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Abstract. The main motivation of this article is to introduce the theme of Neutrosophic triplet(NT) Hv-

LA-Groups. This inspiration is recieved from the structure of weak non-associative Neutrosophic triplet(NT)

structures. For it, firstly, we define that each element x have left neut(x) and left anti(x) , which may or may

not unique. We further introduce the notion of neutrosophic triplet Hv-LA-subgroups and neutrosophic weak

homomorphism on NT Hv-LA-Group. Secondly, presented NT Hv-LA-Group and develop two Mathematica

Packages which help to check the left invertive law, weak left invertive law and reproductive axiom. Finally

established a numerical example to validate the proposed approach in chemistry using redox reactions.
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1. Introduction

Neutrosophic logic: Neutrosophy is the new branch of philosophy that studies the origin

and scope of neutralities, as well as their interaction with different ideational spectra. Smaran-

dache used the idea of neutrosophic set. He defined the theme of t-membership, i- membership

and f -membership, so neutrosophic logic generalize all previous versions, see [1], [2], [3]. Many

researchers have studied neutrosophic cubic set, complex neutrosophic cubic set, N-cubic set

and their applications in real life problems, see [52–55]. Further Abdel-Basset et. al., use

neutrosophic set in different direction and discuss their use in real life probems [56–60] More
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about the neutrosophic algebraic structures we refer the reader [4–6] and [7–12]. For the NT

groups see [13–18].

Hyperstructures theory: In 1934, Marty [19] introduced the theme of hyperstructures.

More about the hyperstructures we refer the reader [20–22]. The idea of weak structure, which

is known as Hv-structure is introduced by Vougiouklis [23], see also [24–31]. In 2007 Davvaz

and Fotea mainly dedicated to the study of hyperring theory [32]. Davvaz and Vougiouklis

[33], published recently a new book having title ”A walk through weak hyperstructures, Hv-

Structures” with some interesting applications of hyperstructures.

Left Invertive Structures: Kazim and Naseerudin [34] laid the idea of left almost semigroup

(denoted by LA-semigroup). Afterwards, Mushtaq [35] and some other researcher, further

worked in detail on the structure of LA-semigroup, see papers [36–42]. Hila and Dine [43] in

2011, furnished the idea of LA-semihypergroup. More detail can be seen in [44], [45], [46], [47],

[48], [49], [50], [51].

Our Approach: This paper is the continuation of our published paper [18] and it consists

of 6 sections. We arrange this work as: In section 2, we collected some of the relevant material

after the introduction. In section 3, we give a new class of algebraic hyperstructure known

as NT Hv-LA-Group, which is the main theme of LA-Group, LA-hypergroup, Hv-LA-Group.

In NT Hv-LA-Group each element k have left neut(k) and left anti(k) , which may or may

not unique. We also define the neutro weak homomorphism on NT Hv-LA-Group. Moreover,

we discuss many interesting properties of NT Hv-LA-Groups. In section 4, we provide the

construction of NT Hv-LA-Groups with the two Mathematica Packages which help to check

the left invertive law, weak left invertive law and reproductive axiom. In section 5, we present

the application of propose structure in chemical reactions. In section 6, we end with the

concluding remarks.

2. Preliminaries

In this section, we added some basic definition and result, which helped to prove the result

of our proposed structure.

Definition 2.1. [44] ”A hypergroupoid (ℵ, ◦) is called LA-semihypergroup, if it satisfies the

following law

([1 ◦ [2) ◦ [3 = ([3 ◦ [2) ◦ [1 for all [1, [2, [3 ∈ ℵ.

”

Example 2.2. [44] ”Let ℵ = Z if we define [1 ◦ [2 = [2 − [1 + 3Z, where [1, [2 ∈ Z. Then

(ℵ, ◦) become LA-semih ypergroup.”
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Definition 2.3. [24] ”The hyperoperation ∗ : ℵ × ℵ −→ P ∗(ℵ) is called weakly associative

hyperoperation (abbreviated as WASS) if for any [1, [2, [3 ∈ ℵ

([1 ∗ [2) ∗ [3 ∩ [1 ∗ ([2 ∗ [3) 6= φ

”

Definition 2.4. [24] ”The hyperoperation is weakly commutative (abbreviated as COW) if

for any [1, [2 ∈ ℵ

[1 ∗ [2 ∩ [2 ∗ [1 6= φ

”

Definition 2.5. [47] ”Let ℵ be non-empty set and ∗ be hyperoperation on ℵ. Then (ℵ, ∗) is

called an ℵv-LA-semigroup, if it satisfies the weak left invertive law for all [1, [2, [3 ∈ ℵ

([1 ∗ [2) ∗ [3 ∩ ([3 ∗ [2) ∗ [1 6= φ

”

Example 2.6. [47] ”Let ℵ = (0,∞) we define [1 ∗ [2 =
{

[2
[1+1 ,

[2
[1

}
where [1, [2 ∈ ℵ. Then for

all [1, [2, [3 ∈ ℵ. Then for all [1, [2, [3 ∈ ℵ satisfies ([1 ∗ [2) ∗ [3 ∩ ([3 ∗ [2) ∗ [1 6= φ. Hence (ℵ, ∗)
is an Hv-LA-semigroup.”

3. Neutrosophic Triplet(NT) Hv-LA-Groups

In this section, we define a new class of hyper algebraic structure known as NT Hv-LA-group

and discuss some results on NT Hv-LA-group.

Definition 3.1. Let (ℵ, ∗) be a left (resp., right, pure left, pure right) NT set. Then ℵ is called

left (resp., right, pure left , pure right) NT Hv-LA-group, if it satisfies the following axioms,

(1) (ℵ, ∗) is well defined,

(2) (ℵ, ∗) satisfies the weak left invertive law, i.e, ([1 ∗ [2) ∗ [3 ∩ ([3 ∗ [2) ∗ [1 6= φ for all

[1, [2, [3 ∈ ℵ,
(3) ℵ ∗ [1 = ℵ = ℵ ∗ [1 for all [1 ∈ ℵ.

Example 3.2. Let ℵ = {[1, [2, [3} be a finite set. The hyperoperation ∗ is defined in Table-1

∗ [1 [2 [3

[1 [1 {[1, [2} {[1, [3}
[2 [3 {ℵ} {[1, [2}
[3 [2 {[1, [3} {ℵ}

Table-1, neutrosophic triplet Hv-LA-group
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Here all elements of ℵ satisfy the weak left invertive law. Also left invertive law is not hold in

ℵ, i.e.

ℵ = ([1 ∗ [2) ∗ [3 6= ([3 ∗ [2) ∗ [1 = {[1, [2} .

Alike, associative law is not hold in ℵ i.e.

ℵ = ([3 ∗ [3) ∗ [1 6= [3 ∗ ([3 ∗ [1) = {[1, [3} .

Even, weak associative law is not valid here

{[2} = ([2 ∗ [1) ∗ [1 ∩ [2 ∗ ([1 ∗ [1) = {[3} = φ.

Here ([1, [1, [1) , ([2, [1, [2) , ([3, [1, [3) are left NT sets. Hence (ℵ, ∗) is a NT Hv-LA-group.

Proposition 3.3. Let (ℵ, ∗) be a pure right NT Hv-LA-group. Then neut ([1)∗[2 = neut ([1)∗
[3 if anti ([1) ∗ [2 = anti([1) ∗ [3 for all [1, [2, [3 ∈ ℵ.

Proof. Suppose (ℵ, ∗) is a pure right NT Hv-LA-group and anti ([1) ∗ [2 = anti([1) ∗ [3 for

[1, [2, [3 ∈ ℵ. Multiply [1 to the left side of ([1 ∗ anti ([1) ∗ [2 = ([1 ∗ anti([1)) ∗ [3,

([1 ∗ anti ([1)) ∗ [2 = ([1 ∗ anti([1)) ∗ [3

neut ([1) ∗ [2 = neut ([1) ∗ [3 (because neut([1) = [1 ∗ anti ([1) ).

Therefore, neut ([1) ∗ [2 = neut ([1) ∗ [3.

Theorem 3.4. Let (ℵ, ∗) be a pure right NT Hv-LA-group. Then neut([1) ∗ neut ([1) =

neut ([1).

Proof. Consider neut([1) ∗ neut ([1) = neut ([1) . Multiply first with [1 to the right, i.e.,

([1 ∗ (neut([1)) ∗ neut ([1) = [1 ∗ neut ([1)

(([1 ∗ neut ([1)) ∗ neut([1)) = [1

[1 ∗ neut ([1) = [1

[1 = [1.

This shows that neut([1) ∗ neut ([1) = neut ([1) .

Theorem 3.5. Let (ℵ, ∗) be a pure right NT Hv-LA-group. Then neut([1) ∗ anti ([1) =

anti ([1) .
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Proof. Let (ℵ, ∗) be a pure right NT Hv-LA-group. Multiply [1 to the left of both side neut([1)∗
anti ([1) = anti ([1) , i.e.

([1 ∗ (neut([1)) ∗ anti ([1) = [1 ∗ anti ([1)

[1 ∗ anti ([1) = neut([1)

neut([1) = neut ([1)

neut ([1) = neut ([1)

This shows that neut([1) ∗ anti ([1) = anti ([1) .

Theorem 3.6. Let (ℵ, ∗) be a pure left NT Hv-LA-group. Then neut (anti ([1)) = neut ([1) .

Proof. Let neut (anti ([1)) = neut ([1) . If we put anti ([1) = [2, then

neut ([2) = neut ([1) . Post multiply by [2

neut ([2) ∗ [2 = neut ([1) ∗ [2

[2 = neut ([1) ∗ [2

anti([1) = neut ([1) ∗ anti([1), as [2 = anti ([1)

anti ([1) = anti ([1) , By Theorem 3.5 neut ([1) ∗ anti([1) = anti([1).

Hence neut (anti ([1)) = neut ([1) .

Definition 3.7. A non-empty subset B of a left NT Hv-LA-group (ℵ, ∗) is called a left NT

Hv-LA-subgroup of ℵ, if B itself form NT Hv-LA-group under same hyperoperation defined in

ℵ.

Example 3.8. Let ℵ = {[1, [2, [3, [4} and the hyperoperation is defined in the Table-2

∗ [1 [2 [3 [4

[1 [1 [2 [3 [4

[2 [3 {[1, [3} {[2, [3} [4

[3 [2 {[1, [3} {[1, [3} [4

[4 [4 [4 [4 {[1, [2, [3}

Table-2, neutrosophic triplet Hv-LA-group

Here ([1, [1, [1) , ([2, [1, [2) , ([3, [2, [2) and ([4, [3, [4) are NT sets. As all elements of ℵ satisfy

the weak left invertive law but ℵ do not satisfies the left invertive law, associative law and
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weak associative law i.e.

{[1, [3} = ([2 ∗ [2) ∗ [3 6= ([3 ∗ [2) ∗ [2 = {[1, [2, [3}

and {[1, [3} = ([2 ∗ [2) ∗ [3 6= [2 ∗ ([2 ∗ [3) = {[1, [2, [3} .

Also {[2} = ([2 ∗ [1) ∗ [1 ∩ [2 ∗ ([1 ∗ [1) = {[3} = φ.

So (ℵ, ∗) is a NT Hv-LA-group. Here [ = {[1, [2, [3} is a NT Hv-LA-subgroup of ℵ.

Lemma 3.9. If (ℵ, ∗) is a NT Hv-LA group, then

([1 ∗ [2) ∗ ([3 ∗ [4) ∩ ([1 ∗ [3) ∗ ([2 ∗ [4) 6= φ,

hold for all [1, [2, [3, [4 ∈ ℵ.

Proof. Let

([1 ∗ [2) ∗ ([3 ∗ [4)

= ([1 ∗ [2) ∗ g, where g = ([3 ∗ [4)

= ([1 ∗ [2) ∗ g ∩ (g ∗ [2) ∗ [1 by the weak left invertive law

= ([1 ∗ [2) ∗ g ∩ (g ∗ [2) ∗ [1 by the weak-left invertive law

= ([1 ∗ [2) ∗ g ∩ {(g ∗ [2) ∗ [1} by the weak-left invertive law

= ([1 ∗ [2) ∗ ([3 ∗ [4) ∩ {(([3 ∗ [4) ∗ [2) ∗ [1} , where g = ([3 ∗ [4)

= ([1 ∗ [2) ∗ ([3 ∗ [4) ∩ {{(([3 ∗ [4) ∗ [2) ∩ ([2 ∗ [4) ∗ [3} ∗ [1}

= ([1 ∗ [2) ∗ ([3 ∗ [4) ∩ {(([3 ∗ [4) ∗ [2) ∗ [1} ∩ {(([2 ∗ [4) ∗ [3) ∗ [1}}

= ([1 ∗ [2) ∗ ([3 ∗ [4) ∩

{
(([3 ∗ [4) ∗ [2) ∗ [1 ∩ ([1 ∗ [2) ∗ ([3 ∗ [4)}
∩{(([2 ∗ [4) ∗ [3) ∗ [1 ∩ ([1 ∗ [3) ∗ ([2 ∗ [4)}

}
→ (1)
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Now

([1 ∗ [3) ∗ ([2 ∗ [4)

= ([1 ∗ [3) ∗ g, where g = ([2 ∗ [4)

= ([1 ∗ [3) ∗ g ∩ (g ∗ [3) ∗ [1 by the weak left invertive law

= ([1 ∗ [3) ∗ g ∩ (g ∗ [3) ∗ [1 by the weak-left invertive law

= ([1 ∗ [3) ∗ g ∩ {(g ∗ [3) ∗ [1} by the weak-left invertive law

= ([1 ∗ [3) ∗ ([2 ∗ [4) ∩ {(([2 ∗ [4) ∗ [3) ∗ [1} , where g = ([2 ∗ [4)

= ([1 ∗ [3) ∗ ([2 ∗ [4) ∩ {{(([2 ∗ [4) ∗ [3) ∩ ([3 ∗ [4) ∗ [2} ∗ [1}

= ([1 ∗ [3) ∗ ([2 ∗ [4) ∩ {(([2 ∗ [4) ∗ [3) ∗ [1} ∩ {(([3 ∗ [4) ∗ [2) ∗ [1}}

= ([1 ∗ [3) ∗ ([2 ∗ [4) ∩

{
(([2 ∗ [4) ∗ [3) ∗ [1 ∩ ([1 ∗ [3) ∗ ([2 ∗ [4)}
∩{(([3 ∗ [4) ∗ [2) ∗ [1 ∩ ([1 ∗ [2) ∗ ([3 ∗ [4)}

}
→ (2)

From (1) and (2) we have ([1 ∗ [2)∗([3 ∗ [4)∩([1 ∗ [3)∗([2 ∗ [4) 6= φ, hold for all [1, [2, [3, [4 ∈ ℵ.

This law is known as weak medial law.

Proposition 3.10. Let (ℵ, ◦) be a NT Hv-LA-group with left identity e and φ 6= A ⊆ ℵ. If

(A ◦ (A ◦ [1)) ◦ [2 ∩ (A ◦ (A ◦ [2)) ◦ [1 6= φ ∀[1, [2 ∈ ℵ and we define a hyperoperation A⊗
R on ℵ

as [1A
⊗
R[2 = ([1 ◦ [2) ◦A, then (ℵ, A⊗

R) become a NT Hv-LA-group.

Proof. Let [1, [2, [3 ∈ ℵ, we have

([1A
⊗
R[2)A

⊗
R[3 = (([1 ◦ [2) ◦A)A⊗

R[3

= ((([1 ◦ [2) ◦A) ◦ [3) ◦A

= (([3 ◦A) ◦ ([1 ◦ [2)) ◦A

= (A ◦ (A ◦ [3)) ◦ ([2 ◦ [1)

= [2 ◦ ((A ◦ (A ◦ [3)) ◦ [1)

and on the other hand

([3A
⊗
R[2)A

⊗
R[1 = (([3 ◦ [2) ◦A)A⊗

R[1

= ((([3 ◦ [2) ◦A) ◦ [3) ◦A

= (([1 ◦A) ◦ ([3 ◦ [2)) ◦A

= (A ◦ (A ◦ [1)) ◦ ([2 ◦ [3)

= [2 ◦ ((A ◦ (A ◦ [1)) ◦ [3)
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but

[2 ◦ ((A ◦ (A ◦ [3)) ◦ [1) ∩ [2 ◦ ((A ◦ (A ◦ [1)) ◦ [3) 6= φ

for all [1, [2, [3 ∈ ℵ. It follows that

([1A
⊗
R[2)A

⊗
R[3 ∩ ([3A

⊗
R[2)A

⊗
R[1 6= φ.

Next, we have

[1A
⊗
Rℵ = ([1 ◦ ℵ) ◦A = ℵ also HA⊗

R[1 = (ℵ ◦ [1) ◦A = ℵ.

Hence (ℵ, A⊗
R) become an Hv-LA-group.

Definition 3.11. Let (ℵ1, ◦) and (ℵ2, ∗) be two NT Hv-LA-groups. The map f : ℵ1 −→ ℵ2 is

called neutro homomorphism, if for all [1, [2 ∈ ℵ1, the following conditions hold,

1. f([1 ◦ [2) ∩ f([1) ∗ f([2) 6= φ,

2. f (neut ([1)) ∩ neut (f ([1)) 6= φ,

3. f (anti ([1)) ∩ anti (f ([1)) 6= φ.

Example 3.12. Let ℵ1 = {v1, v2, v3} and ℵ2 = {[1, [2, [3} are two finite sets, where (ℵ1, ∗)
and (ℵ2,◦) are NT Hv-LA-groups, the hyperoperation is defined in following tables 3,4:

∗ v1 v2 v3

v1 {v1} {v2} {v3}
v2 {v3} {v1, v2} {v2}
v3 {v2} {v3} {v3, v1}

Table-3, neutrosophic triplet Hv-LA-group

and

◦ [1 [2 [3

[1 [1 {[1, [2} {[1, [3}
[2 [3 {ℵ} {[1, [2}
[3 [2 {[1, [3} {ℵ}

Table-4, neutrosophic triplet Hv-LA-group

The mapping f : ℵ1 −→ ℵ2 is defined by f(v1) = [1 , f(v2) = [2 , f(v3) = [3. Then clearly f

is a neutro homomorphism.
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4. Construction Of Neutrosophic triplet(NT) Hv-LA-groups

In this section we provide the construction of NT Hv-LA-groups and develop two Math-

ematica Packages which help us to check the left invertive law, weak left invertive law and

reproductive axiom.

Consider a finite set ℵ, such that |ℵ| > 2. Define the hyperoperation ◦ on ℵ as follows

[i ◦ [j =


[j for i = 1

[[ for j = 1and [ ≡ 2− i mod |ℵ|
ℵ for i = j, i 6= 1, j 6= 1

[i otherwise, for i ≺ j or i � j


and if neut ([i) and anti ([i) exist in ℵ. Then ℵ under the hyperoperation ◦ forms a NT Hv-

LA-group.

The above construction can be explained with the help of an example.

Example 4.1. Let ℵ = {[1[2, [3} under the binary hyperoperation ◦ defined in Table-5

◦ [1 [2 [3

[1 [1 [2 [3

[2 [3 ℵ [2

[3 [2 [3 ℵ

Table-5, neutrosophic triplet Hv-LA-group

Here ([1, [1, [1) , ([2, [1, [2) and ([3, [1, [3) are NT set. One can see that ◦ satisfy the weak left

invertive law, also ◦ is non-left invertive and non-associative i.e.

ℵ = ([3 ◦ [3) ◦ [2 6= ([2 ◦ [3) ◦ [3 = [2

and ℵ = ([2 ◦ [2) ◦ [1 6= [2 ◦ ([2 ◦ [1) = [2.

Also it is not WASS([2 ◦ [1) ◦ [1 ∩ [2 ◦ ([1 ◦ [1) = φ. Hence (ℵ, ◦) is a NT Hv-LA-group. The

result of table can easily be generalized to n elements.

Remark 4.2. In NT Hv-LA-group, the property of Hv-LA-group can be checked

by using the mathematica packages. The mathematica package(A) used to check

the left invertive property and mathematica package(B) is used to check the

weak non associative hypergroups. We paste the mathematica packages as under:

Shah Nawaz, Muhammad Gulistan, and Salma Khan. Weak LA-hypergroups; Neutrosophy,
Enumeration and Redox Reaction



Neutrosophic Sets and Systems, Vol. 36, 2020 361

Mathematica Package (A)
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and

Mathematica Package (B)

5. Application of Our proposed Structure

In the universe, the femininity, masculinity and neutrality exist. If we take the small particle,

the small particle is an atom. The atom consists of three particle electrons, proton and neutron.

So, from the above idea of the universe gave the concept of NT set. (Masculine, Neutral,

feminine) and (Proton, Neutron, Electron) are the example of NT set.

There are three workers working in a factory. All three workers are disabled. The first

worker has the right hand and no left hand. Factory made such a machine on which he can

work with his right hand. The second worker has left hand but no right hand. Such a machine

is made for him, on which he worked with his left hand. The third worker has an issue working

with both of his hand. Such a machine is made for him, he works with his legs. All of these
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three worker’s working performance is shown by the following Table-6.

~ L R N

L R N {L,N}
R N L {R,N}
N L R N

Table-6, neutrosophic triplet Hv-LA-group

In this table L represents the performance the worker, who work with his left hand. R

represents the performance of the worker, who work with his right hand and N represents the

performance of the worker, whose both hand are not functioning properly. Let F = {L,R,N}
be a finite set the hyperoperation is defined in the above table, and (L,N,R) , (R,N,L) and

(N,L,L) are left NT set. (F,~) is a NT Hv-LA group.

5.1. Chemical example of Neutrosophic Triplet(NT) Hv-LA- group

The best example of NT Hv-LA-group in chemical reaction is a redox reaction.

Redox reaction: The chemical reaction in which one specie loss the electron and other

specie gain the electron. Oxidation mean loss of electron. Reduction mean gain of electron.

The redox reaction is a vital for biochemical reaction and industrial process. The electron

transfer in cell and oxidation of glucose in the human body are the example of redox reaction.

The reaction between hydrogen and fluorine is an example of redox reaction i.e.

ℵ2 + F −→ 2ℵF

ℵ2 −→ 2ℵ+ + 2e−( Oxidation)

F2 + 2e− −→ 2F (Reduction)

Each half reaction has standard reduction potential
(
E0
)

which is equal to the potential

difference at equilibrium under the standard condition of an electrochemical cell in which the

cathode reaction is half reaction considered and anode is a standard hydrogen electrode (SHE).

For the redox reaction, the potential of cell is defined as

E◦cell = E◦
cathode − E◦

anode

where E◦
cathode is the standard potential at the anode and E◦

cathode is the standard potential

at the cathode as given in the table of standard electrode potential. Now consider the redox

reaction of Mn

Mn0 + 2Mn+4 + 2Mn+3 −→ 3Mn+2 + 2Mn+4

Mn0 −→Mn+2 +Mn+4 + 2e− + 2Mn+3 + 2Mn+4.
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Manganese having a variable oxidation state of 0,+1,+2,+3,+4,+5,+6,+7. If we take

Mn0,Mn+4,Mn+3,Mn+4 together we will get pure redox reaction. The flow chart is given

as

Flow chart

Mn species with different oxidation state react with themselves. All possible reactions are

presented in the following Table-7

⊕ Mn0 Mn+1 Mn+2 Mn+3 Mn+4

Mn0 Mn0
{
Mn0,Mn+1

} {
Mn0,Mn+2

} {
Mn0,Mn+3

} {
Mn0,Mn+4

}
Mn+1

{
Mn0,Mn+1

} {
Mn0,Mn+2

} {
Mn0,Mn+3

} {
Mn+2

} {
Mn+1,Mn+4

}
Mn+2 Mn+1

{
Mn0,Mn+3

} {
Mn+1,Mn+3

} {
Mn+1,Mn+4

} {
Mn+2,Mn+4

}
Mn+3

{
Mn0,Mn+3

} {
Mn+1,Mn+3

} {
Mn+2,Mn+3

}
Mn+3

{
Mn+3,Mn+4

}
Mn+4

{
Mn0,Mn+4

} {
Mn+1,Mn+4

} {
Mn+2,Mn+4

} {
Mn+3,Mn+4

}
Mn+4

Table-7, All possible reactions

The standard reduction potentials
(
E0
)

for conversion of each oxidation state to another are

E0
(
Mn+4/Mn+3

)
= +0.95,

E0
(
Mn+3/Mn+2

)
= +1.542,

E0
(
Mn+2/Mn+1

)
= −0.59,

E0
(
Mn+1/Mn+0

)
= 0.296.

If we replace

Mn0 = [1,Mn+1 = [2,Mn+2 = [3,Mn+3 = [4,Mn+4 = [5,
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then we obtain the following Table-8

⊕ [1 [2 [3 [4 [5

[1 {[1} {[1, [2} {[1, [3} {[1, [4} {[1, [5}
[2 {[1, [2} {[1, [3} {[1, [4} {[3} {[2, [5}
[3 {[1, [3} {[1, [4} {[2, [4} {[2, [5} {[3, [5}
[4 {[1, [4} {[2, [4} {[3, [4} {[4} {[4, [5}
[5 {[1, [5} {[2, [5} {[3, [5} {[4, [5} {[5}

Table-8, NT Hv-LA-group

As all elements of ℵ satisfy the weak left invertive law but ℵ do not satisfy the left invertive

law, associative law and weak associative law

{[1, [3} = ([2 ⊕ [2)⊕ [1 6= ([1 ⊕ [2)⊕ [2 = {[1, [2, [3} ,

{[1, [2, [3, [4} = ([2 ⊕ [2)⊕ [3 6= [2 ⊕ ([2 ⊕ [3) = {[1, [2, [3} ,

and ([2 ⊕ [4)⊕ [4 = {[2, [5} ∩ [3 = [2 ⊕ ([4 ⊕ [4) = φ

Here ([1, [1, [1) , ([2, [4, [3), ([3, [4, [2) , ([4, [5, [3) and ([5, [4, [4) are NT sets. Hence (ℵ,⊕) is a

NT Hv-LA-group.

Remark 5.1. NT set, which helps the chemist to take the state of Mn which react or not react

easily with other state or themselves. M+0
n plays the role of neuta with different oxidation

state and themselves. If the Mn have the same neuta and anti, it means that Mn having equal

chances of loss or gain of electron.

6. Difference between the proposed work and existing methods

Our proposed structure has two main purpose,

1) This structure generalize the structure of groups, LA-groups, semigroups, LA-semigroup

and as well as the hyper versions of above mentioned structures.

2) As NT set has the abelity to capture indeterminacy in a much better way so our proposed

stricture of NT LA-semigroups can handle the uncertanity in a better way as we have seen in

the Redox reaction.

7. Conclusions

In this article, we have studied and introduced NT Hv LA- groups. We presented some

result on NT Hv LA-groups and construction of NT Hv-LA groups. We defined the neutro

homomorphism on NT Hv LA groups. Also, we use the Mathematica packages to check the

properties of left invertive and weak left invertive. Our defined structure have an interesting

application in chemistry redox reaction.
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