + q]or[q + p] = indeterminate (with degree of indeterminacy

I) or u + v 6= v + u (outer-defined/falsehood with degree of falsehood F)] [NeutroAxiom of

commutativity (NeutroCommutativity)].

(NR6) There exist at least three duplets (x, y), (p, q), (u, v) ∈ R such that x.y ∈ R (inner-defined

with degree of truth T) and [u.v = indeterminate (with degree of indeterminacy I) or p.q 6∈ R

(outer-defined/falsehood with degree of falsehood F)] NeutroClosure law of multiplication].

(NR7) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x.(y.z) = (x.y).z

(inner-defined with degree of truth T) and [[p.(q.r)]or[(p.q).r] = indeterminate (with degree of

indeterminacy I) or u.(v.w) 6= (u.v).w (outer-defined/falsehood with degree of falsehood F)]

[NeutroAxiom of associativity (NeutroAssociativity)].

(NR8) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x.(y + z) = (x.y) +

(x.z) (inner-defined with degree of truth T) and [[p.(q + r)]or[(p.q) + (p.r)] = indeterminate

(with degree of indeterminacy I) or u.(v + w) 6= (u.v) + (u.w) (outer-defined/falsehood with

degree of falsehood F)] [NeutroAxiom of left distributivity (NeutroLeftDistributivity)].

(NR9) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that (y + z).x = (y.x) +

(z.x) (inner-defined with degree of truth T) and [[(v + w).u]or[(v.u) + (w.u)] = indeterminate

(with degree of indeterminacy I) or (v + w).u 6= (v.u) + (w.u) (outer-defined/falsehood with

degree of falsehood F)] [NeutroAxiom of right distributivity (NeutroRightDistributivity)].

(NR10) There exist at least three duplets (x, y), (p, q), (u, v) ∈ R such that x.y = y.x (inner-defined

with degree of truth T) and [[p.q]or[q.p] = indeterminate (with degree of indeterminacy I) or

u.v 6= v.u (outer-defined/falsehood with degree of falsehood F)] [NeutroAxiom of commutativity

(NeutroCommutativity)].

Definition 2.6. [1][AntiSophication of the laws and axioms of the classical ring]

(AR1) For all the duplets (x, y) ∈ R, x+ y 6∈ R [AntiClosure law of addition].

(AR2) For all the triplets (x, y, z) ∈ R, x+ (y+ z) 6= (x+ y) + z [AntiAxiom of associativity (AntiAs-

sociativity)].

(AR3) There doest not exist an element e ∈ R such that x + e = x + e = x ∀x ∈ R [AntiAxiom of

existence of neutral element (AntiNeutralElement)].

(AR4) There does not exist −x ∈ R such that x + (−x) = (−x) + x = e ∀x ∈ R [AntiAxiom of

existence of inverse element (AntiInverseElement)].

(AR5) For all the duplets (x, y) ∈ R, x+y 6= y+x [AntiAxiom of commutativity (AntiCommutativity)].

(AR6) For all the duplets (x, y) ∈ R, x.y 6∈ R [AntiClosure law of multiplication].
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(AR7) For all the triplets (x, y, z) ∈ R, x.(y.z) 6= (x.y).z [AntiAxiom of associativity (AntiAssociativ-

ity)].

(AR8) For all the triplets (x, y, z) ∈ R, x.(y + z) 6= (x.y) + (x.z) [AntiAxiom of left distributivity

(AntiLeftDistributivity)].

(AR9) For all the triplets (x, y, z) ∈ R, (y + z).x 6= (y.x) + (z.x) [AntiAxiom of right distributivity

(AntiRightDistributivity)].

(AR10) For all the duplets (x, y) ∈ R, x.y 6= y.x [AntiAxiom of commutativity (AntiCommutativity)].

Definition 2.7. [1][NeutroRing]

A NeutroRing NR is an alternative to the classical ring R that has at least one NeutroLaw or at least

one of {NR1, NR2, NR3, NR4, NR5, NR6, NR7, NR8, NR9} with no AntiLaw or AntiAxiom.

Definition 2.8. [ [1]][AntiRing]

An AntiRing AR is an alternative to the classical ring R that has at least one AntiLaw or at least one

of {AR1, AR2, AR3, AR4, AR5, AR6, AR7, AR8, AR9}.

Definition 2.9. [1][NeutroCommutativeRing]

A NeutroCommutativeRing NR is an alternative to the classical commutative ring R that has at least

one NeutroLaw or at least one of {NR1, NR2, NR3, NR4, NR5, NR6, NR7, NR8, NR9} and NR10

with no AntiLaw or AntiAxiom.

Definition 2.10. [1][AntiCommutativeRing]

An AntiCommutativeRing AR is an alternative to the classical commutative ring R that has at least

one AntiLaw or at least one of {AR1, AR2, AR3, AR4, AR5, AR6, AR7, AR8, AR9} and AR10.

Theorem 2.11. [1] Let (R,+, .) be a finite or infinite classical ring. Then:

(i) There are 511 types of NeutroRings.

(ii) There are 19171 types of AntiRings.

Theorem 2.12. [1] Let (R,+, .) be a finite or infinite classical commutative ring. Then:

(i) There are 1023 types of NeutroCommutativeRings.

(ii) There are 58025 types of AntiCommutativeRings.

Example 2.13. [1] Let NR = Z5 = {0, 1, 2, 3, 4} and let ⊕ and � be two binary operations defined

on NR by

x⊕ y = x+ y − 1, x� y = x+ xy ∀ x, y ∈ NR.

Then, (NR,⊕,�) is a NeutroCommutativeRing.
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Example 2.14. [1] Let NR = {a, b, c, d} and let ′′+′′ and ′′.′′ be binary operations defined on NR as

shown in the Cayley tables below:

+ a b c d

a a b c d

b b c d a

c c d a b

d d a b c

. a b c d

a a b c d

b a c b c

c c d c d

d d a d a

Then, (NR,+, .) is a NeutroCommutativeRing.

Example 2.15. Let AR = Z and let ⊕ and � be two binary operations defined on AR such that ⊕ is

the usual addition of integers and ∀x, y ∈ AR, � is defined by

x� y = x2 + x2y + 2.

Then (AR,⊕,�) is an AntiRing. To see this, we first note that ⊕ is well defined for all x, y ∈ AR and

that R1−R5 are totally true. Hence, (AR,⊕) is an abelian group.

It is also noted that � is well defined for all x, y ∈ AR that is, R6 is totally true ∀x, y ∈ AR. Now

let x, y, z ∈ AR. Then

x� (y � z) = x2 + x2y2 + x2y2z + 2x2 + 2,

(x� y)� z = x4 + 2x4y + x4y2 + 4x2 + 4x2y

+x4z + 2x4yz + x4y2z + 4x2z + 4x2yz + 4z + 6.

∴ x� (y � z) 6= (x� y)� z ∀x, y, z ∈ AR.

It has just been shown that for all the elements of AR, � is AntiAssociative over AR. Thus, AR7 is

satisfied.

Also for all x, y, z ∈ AR, we have

x� (y ⊕ z) = x� (y + z)

= x2 + x2y + x2z + 2,

(x� y)⊕ (x� z) = (x� y) + (x� z)

= 2x2 + x2y + x2z + 4.

∴ x� (y ⊕ z) 6= (x� y)⊕ (x� y) ∀x, y, z ∈ AR.

It has again been shown that over AR, � is not left distributive over ⊕ for all x, y, z ∈ AR. Hence AR8

is satisfied.
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Lastly for all x, y, z ∈ AR, we have

(y ⊕ z)� x = (y + z)� x

= y2 + z2 + 2yz + xy2 + 2xyz + xz2 + 2,

(y � x)⊕ (z � x) = (y � x) + (z � x)

= y2 + z2 + y2x+ z2x+ 4.

∴ (y ⊕ z)� x 6= (y � x)⊕ (y � x) ∀x, y, z ∈ AR.

This also shows that over AR, � is not right distributive over ⊕ for all x, y, z ∈ AR. Hence, AR9 is

satisfied. It can easily be shown that � is NeutroCommutative over AR. Accordingly by Definition

2.8, (AR,⊕,�) is an AntiRing.

Example 2.16. (i) Let AR = Mn×n [R] be the set of all n× n matrices with real entries and let

⊕ and � be two binary operations defined on AR such that ⊕ is the usual addition of matrices

and ∀X,Y ∈ AR, � is defined by

X � Y = X2 +X2Y + 2I

where I is the n× n unit matrix. Then, (AR,⊕,�) is an AntiRing.

(ii) Let M be an additive abelian group and let AR = End(M) be the set of all endomorphisms of

M into itself. Let ⊕ and � be two binary operations defined on AR such that ⊕ is the usual

addition of mappings and ∀f, g ∈ AR, � is defined by

(f � g)(x) = f2(x) + f2(x)g(x) + 2i(x)

where i is the identity mapping. Then, (AR,⊕,�) is an AntiRing.

3. A Study of Certain Types of AntiRings

In this section, we are going to study certain types of AntiRings. Many examples and basic results

will be presented. Since there are many types of AntiRings, then AntiRings in this section will be

classified and named type-AR[,] according to which of AR1 − AR10 is(are) satisfied. If only AR1 is

satisfied, the AntiRing will be called of type-AR[1], type-AR[3,4] if only AR3 and AR4 are satisfied

and so on. AntiRings of type-AR[1,2,3,4-9] or of type-AR[1,2,3,4-10] will be called trivial AntiRings or

trivial AntiCommutativeRings respectively.

Definition 3.1. Let (AR,+, .) be an AntiRing.

(i) AR is called a finite AntiRing of order n if the cardinality of AR is n that is o(AR) = n.

Otherwise, AR is called an infinite AntiRing and we write o(AR) =∞.

(ii) AR is called an AntiRing with unity if there exists a multiplicative unit element u ∈ AR such

that ux = xu = x for at least one x ∈ R.
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(iii) If there exists a least positive integer n such that nx = e for at least one x ∈ AR, then AR is

called an AntiRing of characteristic n. If no such n exists, then AR is called an AntiRing of

characteristic zero.

(iv) An element x ∈ AR is called an idempotent element if x2 = x.

(v) An element x ∈ AR is called a nilpotent element if for the least positive integer n, we have

xn = e.

(vi) An element e 6= x ∈ AR is called a zero divisor element if there exists an element e 6= y ∈ AR

such that xy = e or yx = e.

(vii) An element x ∈ AR is called a multiplicative inverse element if there exists at least one y ∈ AR

such that xy = yx = u where u is the multiplicative unity element in AR.

Definition 3.2. Let (AR,+, .) be an AntiCommutativeRing with unity. Then

(i) AR is called an AntiIntegralDomain if all the elements of AR are zero divisors.

(ii) AR is called an AntiField if all the elements of AR have no multiplicative inverse elements.

Definition 3.3. Let (AR,+, .) be an AntiRing. A nonempty subset AS of AR is called an AntiSubring

of AR if (AS,+, .) is also an AntiRing of the same type as AR.

Definition 3.4. Let (AR,+, .) be an AntiRing. A nonempty subset AS of AR is called a QuasiAntiSub-

ring of AR if (AS,+, .) is also an AntiRing not of the same type as AR.

Definition 3.5. Let (AR,+, .) be an AntiRing. A nonempty subset AI of AR is called a left AntiIdeal

of AR if the following conditions hold:

(i) AI is an AntiSubring of AR of the same type as AR.

(ii) x ∈ AI and r ∈ AR imply that xr 6∈ AI for all r ∈ AR.

Definition 3.6. Let (AR,+, .) be an AntiRing. A nonempty subset AI of AR is called a right AntiIdeal

of AR if the following conditions hold:

(i) AI is an AntiSubring of AR of the same type as AR.

(ii) x ∈ AI and r ∈ AR imply that rx 6∈ AI for all r ∈ NR.

Definition 3.7. Let (AR,+, .) be an AntiRing. A nonempty subset AI of NR is called a two-sided

AntiIdeal of AR if the following conditions hold:

(i) AI is an AntiSubring of AR of the same type as AR.

(ii) x ∈ AI and r ∈ AR imply that xr 6∈ AI and rx 6∈ AI for all r ∈ AR.

Definition 3.8. Let (AR,+, .) be an AntiRing. A nonempty subset AI of AR is called a left QuasiAnti-

Ideal of AR if the following conditions hold:

(i) AI is a QuasiAntiSubring of AR.

(ii) x ∈ AI and r ∈ AR imply that xr 6∈ AI for all r ∈ AR.
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Definition 3.9. Let (AR,+, .) be an AntiRing. A nonempty subset AI of AR is called a right

QuasiAntiIdeal of AR if the following conditions hold:

(i) AI is a QuasiAntiSubring of AR.

(ii) x ∈ AI and r ∈ AR imply that rx 6∈ AI for all r ∈ NR.

Definition 3.10. Let (AR,+, .) be an AntiRing. A nonempty subset AI of NR is called a two-sided

QuasiAntiIdeal of AR if the following conditions hold:

(i) AI is a QuasiAntiSubring of AR.

(ii) x ∈ AI and r ∈ AR imply that xr 6∈ AI and rx 6∈ AI for all r ∈ AR.

Definition 3.11. Let (AR,+, .) be an AntiRing. A nonempty subset AI of AR is called a left Pseu-

doAntiIdeal of AR if the following conditions hold:

(i) AI is an AntiSubring or a QuasiAntiSubring of AR.

(ii) For at least one x ∈ AI, xr 6∈ AI for all r ∈ AR.

Definition 3.12. Let (AR,+, .) be an AntiRing. A nonempty subset AI of AR is called a right

PseudoAntiIdeal of AR if the following conditions hold:

(i) AI is an AntiSubring or a QuasiAntiSubring of AR.

(ii) For at least one x ∈ AI, rx 6∈ AI for all r ∈ AR.

Definition 3.13. Let (AR,+, .) be an AntiRing. A nonempty subset AI of NR is called a two-sided

PseudoAntiIdeal of AR if the following conditions hold:

(i) AI is an AntiSubring or a QuasiAntiSubring of AR.

(ii) For at least one x ∈ AI, xr 6∈ AI and rx 6∈ AI for all r ∈ AR.

Example 3.14. Let AR = {a, b} and let ′′+′′ and ′′.′′ be two binary operations defined on AR as

shown in the Cayley tables below.

+ a b

a a b

b b a

. a b

a b b

b a a

Since x+ y, xy ∈ AR ∀x, y ∈ AR and (AR,+) is an abelian group, it follows that R1−R6 of Definition

2.6 are totally true for all the elements of AR. Now consider the following:

(AR7) a(aa) = b, (aa)a = a 6= b, a(ab) = b, (aa)b = a 6= b, a(ba) = b, (ab)a = a 6= b, b(aa) =

a, (ba)a = b 6= a,a(bb) = b, (ab)b = a 6= b, b(ab) = a, (ba)b = b 6= a, b(ba) = a, (bb)a = b 6= a,

b(bb) = a, (bb)b = b 6= a. These show that the binary operation ′′.′′ is totally AntiAssociative

in AR.

(AR8) a(a+ a) = b while aa+ aa = a 6= b. Also, b(b+ b) = a while bb+ bb = a. These show that the

binary operation ′′.′′ is NeutroLeftDistributive over the binary operation ′′+′′.
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(AR9) (a + a)a = b, aa + aa = a 6= b, (a + a)b = b, ab + ab = a 6= b, (a + b)a = a, aa + ba = b 6= a,

(b + a)a = a, ba + aa = b 6= a, (a + b)b = a, ab + bb = b 6= a, (b + a)b = a, bb + ab = b 6= a,

(b+b)a = b, ba+ba = a 6= b, (b+b)b = b, bb+bb = a 6= b. These show that the binary operation

′′.′′ is AntiRightDistributive over the binary operation ′′+′′.

(AR10) aa = b, bb = a but ab = b, ba = a 6= b. These show that the binary operation ′′.′′ is NeutroCom-

mutative in AR.

Since AR7 and AR9 are totally true for all the elements of AR, it follows from Definition 2.8 that

(AR,+, .) is an AntiRing which we call an AntiRing of type-AR[7,9].

Example 3.15. Let (AR,+, .) be the AntiRing of Example 3.14. It is clear that e = a is the additive

identity element. The element b is idempotent since bb = a. Since ′′.′′ is totally AntiAssociative, it

follows that AR has no nilpotent elements. AR has no unity and consequently, none of the elements

of AR is invertible. Since AR is not an AntiCommutativeRing, it follows that AR is neither an

AntiIntegralDomain nor an AntiField.

Example 3.16. Let AR = Z6 = {0, 1, 2, 3, 4, 5}. Let ∗ and ◦ be two binary operations defined such

that ∗ is the usual addition modulo 6 and for all x, y ∈ AR, ◦ is defined by

x ◦ y = x+ xy + 2.

It is clear that x ∗ y, x ◦ y ∈ AR ∀x, y ∈ AR. This shows that R1−R6 of Definition 2.6 are totally true

for all the elements of AR. Now consider the following:

(AR7) x ◦ (y ◦ z) = 3x+ xy + xyz + 2 and (x ◦ y) ◦ z = x+ xy + xz + 2z + xyz + 4. Equating the two

expressions we obtain 2x = xz + 2z + 2 from which we have that the triplet (2, y, 2) ∈ AR can

verify the associativity of ◦ in AR. Thus, ◦ is NeutroAssociative in AR.

(AR8) x ◦ (y ∗ z) = x + xy + xz + 2 and (x ◦ y) ∗ (x ◦ z) = 2x + xy + xz + 4. Equating the two

expressions we have x = −2 ≡ 4 modulo 6. Hence, only the triplets (4, y, z) ∈ AR can verify

the left distributivity of ◦ over ∗ in AR. Thus, ◦ is NeutroLeftDistributive in AR.

(R9) (y ∗ z)◦x = y+ z+xy+xz+ 2 and (y ◦x)∗ (z ◦x) = y+ z+xy+xz+ 4. Since 2 6= 4 modulo 6,

it follows that ◦ is not right distributive over ∗ for all the triplets (x, y, z) ∈ AR. Hence ◦ is

totally AntiRightDistributive over ∗ in AR.

(R10) x ◦ y = x + xy + 2 and y ◦ x = y + yx + 2. Equating the two expressions we have x = y

showing that only the duplets (x, x) ∈ AR can verify the commutativity of ◦. Hence, ◦ is

NeutroCommutative in AR.

According to Definition 2.8, we have that (AR, ∗, ◦) is an AntiRing of type-AR[9].
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Example 3.17. Let AS = {0, 3} be a subset of AR where (AR, ∗, ◦) is the AntiRing of Example 3.16.

Consider the compositions of the elements of AS as shown in the Cayley tables below.

∗ 0 3

0 0 3

3 3 0

◦ 0 3

0 2 2

3 5 2

R1 − R5 are totally true since for all x, y ∈ AS, x ∗ y ∈ AS and (AS, ∗) is an abelian group. Also for

all the elements of AS, R6− R10 are totally false. Accordingly, (AS, ∗, ◦) is an AntiRing of the type-

AR[6,7,8,9,10] which is different from the class of the parent AntiRing. Hence, AS is a QuasiAntiSubring

of AR.

Example 3.18. Let AT = {0, 2, 4} be a subset of AR where (AR, ∗, ◦) is the AntiRing of Example

3.16. Consider the compositions of the elements of AT as shown in the Cayley tables below.

∗ 0 2 4

0 0 2 4

2 2 4 0

4 4 0 2

◦ 0 2 4

0 2 2 2

2 4 2 0

4 0 2 4

R1−R6 are totally true since for all x, y ∈ AS, x ∗ y, x ◦ y ∈ AT and (AT, ∗) is an abelian group. Now

consider the following:

(AR7) 2 ◦ (4 ◦ 2) = (2 ◦ 4) ◦ 2 = 2 but 2 ◦ (0 ◦ 4) = 2, (2 ◦ 0) ◦ 4 = 4 6= 2. These show that the binary

operation ◦ is NeutroAssociative over AT .

(AR8) 4 ◦ (2 ∗ 4) = (4 ◦ 2) ∗ (4 ◦ 4) = 0 but 2 ◦ (4 ∗ 0) = 0, (2 ◦ 4) ∗ (2 ◦ 0) = 4 6= 0. These show that the

binary operation ◦ is NeutroLeftDistributive over ∗ in AT .

(AR9) For all the triplets (x, y, z) ∈ AS, we have (y ∗ z) ◦ x 6= (y ◦ x) ∗ (z ◦ x). This shows that the

binary operation ◦ is AntiRightDistributive over ∗ in AT .

(AR10) Since 0 ◦ 0 = 2, 2 ◦ 2 = 2, 4 ◦ 4 = 4 but 0 ◦ 2 = 2, 2 ◦ 0 = 4 6= 2, 2 ◦ 4 = 0, 4 ◦ 2 = 2 6= 0, 4 ◦ 0 =

0, 0 ◦ 4 = 2 6= 0, it follows that the binary operation ◦ is NeutroCommutative over AT .

Accordingly, (AT, ∗, ◦) is an AntiRing of the type-AR[9] which is the same as the class of the parent

AntiRing. Hence, AT is an AntiSubring of AR.

Example 3.19. Let AR = Z+ = {1, 2, 3, 4, · · · , } and let AS = 2Z+ = {2, 4, 6, 8, · · · , }, AT = 3Z+ =

{3, 6, 9, 12, · · · , }. Suppose that ∗ and ◦ are binary operations respectively of the usual addition and

multiplication of integers defined on AR,AS and AT . It can easily be shown that (AR, ∗, ◦), (AS, ∗, ◦)

and (AT, ∗, ◦) are AntiRings of type-AR[3,4] since R1, R2 and R5 − R10 are totally true but R3 and

R4 are totally false. Since AS and AT are subsets of AR, it follows that AS and AT are AntiSubrings

of AR. In general, (nZ+, ∗, ◦) are AntiSubrings of the AntiRing (Z+, ∗, ◦) for n = 2, 3, 4, 5, · · · .
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Remark 3.20. It is evident from Example 3.17 that an AntiRing of a particular type can have

nonempty subsets which are AntiRings of types different from the type of the parent AntiRing un-

der the same binary operations.

Example 3.21. Let AR be an AntiRing of Example 3.16 and let AS and AT be its QuasiAntiSubring

and AntiSubring of Examples 3.17 and 3.18 respectively. Then AS ∪AT = {0, 2, 3, 4} and AS ∩AT =

{0}. It is clear that AS ∩ AT is neither an AntiSubring nor a QuasiAntiSubring of AR. However, it

can be shown that (AS ∪AT, ∗, ◦) is an AntiRing of type-AR[9]. Hence, AS ∪AT is an AntiSubring of

AR.

Example 3.22. Let AR be the AntiRing of Example 3.19 and let AS and AT be its AntiSubrings.

Then AS ∪AT = {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, · · · } and AS ∩AT = {6, 12, 18, 24, · · · } = 6Z+.

It can be shown that AS ∪AT is a QuasiAntiSubring of AR and AS ∩AT is an AntiSubring of AR.

Remark 3.23. The union of two AntiSubrings of an AntiRing can produce a QuasiAntiSubring of the

AntiRing.

Example 3.24. Let AR be an AntiRing of Example 3.16 and let AS be its QuasiAntiSubring of

Example 3.17. Then [0 ◦ 0 = 0 ◦ 1 = 0 ◦ 2 = 0 ◦ 3 = 0 ◦ 4 = 0 ◦ 5 = 2, 3 ◦ 0 = 3 ◦ 2 = 5, 3 ◦ 1 = 3 ◦ 5 =

2, 3 ◦ 3 = 1, 3 ◦ 4 = 4] 6∈ AS. These show that AS is a left QuasiAntiIdeal of AR.

However, [0 ◦ 0 = 2, 2 ◦ 0 = 4, 3 ◦ 0 = 5, 5 ◦ 0 = 1, 0 ◦ 3 = 2, 2 ◦ 3 = 4, 3 ◦ 3 = 1, 5 ◦ 3 = 4] 6∈ AS but

[1 ◦ 0 = 3, 4 ◦ 0 = 1 ◦ 3 = 4 ◦ 3 = 0] ∈ AS. These show that AS is a right PseudoAntiIdeal of AR.

Example 3.25. Let AR be an AntiRing of Example 3.16 and let AT be its AntiSubring of Example

3.18. Then [0 ◦ 0 = 0 ◦ 1 = 0 ◦ 2 = 0 ◦ 3 = 0 ◦ 4 = 0 ◦ 5 = 2, 2 ◦ 0 = 2 ◦ 3 = 4, 2 ◦ 1 = 2 ◦ 4 = 0, 2 ◦ 2 =

2 ◦ 5 = 2, 4 ◦ 0 = 4 ◦ 3 = 0, 4 ◦ 1 = 4 ◦ 4 = 4, 4 ◦ 2 = 4 ◦ 5 = 2] ∈ AT . These show that AT is neither a

left QuasiAntiIdeal nor a left PseudoAntiIdeal of AR.

Also, [0 ◦ 0 = 0 ◦ 2 = 2 ◦ 2 = 4 ◦ 2 = 0 ◦ 4 = 2, 2 ◦ 0 = 1 ◦ 2 = 3 ◦ 4 = 4 ◦ 4 = 4, 4 ◦ 0 = 2 ◦ 4 = 0] ∈ AT

but [1 ◦ 0 = 5 ◦ 4 = 3, 3 ◦ 0 = 3 ◦ 2 = 5 ◦ 2 = 5, 5 ◦ 0 = 1 ◦ 4 = 1] 6∈ AT . These show that AT is a right

PseudoAntiIdeal of AR.

Example 3.26. Let AR be the AntiRing of Example 3.19 and let AS and AT be its AntiSubrings.

Then AS and AT are two-sided PseudoAntiIdeals of AR. To see this, let x ∈ AS and r ∈ AR. Then

x ◦ r = r ◦ x =

{
a ∈ AS if r = 2, 4, 6, 8, · · ·
b 6∈ AS if r = 1, 3, 5, 7, · · ·

Also,

x ◦ r = r ◦ x =

{
c ∈ AT if r = 3, 6, 9, 12, · · ·
d 6∈ AT if r = 1, 2, 4, 8, · · ·
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Definition 3.27. Let (AR,+, .) be an AntiRing and let AI be a left(right)(two-sided) AntiIdeal or

a left(right)(two-sided) QuasiAntiIdeal or a left(right)(two-sided) PseudoAntiIdeal of AR. The set

AR/AI is defined by

AR/AI = {x+AI : x ∈ AR}.

For all x+AI, y +AI ∈ AR/AI, let ⊕ and � be two binary operations on AR/AI defined as follows:

(x+AI)⊕ (y +AI) = (x ∗ y) +AI,

(x+AI)� (y +AI) = (x ◦ y) +AI.

If (AR/AI,⊕,�) is an AntiRing, then AR/AI is called an AntiQuotientRing.

Example 3.28. Let AR be an AntiRing of Example 3.16 and let AS be its left QuasiAntiIdeal of

Example 3.24. Then

AR/AS = {AS, 1 +AS, 2 +AS}.

Let ⊕ and � be two binary operations defined on AR/AS as shown in the Cayley tables below.

⊕ AS 1 +AS 2 +AS

AS AS 1 +AS 2 +AS

1 +AS 1 +AS 2 +AS AS

2 +AS 2 +AS AS 1 +AS

� AS 1 +AS 2 +AS

AS 2 +AS 2 +AS 2 +AS

1 +AS AS 1 +AS 2 +AS

2 +AS 1 +AS AS 2 +AS

It can easily be shown that R1− R6 are totally true, R7, R8 and R10 are partially true and partially

false and R9 is totally false. Hence, (AR/AS,⊕,�) is an AntiRing of type-AR[9].

Example 3.29. Let AR be an AntiRing of Example 3.16 and let AT be its right PseudoAntiIdeal of

Example 3.25. Then

AR/AT = {AT, 1 +AT}.

Let ⊕ and � be two binary operations defined on AR/AT as shown in the Cayley tables below.

⊕ AT 1 +AT

AT AT 1 +AT

1 +AT 1 +AT AT

� AT 1 +AT

AT AT AT

1 +AT 1 +AT AT

It can easily be shown that R1 − R6 and R9 are totally true, R7, R8 and R10 are partially true and

partially false. Hence, (AR/AT,⊕,�) is a NeutroRing.

Example 3.30. Let AR be the AntiRing of Example 3.19 and let AS be its PseudoAntiIdeal of

Example 3.26. Then

AR/AS = {1 +AS, 2 +AS, 3 +AS, 4 +AS, · · · }

If ⊕ and � are two binary operations on AR/AS such that

(x+AS)⊕ (y +AS) = (x ∗ y) +AS,

(x+AS)� (y +AS) = (x ◦ y) +AS,
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It can be shown that (AR/AS,⊕,�) is an AntiRing of type-AR[3,4].

Remark 3.31. If (AR,+, .) is an AntiRing and AI is a left(right)(two-sided) AntiIdeal or a

left(right)(two-sided) QuasiAntiIdeal or a left(right)(two-sided) PseudoAntiIdeal of AR, then an An-

tiQuotientRing AR/AI can have algebraic properties different from the algebraic properties of AR.

Definition 3.32. Let (AR,+, .) and (AS,+′, .′) be any two AntiRings of the same type/class. The

mapping φ : AR → AS is called an AntiRingHomomorphism if φ anti-preserves the binary operations

of AR and AS that is if for all the duplets (x, y) ∈ AR, we have:

φ(x+ y) 6= φ(x) +′ φ(y),

φ(x.y) 6= φ(x).′φ(y).

The kernel of φ denoted by Kerφ is defined as

Kerφ = {x : φ(x) = eAR}.

The image of φ denoted by Imφ is defined as

Imφ = {y ∈ AS : y = φ(x) for at least one y ∈ AS}.

If in addition φ is an AntiBijection, then φ is called an AntiRingIsomorphism. AntiRingEpimorphism,

AntiRingMonomorphism, AntiRingEndomorphism and AntiRingAutomorphism are similarly defined.

Example 3.33. Let AR be the AntiRing of Example 3.19 and let AR/AS be the AntiQuotientRing

of Example 3.30. Then φ : AR→ AR/AS defined by

φ(x) = x+AS ∀x ∈ AR

is a classical homomorphism and not an AntiRingHomomorphism. To see this, for all m,n ∈ AR, we

have φ(m) = m+AS and φ(n) = n+AS so that

φ(m) + φ(n) = (m+AS)⊕ (n+AS)

= (m+ n) +AS

= φ(m+ n).

φ(m)φ(n) = (m+AS)� (n+AS)

= (mn) +AS

= φ(mn).

Kerφ = ∅.

Imφ = {1 +AS, 2 +AS, 3 +AS, 4 +AS, · · · } = AR/AS.

Remark 3.34. It is evident from Example 3.33 that the fundamental theorem of homomorphisms of

the classical rings cannot hold in the classes of AntiRings.
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4. Conclusions

We have in this paper introduced the concept of AntiRings with several examples. Specifically, cer-

tain types of AntiRings and their substructures were studied. It was shown that nonempty subsets of

an AntiRing can be AntiRings with algebraic properties different from the parent AntiRing under the

same binary operations. Also, we studied with several examples the concepts of AntiIdeals, AntiQuo-

tientRings and AntiRingHomomorphisms. It was shown that an AntiQuotientRing of an AntiRing

factored by an AntiIdeal can exhibit algebraic properties different from the algebraic properties of the

AntiRing. We hope to study morphisms and AntiMorphisms of AntiSubrings and QuasiAntiSubrings

of AntiRings and present further properties of different types of AntiRings in our future papers.
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