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Abstract. In this article, we present fixed and common fixed point results for Banach and Edelstein contraction

theorems in neutrosophic metric spaces. Then some properties and examples are given for neutrosophic metric

spaces. Thus, we added a new path in neutrosophic theory to obtain fixed point results. we investigate and

prove some contraction theorems that are extended to neutrosophic metric space with the assistance of Grabiec.
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—————————————————————————————————————————

1. Introduction

Fuzzy Sets was presented by Zadeh [20] as a class of elements with a grade of membership.

Kramosil and Michalek [9] defined new notion called Fuzzy Metric Space (FMS). Later, many

authors have examined the concept of fuzzy metric in various aspects. In 1984 Kaleva and

Seikkala [8] have characterized the FMS, where separation between any two points to be posi-

tive number. In particular, George and Veeramani [4,5] redefined the concept of fuzzy metric

space with the assistance of continuous t-norm, and continuous t-co norm. FMS has utilized in

applied science fields such as fixed point theory, decision making, medical imaging and signal

processing. Heilpern [7] defined fuzzy contraction for Fixed point theorem. Park [14] de-

fined Intuitionistic Fuzzy Metric Space (IFMS) from the concept of FMS and given some fixed

point results. Fixed point theorems related to FMS and IFMS given by Alaca et al [2] and

nemerous researchers [13,19].In 1998, Smarandache [16] characterized the new concept called
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neutrosophic logic and neutrosophic set. In the idea of neutrosophic sets, there is T degree

of membership, I degree of indeterminacy and F degree of non-membership. A neutrosophic

value is appeared by (T, I, F). Hence, neutrosophic logic and neutrosophic set assists us to

brief many uncertainties in our lives. In addition, several researchers have made significant

development on this theory [26–30]. Recently, Baset et al. [22–25] explored the neutrosophic

applications in different fields such as model for sustainable supply chain risk management,

resource levelling problem in construction projects, Decision Making and financial performance

evaluation of manufacturing industries. In fact, the idea of fuzzy sets deals with only a degree

of membership. In addition, the concept of intuitionistic fuzzy set established while adding

degree of non - membership with degree of membership. But these degrees are characterized

relatively one another. Therefore, neutrosophic set is a generalized state of fuzzy and intu-

itionistic fuzzy set by incorporating degree of indeterminacy. In 2019, Kirisci et al [10, 11]

defined neutrosophic metric space as a generalization of IFMS and brings about fixed point

theorems in complete neutrosophic metric space.

In this paper, we investigate and prove some contraction theorems that are extended to neu-

trosophic metric space with the assistance of Grabiec [6].

2. Preliminaries

Definition 2.1 [17] Let Σ be a non-empty fixed set. A Neutrosophic Set (NS for short) N

in Σ is an object having the form N = {〈a, ξN (a), %N (a), νN (a)〉 : a ∈ Σ} where the functions

ξN (a), %N (a) and νN (a) represent the degree of membership, degree of indeterminacy and the

degree of non-membership respectively of each element a ∈ N to the set Σ.

A neutrosophic set N = {〈a, ξN (a), %N (a), νN (a)〉 : a ∈ Σ} is expressed as an ordered triple

N = 〈a, ξN (a), %N (a), νN (a)〉 in Σ.

In NS, there is no restriction on (ξN (a), %N (a), νN (a)) other than they are subsets of ]−0, 1+[

Remark 2.2 [10] Neutrosophic Set N is included in another Neutrosophic set Γ ( N ⊆ Γ)

if and only if

inf ξN (a) ≤ infξΓ(a) sup ξN (a) ≤ sup ξΓ(a)

inf %N (a) ≥ inf%Γ(a) sup %N (a) ≥ sup %Γ(a)

inf νN (a) ≥ infνΓ(a) sup νN (a) ≥ sup νΓ(a)

Triangular Norms (TNs) were initiated by menger. Triangular co norms(TCs) knowns as

dual operations of triangular norms (TNs).

Definition 2.3 [4] A binary operation ? : [0, 1]× [0, 1]→ [0, 1] is called continuous t - norm

(CTN) if it satisfies the following conditions;

For all ε1, ε2, ε3, ε4 ∈ [0, 1]

(i) ε1 ? 0 = ε1;
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(ii) If ε1 ≤ ε3 and ε2 ≤ ε4 then ε1 ? ε2 ≤ ε3 ? ε4;

(iii) ? is continuous;

(iv) ? is commutative and associative.

Definition 2.4 [4] A binary operation � : [0, 1] × [0, 1] → [0, 1] is called continuous t - co

norm (CTC) if it satisfies the following conditions;

For all ε1, ε2, ε3, ε4 ∈ [0, 1]

(i) ε1 � 0 = ε1;

(ii) If ε1 ≤ ε3 and ε2 ≤ ε4 then ε1 � ε2 ≤ ε3 � ε4;

(iii) � is continuous;

(iv) � is commutative and associative.

Remark 2.5 From the definitions of CTN and CTC, we note that if we take 0 < ε1, ε2 < 1

for ε1 < ε2 then there exist 0 < ε3, ε4 < 1 such that ε1 ? ε3 ≥ ε2 and ε1 ≥ ε2 � ε4.

Further we choose ε5 ∈ (0, 1) then there exists ε6, ε7 ∈ (0, 1) such that ε6 ? ε6 ≥ ε5 and

ε7 � ε7 ≤ ε5.

Definition 2.6 [13] A Sequence {tn} is called s - non-decreasing sequence if there exists

m0 ∈ N such that tm ≤ tm+1 for all m > m0.

3. Neutrosophic Metric Space

In this section, we apply neutrosophic theory to generalize the Intuitionistic fuzzy metric

space. we also discuss some properties and examples in it.

Definition 3.1 A 6 - tuple (Σ,Ξ,Θ,Υ, ?, �)is called Neutrosophic Metric Space(NMS), if Σ is

an arbitrary non empty set, ? is a neutrosophic CTN and � is a neutrosophic CTC and Ξ,Θ,Υ

are neutrosophic sets on Σ2 × R+ satisfying the following conditions:

For all ζ, η, ω ∈ Σ, λ ∈ R+

(i) 0 ≤ Ξ(ζ, η, λ) ≤ 1; 0 ≤ Θ(ζ, η, λ) ≤ 1; 0 ≤ Υ(ζ, η, λ) ≤ 1;

(ii) Ξ(ζ, η, λ) + Θ(ζ, η, λ) + Υ(ζ, η, λ) ≤ 3;

(iii) Ξ(ζ, η, λ) = 1 if and only if ζ = η ;

(iv) Ξ(ζ, η, λ) = Ξ(η, ζ, λ) for λ > 0;

(v) Ξ(ζ, η, λ) ? Ξ(η, ζ, µ) ≤ Ξ(ζ, ω, λ+ µ), for all λ, µ > 0;

(vi) Ξ(ζ, η, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(vii) limλ→∞Ξ(ζ, η, λ) = 1 for all λ > 0;

(viii) Θ(ζ, η, λ) = 0 if and only if ζ = η ;

(ix) Θ(ζ, η, λ) = Θ(η, ζ, λ) for λ > 0;

(x) Θ(ζ, η, λ) �Θ(ζ, ω, µ) ≥ Θ(ζ, ω, λ+ µ), for all λ, µ > 0;

(xi) Θ(ζ, η, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(xii) limλ→∞Θ(ζ, η, λ) = 0 for all λ > 0;

(xiii) Υ(ζ, η, λ) = 0 if and only if ζ = η;
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(xiv) Υ(ζ, η, λ) = Υ(η, ζ, λ) for λ > 0;

(xv) Υ(ζ, η, λ) �Υ(ζ, ω, µ) ≥ Υ(ζ, ω, λ+ µ), for all λ, µ > 0;

(xvi) Υ(ζ, η, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(xvii) limλ→∞Υ(ζ, η, λ) = 0 for all λ > 0;

(xviii) If λ > 0 then Ξ(ζ, η, λ) = 0,Θ(ζ, η, λ) = 1,Υ(ζ, η, λ) = 1.

Then (Ξ,Θ,Υ) is called Neutrosophic Metric on Σ. The functons Ξ,Θ and Υ denote degree of

closedness, neturalness and non - closedness between ζ and η with respect to λ respectively.

Example 3.2 Let (Σ, d) be a metric space. Define ζ ?η = min{ζ, η} and ζ �η = max{ζ, η},
and Ξ,Θ,Υ : Σ2 × R+ → [0, 1] defined by , we define

Ξ(ζ, η, λ) =
λ

λ+ d(ζ, η)
; Θ(ζ, η, λ) =

d(ζ, η)

λ+ d(ζ, η)
; Υ(ζ, η, λ) =

d(ζ, η)

λ

for all ζ, η ∈ Σ and λ > 0. Then (Σ,Ξ,Θ,Υ, ?, �) is called neutrosophic metric space induced

by a metric d the standard neutrosophic metric.

Example 3.3 If we take Σ = N, consider the CTN, CTC are ζ ? η = min{ζ, η} and

ζ � η = max{ζ, η}, Ξ,Θ,Υ : Σ2 × R+ → [0, 1] defined by

Ξ(ζ, η, λ) =


ζ
η if ζ ≤ η
η
ζ if η ≤ ζ

Θ(ζ, η, λ) =


η−ζ
η if ζ ≤ η
ζ−η
ζ if η ≤ ζ

Υ(ζ, η, λ) =

η − ζ if ζ ≤ η

ζ − η if η ≤ ζ

for all ζ, η ∈ Σ and λ > 0. Then Ξ,Θ,Υ : Σ2 × R+ → [0, 1] is a NMS.

Remark 3.4 In Neutrosophic Metric space Ξ is non - decreasing , Θ is a non - increasing , Υ

is decreasing for all ζ, η ∈ Σ.

Definition 3.5 Let (Σ,Ξ,Θ,Υ, ?, �) be neutrosophic metric space . Then

(a) a sequence {ζn} in Σ is converging to a point ζ ∈ Σ if for each λ > 0

limλ→∞Ξ(ζ, η, λ) = 1; limλ→∞Θ(ζ, η, λ) = 0; limλ→∞Υ(ζ, η, λ) = 0.

(b) a sequence ζn in Σ is said to be Cauchy if for each ε > 0 and λ > 0 there exist N ∈ N
such that Ξ(ζn, ζm, λ) > 1− ε ; Θ(ζn, ζm, λ) < ε ; Υ(ζn, ζm, λ) < ε for all n, m ≤ N.

(c) (Σ,Ξ,Θ,Υ, ?, �) is said to be complete neutrosophic metric space if every Cauchy

sequence is convergent.

(d) (Σ,Ξ,Θ,Υ, ?, �) is called compact neutrosophic metric space if every sequence contains

convergent sub sequence.
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4. Main Results

Theorem 4.1 (Neutrosophic Banach Contraction Theorem) Let (Σ,Ξ,Θ,Υ, ?, �) be a

complete neutrosophic metric space. Let z : Σ→ Σ be a function satisfying

Ξ(zζ,zη, λ) ≥ Ξ(ζ, η, λ); Θ(zζ,zη, λ) ≤ Θ(ζ, η, λ); Υ(zζ,zη, λ) ≤ Υ(ζ, η, λ) (4.1.1)

for all ζ, η ∈ Σ. 0 < k < 1. Then z has unique fixed point.

Proof: Let ζ ∈ Σ and {ζn} = zn(a) (n ∈ N). By Mathematical induction, we obtain

Ξ(ζn, ζn+1, λ) ≥ Ξ(ζ, ζ1,
λ

kn
); Θ(ζn, ζn+1, λ) ≤ Θ(ζ, ζ1,

λ

kn
); Υ(ζn, ζn+1, λ) ≤ Υ(ζ, ζ1,

λ

kn
) ....(4.1.2)

for all n > 0 and λ > 0. Thus for any non-negative integer p, we have

Ξ(ζn, ζn+p, λ) ≥ Ξ(ζ, ζn+1,
λ

p
) ? · · ·(p−times) · · · ? Ξ(ζn+p−1, ζn+p,

λ

p
)

≥ Ξ(ζ, ζ1,
λ

pkn
) ? · · ·(p−times) · · · ? Ξ(ζ, ζ1,

λ

pkn+p−1
)

Θ(ζn, ζn+p, λ) ≤ Θ(ζ, ζn+1,
λ

p
) � · · ·(p−times) · · · �Θ(ζn+p−1, ζn+p,

λ

p
)

≤ Θ(ζ, ζ1,
λ

pkn
) � · · ·(p−times) · · · �Θ(ζ, ζ1,

λ

pkn+p−1
)

Υ(ζn, ζn+p, λ) ≤ Υ(ζ, ζn+1,
λ

p
) � · · ·(p−times) · · · �Υ(ζn+p−1, ζn+p,

λ

p
)

≤ Υ(ζ, ζ1,
λ

pkn
) � · · ·(p−times) · · · �Υ(ζ, ζ1,

λ

pkn+p−1
)

by (4.1.2) and the definition of NMS conditions, we get

limn→∞Ξ(ζn, ζn+p, λ) ≥ 1 ? · · ·(p−times) · · · ? 1 = 1

limn→∞Θ(ζn, ζn+p, λ) ≤ 0 � · · ·(p−times) · · · � 0 = 0

limn→∞Υ(ζn, ζn+p, λ) ≤ 0 � · · ·(p−times) · · · � 0 = 0.

Therefore, {ζn} is Cauchy sequence and it is convergent to a limit, let the limit point is η.

Thus, we get

Ξ(zη, η, t) ≥ Ξ(zη,zζn,
λ

2
) ? Ξ(ζn+1, η,

λ

2
)

≥ Ξ(η, ζn,
λ

2k
) ? Ξ(ζn+1, η,

λ

2
)→ 1 ? 1 = 1.

Θ(zη, η, λ) ≤ Θ(zη,zζn,
λ

2
) �Θ(ζn+1, η,

λ

2
)

≤ Θ(η, ζn,
λ

2k
) �Θ(ζn+1, η,

λ

2
)→ 0 � 0 = 0.

Υ(zη, η, λ) ≤ Υ(zη,zζn,
λ

2
) �Υ(ζn+1, η,

λ

2
))

≤ Υ(η, ζn,
λ

2k
) �Υ(ζn+1, η,

λ

2
)→ 0 � 0 = 0.
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Since we see that

Ξ(ζ, η, λ) = 1 iff ζ = η; Θ(ζ, η, λ) = 0 iff ζ = η; Υ(ζ, η, λ) = 0 iff ζ = η

we get zη = η, which is the fixed point of Neutrosophic metric space.

To show the uniqueness, let us assume that zω = ω for some ω ∈ Σ

1 ≥ Ξ(ζ, ω, λ) = Ξ(zη,zω, λ) ≥ Ξ(ζ, ω,
λ

k
) = Ξ(zη,zη,

λ

k
) ≥ Ξ(ζ, ω,

λ

k2
)

≥ · · · ≥ Ξ(ζ, ω,
λ

kn
)→ 1 as n→∞

0 ≤ Θ(ζ, ω, λ) = Θ(zη,zωzω, λ) ≤ Θ(ζ, ω,
λ

k
) = Θ(zη,zω,

λ

k
) ≤ Θ(ζ, ω,

λ

k2
)

≤ · · · ≤ Θ(ζ, ω,
λ

kn
)→ 0 as n→∞

0 ≤ Υ(ζ, ω, λ) = Υ(zη,zω, λ) ≤ Υ(ζ, ω,
λ

k
) = Υ(zη,zω,

λ

k
) ≤ Υ(ζ, ω,

λ

k2
)

≤ · · · ≤ Υ(ζ, ω,
λ

kn
)→ 0 as n→∞.

From the definition of NMS, We get η = ω. Therefor, z has a unique fixed point.

Lemma 4.2 (a) If limn→∞ζn = ζ and limn→∞ηn = η, then

Ξ(ζ, η, λ− ε) ≤ limn→∞inf Ξ(ζn, ηn, λ)

Θ(ζ, η, λ− ε) ≥ limn→∞sup Θ(ζn, ηn, λ)

Υ(ζ, η, λ− ε) ≥ limn→∞sup Υ(ζn, ηn, λ)

(b) If limn→∞ζn = ζ and limn→∞ηn = η, then

Ξ(ζ, η, λ+ ε) ≥ limn→∞sup Ξ(ζn, ηn, λ)

Θ(ζ, η, λ+ ε) ≤ limn→∞inf Θ(ζn, ηn, λ)

Υ(ζ, η, λ+ ε) ≤ limn→∞inf Υ(ζn, ηn, λ)
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for all λ > 0 and 0 < ε < λ.

Proof for(a): By the definition of NMS, conditions (v),(x) and (xv)

Ξ(ζn, ηn, λ) ≥ Ξ(ζn, ζ,
ε

2
) ? Ξ(ζ, η, λ− ε) ? Ξ(η, ηn,

ε

2
)

limn→∞inf Ξ(ζn, ηn, λ) ≥ 1 ? Ξ(ζ, η, λ− ε) ? 1

Hence, limn→∞inf Ξ(ζn, ηn, λ) ≥ Ξ(ζ, η, λ− ε)

Θ(ζn, ηn, λ) ≤ Θ(ζn, ζ,
ε

2
) �Θ(ζ, η, λ− ε) �Θ(η, ηn,

ε

2
)

limn→∞sup Θ(ζn, ηn, λ) ≤ 0 �Θ(ζ, η, λ− ε) � 0

Hence, limn→∞sup Θ(ζn, ηn, λ) ≤ Θ(ζ, η, λ− ε)

Υ(ζn, ηn, λ) ≤ Υ(ζn, ζ,
ε

2
) �Υ(ζ, η, λ− ε) �Υ(η, ηn,

ε

2
)

limn→∞sup Υ(ζn, ηn, λ) ≤ 0 �Υ(ζ, η, λ− ε) � 0

Hence, limn→∞sup Υ(ζn, ηn, λ) ≤ Θ(ζ, η, λ− ε)

Proof for (b):By the definition of NMS, conditions (v),(x) and (xv)

Ξ(ζ, η, λ+ ε) ≥ Ξ(ζ, ζn,
ε

2
) ? Ξ(ζn, ηn, ε) ? Ξ(ηn, η,

ε

2
)

Hence, Ξ(ζ, η, λ+ ε) ≥ limn→∞supΞ(ζn, ηn, ε)

Θ(ζ, η, λ+ ε) ≤ Ξ(ζ, ζn,
ε

2
) �Θ(ζn, ηn, ε) �Θ(ηn, η,

ε

2
)

Hence, Θ(ζ, η, λ+ ε) ≤ limn→∞infΘ(ζn, ηn, ε)

Υ(ζ, η, λ+ ε) ≤ Υ(ζ, ζn,
ε

2
) �Υ(ζn, ηn, ε) �Υ(ηn, η,

ε

2
)

Hence, Υ(ζ, η, λ+ ε) ≤ limn→∞infΥ(ζn, ηn, ε)

Corollary 4.3 If limn→∞ζn = a and limn→∞ηn = η, then

(a) Ξ(ζ, η, λ) ≤ limn→∞inf Ξ(ζn, ηn, λ);

Θ(ζ, η, λ) ≥ limn→∞sup Θ(ζn, ηn, λ);

Υ(ζ, η, λ) ≥ limn→∞sup Υ(ζn, ηn, λ)....(4.3.1)

(b) Ξ(ζ, η, λ) ≥ limn→∞sup Ξ(ζn, ηn, λ)

Θ(ζ, η, λ) ≤ limn→∞inf Θ(ζn, ηn, λ)

Υ(ζ, η, λ) ≤ limn→∞inf Υζn, ηn, λ)....(4.3.2)

for all λ > 0 and 0 < ε < λ.

Theorem 4.4 (Neutrosophic Edelstein Contraction Theorem) Let (Σ,Ξ,Θ,Υ, ?, �) be com-

pact neutrosophic metric space. Let z : Σ→ Σ be a function satisfying

Ξ(zζ,zη, .) > Ξ(ζ, η, .); Θ(zζ,zη, .) < Θ(ζ, η, .); Υ(zζ,zη, .) < Υ(ζ, η, .).....(4.4.1)

S Sowndrarajan, M Jeyaraman, Florentin Smarandache; Fixed Point Results for Contraction
Theorems in Neutrosophic Metric Spaces.



Neutrosophic Sets and Systems, Vol. 36, 2020 315 of 318

Then z has fixed point.

Proof: Let a ∈ Σ and an = znζ (n ∈ N). Assume ζn 6= ζn+1 for each n (If not zζn = ζn)

consequently an 6= an+1 (n 6= m), For otherwise we get

Ξ(ζn, ζn+1, .) = Ξ(ζm, ζm+1, .) > Ξ(ζm−1, ζm, .) > · · · > Ξ(ζn, ζn+1, .)

Θ(ζn, ζn+1, .) = Θ(ζm, ζm+1, .) < Θ(ζm−1, ζm, .) < · · · < Θ(ζn, ζn+1, .)

Υ(ζn, ζn+1, .) = Υ(ζm, ζm+1, .) < Υ(ζm−1, ζm, .) < · · · < Υ(ζn, ζn+1, .)

where m > n , which is a contradiction. Since Σ is compact set, {ζn} has convergent sub

sequence {ζni}. Let η = limi→∞ζni , Also we assume that η such that zη ∈ {ζni ; i ∈ N}.
According to the above assumption, we may now write,

Ξ(zζni ,zη, .) > Ξ(ζni , η, .); Θ(zζni ,zη, .) < Θ(ζni , η, .); Υ(zζni ,zη, .) < Υ(ζni , η, .)

for all i ∈ N. Then by equation (4.3.1) we obtain

lim infΞ(zζni ,zη, λ) ≥ lim Ξ(ζni , η, λ) = Ξ(η, η, λ) = 1

lim supΘ(zζni ,zη, λ) ≤ lim Θ(ζni , η, λ) = Θ(η, η, λ) = 0

lim supΥ(zζni ,zη, λ) ≤ lim Υ(ζni , η, λ) = Υ(η, η, λ) = 0

for each λ > 0. Hence

lim zζni = zη....(4.4.2)

Simillarly

lim z2ζni = limz2η...(4.4.3)

(we recall that lim zζni = zη for all (i ∈ N)), Now observe that,

Ξ(ζni ,zζni , λ) ≤ Ξ(zζni ,z
2ζni , λ) ≤ · · · ≤ Ξ(ζni ,zζni , λ)

≤ Ξ(zζni ,z
2ζni , λ) ≤ · · · ≤ Ξ(zζni+1 ,z

2ζni+1 , λ)

≤ Ξ(zζni+1 ,z
2ζni+1 , λ) ≤ · · · ≤ 1.

Θ(ζni ,zζni , λ) ≥ Θ(zζni ,z
2ζni , λ) ≥ · · · ≥ Θ(ζni ,zζni , λ)

≥ Θ(zζni ,z
2ζni , λ) ≥ · · · ≥ Θ(zζni+1 ,z

2ζni+1 , λ)

≥ Θ(zζni+1 ,z
2ζni+1 , λ) ≥ · · · ≥ 0.

Υ(ζni ,zζni , λ) ≥ Υ(zζni ,z
2ζni , λ) ≥ · · · ≥ Υ(ζni ,zζni , λ)

≥ Υ(zζni ,z
2ζni , λ) ≥ · · · ≥ Υ(zζni+1 ,z

2ζni+1 , λ)

≥ Υ(zζni+1 ,z
2ζni+1 , λ) ≥ · · · ≥ 0.
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for all λ > 0. Thus {Ξ(ζni ,zζni , λ)}, {Θ(ζni ,zζni , λ)}, {Υ(ζni ,zζni , λ)} and {(zζni ,z2ζni , λ)}
(λ > 0) are convergent to a common limit point . So by equations (4.3.1) , (4.3.2) and (4.4.1)

and we get,

Ξ(η,zη, λ) ≥ lim sup Ξ(ζni ,zζni , λ) = lim sup (zζni ,z
2ζni , λ)

≥ lim infΞ(zζni ,z
2ζni , λ)

≥ Ξ(zη,z2η, λ)

Θ(η,zη, λ) ≤ lim inf Θ(ζni ,zζni , λ) = lim inf Θ(zζni ,z
2ζni , λ)

≤ lim supΘ(zζni ,z
2ζni , λ)

≤ Θ(zη,z2η, λ)

Υ(η,zη, λ) ≤ liminf Υ(ζni ,zζni , λ) = lim inf Υ(zζni ,z
2ζni , λ)

≤ lim supΥ(zζzζni ,z
2ζni , λ)

≤ Υ(zη,z2η, λ)

for all λ > 0. Suppose b 6= zη, By equation (4.4.1)

Ξ(η,zη, .) < Ξ(zη,z2η, .); Θ(η,zη, .) > θ(zη,z2η, .); Υ(η,zη, .) > Υ(zη,z2η, .).

which is a contradiction , because all the above functions are left continuous , non -decreasing

and right continuous , non - increasing respectively. Hence η = zη is a fixed point.

To prove the uniqueness of the fixed point, let us consider z(ζ) = ω for some ζ ∈ Σ.

Then

1 ≥ Ξ(ζ, ω, λ) = Ξ(zη,zω, λ) ≥ Ξ(ζ, ω,
λ

k
) = Ξ(zη,zω,

λ

k
) ≥ · · · ≥ Ξ(ζ, ω,

λ

kn
)

0 ≤ Θ(ζ, ω, λ) = Θ(zη,zω, λ) ≤ Θ(ζ, ω,
λ

k
) = Θ(zη,zω,

λ

k
) ≤ · · · ≤ Θ(ζ, ω,

λ

kn
)

0 ≤ Υ(ζ, ω, λ) = Υ(zη,zω, λ) ≤ Υ(ζ, ω,
λ

k
) = Υ(zω,zω,

λ

k
) ≤ · · · ≤ Υ(ζ, ω,

λ

kn
)

Now , we easily verify that { λkn } is an s - increasing sequence, then by assumption for a given

ε ∈ (0, 1), there exists n0 ∈ N such that

Ξ(ζ, ω,
λ

kn
) ≥ 1− ε; Θ(ζ, ω,

λ

kn
) ≤ ε; Υ(ζ, ω,

λ

kn
) ≤ ε.

Clearly

limn→∞Ξ(ζ, ω,
λ

kn
) = 1; limn→∞Θ(ζ, ω,

λ

kn
) = 0; limn→∞Υ(ζ, ω,

λ

kn
) = 0.

Hence Ξ(ζ, ω, λ) = 1; Θ(ζ, ω, λ) = 0; Υ(ζ, ω, λ) = 0. Thus η = ω. Hence proved.
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Conclusion: In this study, we have investigated the concept of Neutrosophic Metric Space

and its properties. We have proved fixed point results for contraction theorems in the setting

of neutrosophic metric Space. There is a scope to establish many fixed point results in the

areas such as fuzzy metric, generalized fuzzy metric, bipolar and partial fuzzy metric spaces

by using the concept of Neutrosophic Set.
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