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above system is solvable and further using Chebychev Approximation we find a prinicipal solution if the given

systen is not solvable.
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—————————————————————————————————————————-

1. Introduction

In human judgment, the importance of relations is almost self-evident. But the problem is

mainly to pass from a vague and customary concept to a precisely formulated one. The theory

of fuzzy sets is a step in such a direction and we believe that a straightforward study of fuzzy

relations deserves to be developed for a better interpretation and explanation of real-world

problems. The system of fuzzy relation equations is an important topic in fuzzy set theory.

Sanchez [29] first introduced fuzzy relation equations with sup-inf composition in complete

Brouwerian lattices. Since then, many authors investigated the methods for solving fuzzy

relation equations with different composite operators over various special Brouwerian lattices.

Among them, for finite fuzzy relation equations with sup-inf composition, Higashi et,al. [10]

showed that the solution set can be determined by minimal solutions and the greatest solution

in the linear lattice [0,1]. The solvability and unique solvability of linear systems in the max-

min algebra which is one of the most important fuzzy algebra, and the related question of

the strong regularity of max-min matrices was considered in [5, 6]. Cechlarova [7] studied the
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unique solvability of linear systems of equation over the max-min fuzzy algebra on the unit

real interval. In 2010 Sriram and Murugadas discussed the relation between row space, column

space and regularity of Intuitionistic Fuzzy Matrix(IFM) etc.(see [25,26,31–35]). Pradhan and

Pal [27] introduced the concepts that the Intuitionistic Fuzzy Relation Equation of the form

A⊗ x = b is consistent when the coefficient IFM A is regular.

But all these theories have their inherent difficulties as pointed out by Molodtsove [24].

The reason for these difficulties is, possibly, the inadequacy of the parameterization tools of

the theories. The fuzzy soft set representation of the intuitionistic fuzzy soft set has been

studied by Maji et.al, [23]. Likewise, Rajarajeswari et.al [28], proposed new definitions for

intuitionistic fuzzy soft matrices and its sort.

The notion of Neutrosophic Set (NS) was introduced by Smarandache [30]. Deli [8] defined

Neutrosophic parameterized Neutrosophic soft sets (npn-soft sets) which is the combination of

NS and a soft set. Deli and Broumi [9] redefined the notion of NS in a new way and put forward

the concept of NSM and different types of matrices in neutrosophic soft theory. They have

introduced some new operations and properties on these matrices. For recent development of

NS in decision making theory see the work done by Abdel Basset et.al, [1–3] and N . Nabeeh

et.al, [18–20]. The minimal solution of NSM was done by Kavitha et.al, [12] based on the notion

of NSM given by Sumathi and Arokiarani [4]. As the time goes some works on NSM were done

by Kavitha et.al, [13–15,17]. The Monotone interval fuzzy neutrosophic soft eigenproblem and

Monotone fuzzy neutrosophic soft eigenspace structures in max-min algebra were investigated

by Murugadas et.al, [21,22]. Also, two kinds of fuzzy neutrosophic soft matrices are presented

by Uma et.al, [36].

In this paper, we will concentrate on the solvability of the system of NSLEs be solvable of

the form A ⊗ x(A; b) = b. We derived the maximum solution for a system of NSLEs and we

define that particular solution x(A; b) as principal solution. In the concluding section-5, we

have tried to give an algorithm for coefficient NSM A of an unsolvable system, A ⊗ x = b to

get a principal solution.

2. Preliminaries

In this section, some elementary aspects that are necessary for this paper are introduced.

Definition 2.1. [30] A neutrosophic set A on the universe of discourse X is defined as

A = {⟨x, TA(x), IA(x), FA(x)⟩, x ∈ X}, where T, I, F : X → ]−0, 1+[ and

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+. (1)]

From philosophical point of view the NS set takes the value from real standard or non-

standard subsets of ]−0, 1+[. But in real life application especially in Scientific and Engineer-

ing problems it is difficult to use NS with value from real standard or non-standard subset
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of ]−0, 1+[. Hence we consider the NS which takes the value from the subset of [0, 1]. Therefore

we can rewrite equation (1) as 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. In short an element ã in the

NS A, can be written as ã = ⟨aT , aI , aF ⟩, where aT denotes degree of truth, aI denotes degree

of indeterminacy, aF denotes degree of falsity such that 0 ≤ aT + aI + aF ≤ 3.

Definition 2.2. [4] A NS A on the universe of discourse X is defined as A =

{x, ⟨TA(x), IA(x), FA(x)⟩, x ∈ X}, where T, I, F : X → [0, 1] and 0 ≤ TA(x)+IA(x)+FA(x) ≤
3.

Definition 2.3. [24] Let U be the initial universe set and E be a set of parameter. Consider

a non-empty set A,A ⊂ E. Let P (U) denotes the set of all NSs of U. The collection (F,A) is

termed to be the NSS over U, where F is a mapping given by F : A → P (U). Here after we

simply consider A as NSS over U instead of (F,A).

Definition 2.4. [4] Let U = {c1, c2, ..., cm} be the universal set and E be the set of parame-

ters given by E = {e1, e2, ..., em}. Let A ⊂ E. A pair (F,A) be a NSS over U. Then the subset

of U × E is defined by RA = {(u, e); e ∈ A, u ∈ FA(e)}
which is called a relation form of (FA, E). The membership function, indeterminacy member-

ship function and non membership function are written by

TRA
: U × E → [0, 1], IRA

: U × E → [0, 1] and FRA
: U × E → [0, 1] where TRA

(u, e) ∈
[0, 1], IRA

(u, e) ∈ [0, 1] and FRA
(u, e) ∈ [0, 1] are the membership value, indeterminacy value

and non membership value respectively of u ∈ U for each e ∈ E.

If [(Tij , Iij , Fij)] = [Tij(ui, ej), Iij(ui, ej) , Fij(ui, ej)] we define a matrix

[⟨Tij , Iij , Fij⟩]m×n =


⟨T11, I11, F11⟩ · · · ⟨T1n, I1n, F1n⟩
⟨T21, I21, F21⟩ · · · ⟨T2n, I2n, F2n⟩

...
...

...

⟨Tm1, Im1, Fm1⟩ · · · ⟨Tmn, Imn, Fmn⟩

 .

Which is called an m× n FNSM of the NSS (FA, E) over U.

Definition 2.5. [36] Let A = (⟨aTij , aIij , aFij⟩), B = ⟨(bTij , bIij , bFij⟩) ∈ N(m,n), NSM of

order m × n) and N(n)-denotes a square NSM of order n. The component wise addition and

component wise multiplication is defined as

A⊕B = (sup{aTij , bTij}, sup{aIij , bIij}, inf{aFij , bFij})
A⊗B = (inf{aTij , bTij}, inf{aIij , bIij}, sup{aFij , bFij})
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Definition 2.6. Let A ∈ N(m,n), B ∈ N(n,p, the composition of A and B is defined as

A ◦B =

(
n∑

k=1

(aTik ∧ bTkj),

n∑
k=1

(aIik ∧ bIkj),

n∏
k=1

(aFik ∨ bFkj)

)
equivalently we can write the same as

=

(
n∨

k=1

(aTik ∧ bTkj),
n∨

k=1

(aIik ∧ bIkj),
n∧

k=1

(aFik ∨ bFkj)

)
.

The product A ◦B is defined if and only if the number of columns of A is same as the number

of rows of B. Then A and B are said to be conformable for multiplication. We shall use AB

instead of A ◦B.

Where
∑

(aTik ∧ bTkj) means max-min operation and
n∏

k=1

(aFik ∨ bFkj) means min-max operation.

Definition 2.7. [16] Let Vn will denote the set of all n-tuples (⟨vT1 , vI1 , vF1 ⟩, ..., ⟨vTn , vIn, vFn ⟩)
over [0, 1]3

An element of Vn is called a Neutrosophic Soft vector (NSV) of dimension n.

Definition 2.8. [16] If A ∈ N(m,n) and X ∈ N(n,m) satisfies the relation AXA = A then X is

called a generalized inverse(g-inverse) of A which is denoted by A−. The g-inverse of an NSM

is not necessarily unique. We denote the set of all g-inverses of A by A{1}.

Definition 2.9. [16] Let A = ⟨aTij , aIij , aFij⟩ ∈ N(m,n). Then the element ⟨aTij , aIij , aFij⟩ is called
the (i, j) entry of A. Let Ai∗(A∗j) denote the i

th row (column) of A. The row space R(A) of A
is the subspace of Vn generated by rows {Ai∗} of A. The column space C(A) of A is the space

of Vm generated by the columns {A∗j} of A.

Definition 2.10. [16] For NSM A,X ∈ N(m×n), are said to be a Moore-Penrose of A, if

AXA = A,XAX = X, (AX)t = AX and (XA)t = XA.

3. Results

Definition 3.1. (Linear combination of NSVs )

Let S = {⟨aT1 , aI1, aF1 ⟩, ⟨aT2 , aI2, aF2 ⟩, ..., ⟨aTp , aIp, aFp ⟩} be a set of NSV of dimension n. The

linear combination of elements of the set S is a finite sum
p∑

i=1
⟨cTi , cIi , cFi ⟩⟨aTi , aIi , aFi ⟩ where

⟨aTi , aIi , aFi ⟩ ∈ S and ⟨cTi , cIi , cFi ⟩ ∈ [0, 1]3. The set of all linear combinations of the elements of

S is calld the span of S, denoted by ⟨S⟩.

Here we illustrate the above concept.

Example 3.2. Let S = {⟨aT1 , aI1, aF1 ⟩, ⟨aT2 , aI2, aF2 ⟩, ⟨aT3 , aI3, aF3 ⟩} be a subset of V3, where

⟨aT1 , aI1, aF1 ⟩ = (⟨0.8, 0.7, 0.2⟩, ⟨0.6, 0.5, 0.4⟩, ⟨0.4, 0.3, 0.6⟩),
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⟨aT2 , aI2, aF2 ⟩ = (⟨0.5, 0.4, 0.6⟩, ⟨0.5, 0.4, 0.6⟩, ⟨0.4, 0.3, 0.6⟩),
and ⟨aT3 , aI3, aF3 ⟩ = (⟨0.7, 0.6, 0.3⟩, ⟨0.7, 0.6, 0.3⟩, ⟨0.9, 0.8, 0.1⟩). Then
⟨S⟩ = {⟨cT1 , cI1, cF1 ⟩(⟨0.8, 0.7, 0.2⟩, ⟨0.6, 0.5, 0.2⟩, ⟨0.4, 0.3, 0.6⟩)

+⟨cT2 , cI2, cF2 ⟩(⟨0.5, 0.4, 0.6⟩, ⟨0.5, 0.4, 0.6⟩, ⟨0.4, 0.3, 0.6⟩
+⟨cT3 , cI3, cF3 ⟩(⟨0.7, 0.6, 0.3⟩, ⟨0.7, 0.6, 0.3⟩, ⟨0.9, 0.8, 0.1⟩}.

Definition 3.3 (Dependenece of NSVs). A set S of NSVs is independent if and only if each

element of S can be expressed as a linear combination of other elements of S, that is, no

element s ∈ S is a linear combination of S \ {s}. If a vector α can be expressed by some

other vectors, then the vector α is called dependent otherwise it is called independent. These

terminologies are similar to classical vectors.

An independent and dependent set of vectors are illustrated below.

Example 3.4. Let S = {⟨aT1 , aI1, aF1 ⟩, ⟨aT2 , aI2, aF2 ⟩, ⟨aT3 , aI3, aF3 ⟩} be a subset of V3, where

⟨aT1 , aI1, aF1 ⟩ = (⟨0.8, 0.7, 0.2⟩, ⟨0.6, 0.5, 0.4⟩, ⟨0.4, 0.3, 0.6⟩),
⟨aT2 , aI2, aF2 ⟩ = (⟨0.5, 0.4, 0.6⟩, ⟨0.5, 0.4, 0.6⟩, ⟨0.4, 0.3, 0.6⟩), and
⟨aT3 , aI3, aF3 ⟩ = (⟨0.7, 0.6, 0.3⟩, ⟨0.7, 0.6, 0.3⟩, ⟨0.9, 0.8, 0.1⟩).

Here the set S is an independent set.

If not then ⟨aT1 , aI1, aF1 ⟩ = ⟨αT , αI , αF ⟩⟨aT2 , aI2, aF2 ⟩+ ⟨βT , βI , βF ⟩⟨aT3 , aI3, aF3 ⟩
for ⟨αT , αI , αF ⟩, ⟨βT , βI , βF ⟩ ∈ N . So

⟨aT1 , aI1, aF1 ⟩ = ⟨αT , αI , αF ⟩(⟨0.5, 0.4, 0.6⟩, ⟨0.5, 0.4, 0.6⟩, ⟨0.4, 0.3, 0.6⟩)
+⟨βT , βI , βF ⟩(⟨0.7, 0.6, 0.3⟩, ⟨0.7, 0.6, 0.3⟩, ⟨0.9, 0.8, 0.1⟩

= (⟨max{min(0.5, αT ),min(0.7, βT )},max{min(0.4, αI),min(0.6, βI)},
min{max(0.6, αF ),max(0.3, βF )}),
(⟨max{min(0.5, αT ),min(0.7, βT )},max{min(0.4, αI),min(0.6, βI)},
min{max(0.6, αF ),max(0.3, βF )}),

(⟨max{min(0.4, αT ),min(0.9, βT )},max{min(0.3, αI),min(0.8, βI)},
min{max(0.6, αF ),max(0.1, βF )}).

It is not possible to find any ⟨αT , αI , αF ⟩, ⟨βT , βI , βF ⟩ ∈ N such that the corresponding

coefficients on both sides will be equal. That is,

⟨aT1 , aI1, aF1 ⟩ ̸= ⟨αT , αI , αF ⟩⟨aT2 , aI2, aF2 ⟩+ ⟨βT , βI , βF ⟩⟨aT3 , aI3, aF3 ⟩. Similarly,

⟨aT2 , aI2, aF2 ⟩ ̸= ⟨αT , αI , αF ⟩⟨aT1 , aI1, aF1 ⟩+ ⟨βT , βI , βF ⟩⟨aT3 , aI3, aF3 ⟩ and
⟨aT3 , aI3, aF3 ⟩ ̸= ⟨αT , αI , αF ⟩⟨aT2 , aI2, aF2 ⟩+ ⟨βT , βI , βF ⟩⟨aT1 , aI1, aF1 ⟩. So the set S is independent.
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Let S = {⟨aT1 , aI1, aF1 ⟩, ⟨aT2 , aI2, aF2 ⟩} be a subset of V3,

where ⟨aT1 , aI1, aF1 ⟩ = (⟨0.7, 0.6, 0.3⟩, ⟨0.5, 0.4, 0.5⟩, ⟨0.6, 0.5, 0.4⟩) and
⟨aT2 , aI2, aF2 ⟩ = (⟨0.8, 0.7, 0.2⟩, ⟨0.5, 0.4, 0.5⟩, ⟨0.6, 0.5, 0.4⟩).
Here ⟨aT1 , aI1, aF1 ⟩ = ⟨cT , cI , cF ⟩(⟨aT2 , aI2, aF2 ⟩) for ⟨cT , cI , cF ⟩ = ⟨0.7, 0.6, 0.3⟩. So S is a dependent

set.

Definition 3.5 (Basis). Let W be an Neutrosophic Soft Subspace of Vn and S be a subset

of W such that the elements of S are independent. If every element of W can be expressed

uniquely as a linear combination of the elements of S, then S is called a basis of neutrosophic

soft subspace W .

Definition 3.6 (Standard basis). A basis B of an Neutrosophic Soft Vector Space (NSVS)

W is a standard basis if and only if whenever

⟨bTi , bIi , bFi ⟩ =
n∑

j=1
⟨aTij , aIij , aFij⟩⟨bTj , bIj , bFj ⟩ for ⟨bTi , bIi , bFi ⟩, ⟨bTj , bIj , bFj ⟩ ∈ N

and ⟨aTij , aIij , aFij⟩ ∈ [1, 0] then ⟨aTii, aIii, aFii⟩⟨bTi , bIi , bFi ⟩ = ⟨bTi , bIi , bFi ⟩.

Example 3.7. Let S = {⟨aT1 , aI1, aF1 ⟩, ⟨aT2 , aI2, aF2 ⟩, ⟨aT3 , aI3, aF3 ⟩} be a subset of V3 given by

a1 = (⟨0.5, 0.4, 0.5⟩, ⟨0.5, 0.4, 0.5⟩, ⟨0.5, 0.4, 0.5⟩) and
a2 = (⟨0.5, 0.4, 0.5⟩, ⟨0.6, 0.5, 0.4⟩, ⟨0.8, 0.7, 0.2⟩) and
a3 = (⟨0.4, 0.3, 0.6⟩, ⟨0.4, 0.3, 0.6⟩, ⟨0.8, 0.7, 0.2⟩).
Then S is independent set, since

⟨aT1 , aI1, aF1 ⟩ ̸= ⟨cT1 , cI1, cF1 ⟩(⟨aT2 , aI2, aF2 ⟩) + ⟨cT2 , cI2, cF2 ⟩(⟨aT3 , aI3, aF3 ⟩),
⟨aT2 , aI2, aF2 ⟩ ̸= ⟨cT3 , 3I3, cF3 ⟩⟨aT1 , aI1, aF1 ⟩+ ⟨cT4 , cI4, cF4 ⟩⟨aT3 , aI3, aF3 ⟩ and
⟨aT3 , aI3, aF3 ⟩ ̸= ⟨cT5 , cI5, cF5 ⟩(⟨aT1 , aI1, aF1 ⟩) + ⟨cT6 , cI6, cF6 ⟩(⟨aT2 , aI2, aF2 ⟩).
So {⟨aT1 , aI1, aF1 ⟩, ⟨aT2 , aI2, aF2 ⟩, ⟨aT3 , aI3, aF3 ⟩} is a basis for ⟨S⟩.
Now this is a standard basis . For, ⟨aT1 , aI1, aF1 ⟩ = ⟨cT11, cI11, cF11⟩(⟨aT1 , aI1, aF1 ⟩) +

⟨cT12, cI12, cF12⟩(⟨aT2 , aI2, aF2 ⟩) + ⟨cT13, cI13, cF13⟩(⟨aT3 , aI3, aF3 ⟩) holds if ⟨cT11, cI11, cF11⟩ = ⟨0.8, 0.7, 0.2⟩,
⟨cT12, cI12, cF12⟩ = ⟨0.5, 0.4, 0.5⟩ and ⟨cT13, cI13, cF13⟩ = ⟨0.6, 0.5, 0.4⟩.
Also ⟨aT1 , aI1, aF1 ⟩ = ⟨cT11, cI11, cF11⟩(⟨aT1 , aI1, aF1 ⟩) for ⟨cT11, cI11, cF11⟩ = ⟨0.8, 0.7, 0.2⟩.
Similarly for ⟨aT2 , aI2, aF2 ⟩ and ⟨aT3 , aI3, aF3 ⟩.

4. Solvability

In this section, we are going to study the system of NSLEs of the form,

A⊗ x = b (1)

that is

⟨max
j

min(aTij , x
T
j ),max

j
min(aIij , x

I
j ),min

j
max(aFij , x

F
j )⟩ = ⟨bTi , bIi , bFi ⟩ (2)
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where the NSM A ∈ N(m×n) and the NSV b ∈ N(m) are given and the NSV x ∈ N(n) is

unknown.

The solution set of the system defined in (1) for a given NSM A and an NSV b will be

denoted by S(A, b) = {x ∈ Nn|A⊗ x = b}.
Now our aim is to find whether the system (1) is solvable, that is, whether the solution set

S(A, b) is non-empty.

Lemma 4.1. Let us consider the system of NSLE A⊗ x = b.

If max
j

(⟨aTij , aIij , aFij⟩) < ⟨bTj , bIj , bFj ⟩ for some k, then S(A, b) = ϕ, that is the sysem is not

solvable.

Proof: If max
j

(⟨aTij , aIij , aFij⟩) < ⟨bTj , bIj , bFj ⟩ for some j, then

min
j

(⟨aTij , aIij , aFij⟩) ≤ ⟨aTij , aIij , aFij⟩ ≤ max
j

(⟨aTij , aIij , aFij⟩) < (⟨bTj , bIj , bFj ⟩)

Hence, ⟨max
j

min(aTij , x
T
i ),max

j
min(aIij , x

I
i ),min

j
max(aFij , x

F
i )⟩ < (⟨bTj , bIj , bFj ⟩) for some j, and

by equation (2) no values ⟨xTi , xIi , xFi ⟩ exists that satisfy the equation (1). Therefor S(A, b) = ϕ.

Remark 4.2. Let us consider the condition of the Lemma 4.1 be

max
j

(⟨aTij , aIij , aFij⟩) > (⟨bTj , bIj , bFj ⟩) for some j. Then according to the proof of the Lemma 4.1,

min
j

(⟨aTij , aIij , aFij⟩, ⟨xTi , xIi , xFi ⟩) ≥ ⟨aTij , aIij , aFij⟩ ≥ max(⟨aTij , aIij , aFij⟩) > (⟨bTj , bIj , bFj ⟩) implies the

only possibility is, ⟨aTij , aIij , aFij⟩ are same for all i. Then two case may arises,

Case-1: If ⟨bTj , bIj , bFj ⟩ are equal for all j. Then the system reduce to one equation. So that

the system is solvable.

Case-2: If ⟨bTj , bIj , bFj ⟩ are different for some j. Then the equation of the system will be such

that, all have the same left side with some different right side. Hence the system is not solvable.

Example 4.3. Let us consider the system of NSLEs A⊗ x = b where,

A =

⟨0.7 0.6 0.3⟩ ⟨0.3 0.2 0.7⟩
⟨0.6 0.5 0.4⟩ ⟨0.6 0.5 0.4⟩
⟨0.8 0.7 0.2⟩ ⟨0.4 0.3 0.6⟩

 and

b =

⟨0.4 0.3 0.6⟩
⟨1, 1, 0⟩

⟨0.5 0.4 0.5⟩

 .

Here for j = 2,

max{⟨0.3 0.2 0.7⟩, ⟨0.6 0.5 0.4⟩, ⟨0.4 0.3 0.6⟩} = ⟨0.6 0.5 0.4⟩ < ⟨1, 1, 0⟩. Hence by Lemma 4.1,

the system of NSLEs A⊗ x = b is not solvable.

The following theorem deduce the fact its solvability of a system of NSLEs of the form (1)

depends upon the characteristics of the coefficient NSM A.
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Theorem 4.4. The system of NSLEs of the form (1) has a solution if the non-zero rows of

the coefficient NSM A forms a standard basis for the row space of itself.

Proof: As the non-zero rows of the NSM A forms a standard basis for the row space of A, then

the NSM A be regular. That is there exists a g-inverse A− of A such that A⊗ A− ⊗ A = A.

Now, A⊗ x = b gives A⊗A− ⊗A⊗ x = b.

That implies, A ⊗ A− ⊗ b = b. Which shows, (A− ⊗ b) is a solution of the given sytem.

Therefore the system of NSLE is solvable.

Example 4.5. Let us consider the system of NSLEs A⊗ x = b. with

A =

[
⟨0.7 0.6 0.3⟩ ⟨0.6 0.5 0.4⟩ ⟨0.5 0.4 0.5⟩
⟨0.5 0.4 0.5⟩ ⟨0.6 0.5 0.4⟩ ⟨0.8 0.7 0.2⟩

]

X = [⟨xT1 , xI1, xF1 ⟩, ⟨xT2 , xI2, xF2 ⟩, ⟨xT3 , xI3, xF3 ⟩]T and

b =

[
⟨0.6 0.5 0.4⟩
⟨0.5, 0.4, 0.5⟩

]
.

Here the non-zero rows of the NSM S are linearly independent and form s standard basis .

So

A is regular and one of its g− inverse is

A− =

⟨0.8 0.7 0.2⟩ ⟨0.5 0.4 0.5⟩
⟨0.5 0.4 0.5⟩ ⟨0.5 0.4 05⟩
⟨0.5 0.4 0.5⟩ ⟨0.8 0.7 0.2⟩


x = A−b =

⟨0.6 0.5 0.4⟩
⟨0.5 0.4 0.3⟩
⟨0.5 0.4 0.5⟩


This is one of the solution of the above system of NSLEs.

The assertion of the g−inverse of a NSM A is not unique. So the solution of a system of

NSLEs may have many solution. Among these solutions the maximum solution is defined as

follows.

Definition 4.6. Any arbitrary element x̄ of S(A, b) is called a maximum solution of the system

A⊗ x = b if for all x ∈ S(A, b), x ≥ x̄ implies x = x̄.

The following theorem demonstrate how to find the maximum solution of the system of

NSLEs.
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Theorem 4.7. If for a system of NSLEs A ⊗ x = b has a solution denoted by x̄(A, b) and is

defined by

x̄ = ⟨x̄T , x̄I , x̄F ⟩ =

⟨1, 1, 0⟩ if ⟨aTij , aIij , aFij⟩ ≤ ⟨bTj , bIj , bFj ⟩ ∀imin{⟨bTj , bIj , bFj ⟩} if ⟨aTij , aIij , aFij⟩ > ⟨bTj , bIj , bFj ⟩,

is the maximum solution.

Proof: As the system of NSLEs A ⊗ x = b has a solution, so it is consistent, then x̄ is a

solution of the system. If x̄ is not a solution, then A⊗ x ̸= b and therefore

max
j

min(aTij , x
T
j ),max

j
min(aIij , x

I
j )min

j
max(aFij , x

F
j ) ̸= (⟨bTj0 , b

I
j0
, bFj0⟩) for at least one j0. The

above definition of x̄,

since ⟨x̄Ti , x̄Ii , x̄Fi ⟩ ≤ ⟨bTj , bIj , bFj ⟩ for each j, so

⟨x̄Ti , x̄Ii , x̄Fi ⟩ ≤ ⟨bTj0 , b
I
j0
, bFj0⟩. By our assumption, max

j
(⟨aTij , aIij , aFij⟩ < ⟨bTj0 , b

I
j0
, bFj0⟩) for some j0

and by Lemma 4.1 it follows that S(A, b) = ϕ, which is a contradiction. Hence x̄ is a solution

of the system A⊗ x = b.

Now let us prove that x̄ is a maximum solution. If possible let us assume that y = ⟨yT , yI , yF ⟩
be a solution of the system such that y > x̄, that is

⟨yTi0 , y
I
i0
, yFi0⟩ > ⟨x̄

T
i0
, x̄Ii0 , x̄

F
i0
⟩ for at least one i0.

Therefore by definition of x̄, we have ⟨yTi0 , y
I
i0
, yFi0⟩ > min(⟨bTj , bIj , bFj ⟩) when ⟨aTi0j , a

I
i0j

, aFi0j⟩ >
⟨bTj , bIj , bFj ⟩ for some j. Again, since S(A, b) ̸= ∅, by Lemma 4.1,

max
i

(⟨aTij0 , a
I
ij0

, aFij0⟩ > ⟨b
T
j0
, bIj0 , b

F
j0
⟩) for each j0.

Hence, ⟨bTj0 , b
I
j0
, bFj0⟩ ̸= ⟨max

i
min(aTij0 , y

T
i ),max

i
min(aIij0 , y

I
i ),min

i
max(aFij0 , y

F
i ), which contra-

dicts our assumption y ∈ S(A, b).

Therefore, x̄ is the maximum solution of the system of NSLEs A⊗ x = b.

Example 4.8. Given

A =

[
⟨0.7 0.6 0.3⟩ ⟨0.6 0.5 0.4⟩ ⟨0.5 0.4 0.5⟩
⟨0.5 0.4 0.5⟩ ⟨0.6 0.5 0.4⟩ ⟨0.8 0.7 0.2⟩

]
and

b =

[
⟨0.5 0.4 0.5⟩
⟨0.6, 0.5, 0.4⟩

]
.

From the definition of maximum solution,

x1 = ⟨0.5 0.4 0.5⟩, x2 = ⟨0.6 0.5 0.4⟩,
x3 = ⟨0.5 0.4 0.5⟩. So x̄ = [⟨0.5 0.4 0.5⟩, ⟨0.6 0.5 0.4⟩, ⟨0.5 0.4 0.5⟩]T . Thus, S(A, b) ̸= ϕ and

A ⊗ x̄ = b hold. Hence x = [⟨0.5 0.4 0.5⟩, ⟨0.6 0.5 0.4⟩, ⟨0.5 0.4 0.5⟩]t = x̄ is the maximum

solution.

Now we consider the definition 2.10 of Moore-Penrose Inverse.
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Theorem 4.9. Let us consider a system of NSLEs (1). The system must have a solution, that

is, must be consistent if the coefficient NSM A is a symmetric and idempotent of order n.

Proof: Since A is symmetric and idempotent square NSM, that is A itself is a Moore-Penrose

inverse. That is, A = A+. So in the case the solution will be

x = A+b = Ab.

Example 4.10. Consider the system of NSLEs A⊗ x = b where,

A =

[
⟨0.8 0.7 0.2⟩ ⟨0.6 0.5 0.4⟩
⟨0.6 0.5 0.4⟩ ⟨0.7 0.6 0.3⟩

]
and

b =

[
⟨0.8 0.7 0.2⟩
⟨0.6, 0.5, 0.4⟩

]
.

Here, AT = A and A2 = A, that is, the NSM A is symmetric and idempotent. So the Moore-

Penrose inverse A+ of A is itself A. Then the solution will be

x = A+b = Ab = [⟨0.8 0.7 0.2⟩, ⟨0.6, 0.5, 0.4⟩]t.

5. Chebychev Approximation

In this section, we describe an algorithm by which we approach the right hand side of the

system of NSLEs A⊗ x = b by successively changing the original NSM A ∈ Nm×n to a NSM

D ∈ Nm×n such that D ⊗ x = b is solvable.

Let us consider the solution or tolerable solution x
′
(A; b) of the system of NSLEs

A⊗ x = b as x
′
(A; b) =

⟨1, 1, 0⟩ if ⟨aTij , aIij , aFij⟩ ≤ ⟨bTi , bIi , bFi ⟩ ∀imin{⟨bTi , bIi , bFi ⟩} if ⟨aTij , aIij , aFij⟩ > ⟨bTi , bIi , bFi ⟩ (3)

Now if we define that the system (1) is solvable if and only if (3) is its solution,

that is A⊗ x
′
(A, b) = b holds, but in general A⊗ x

′
(A; b) ≤ b holds always. So our aim is, by

changing the NSM A and retain the right hand side of the system same to make the system

solvable.

First we have to define some importent Definitions.

Definition 5.1. The Chebychev distance of two NSMs A,B ∈ N(m×n) is denoted by ρ(A,B)

and is defined by

ρ(A,B) = ⟨max
i,j
|aTij − bTij |,max

i,j
|aIij − bIij |,min

ij
|aFi,j − bFij |⟩.

The Chebychev distance of a NSM A ∈ N(m×n) and the set S ∈ N(m×n) is defined by ρ(A,S) =

inf
B∈S

ρ(A,B).
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Definition 5.2. We say that a NSM B ∈ N(m×n) is closer to a NSV v ∈ N(m) than a NSM

A ∈ N(m×n) if

⟨aTij , aIij , aFij⟩ ≤ ⟨bTij , bIij , bFij⟩ ≤ ⟨vTi , vIi , vFi ⟩ or ⟨aTij , aIij , aFij⟩ ≥ ⟨bTij , bIij , bFij⟩ ≥ ⟨vTi , vIi , vFi ⟩ for all

indices i ∈M and j ∈ N and we denote by A→ B ← v.

Lemma 5.3. Let us consider two NSMs A,C ∈ N(m×n) and the NSV b ∈ N(m) such that

A→ C ← b. Then x
′
(C; b) ≥ x

′
(A; b).

Proof: From the definition of the solution of the system of NSLEs of the form A⊗ x = b we

have,

x
′
(C; b) =

⟨1, 1, 0⟩ if ⟨cTij , cIij , cFij⟩ ≤ ⟨bTi , bIi , bFi ⟩ ∀imin{⟨bTi , bIi , bFi ⟩} if ⟨cTij , cIij , cFij⟩ > ⟨bTi , bIi , bFi ⟩

and

x
′
(A; b) =

⟨1, 1, 0⟩ if ⟨aTij , aIij , aFij⟩ ≤ ⟨bTi , bIi , bFi ⟩ ∀imin{⟨bTi , bIi , bFi ⟩} if ⟨aTij , aIij , aFij⟩ > ⟨bTi , bIi , bFi ⟩.

Now, as A→ C ← b, we have

{i; ⟨cTij , cIij , cFij⟩ > ⟨bTi , bIi , bFi ⟩} ⊆ {i; ⟨aTij , aIij , aFij⟩ > ⟨bTi , bIi , bFi ⟩} for each j ∈ N. So x
′
(C; b) ≥

x
′
(A; b).

Lemma 5.4. Let A and C be two NSMs of order (m × n) and b ∈ N(m) be a NSV with

A→ C ← b. If A⊗ x = b is solvable then C ⊗ x = b is solvable.

Proof: From our assumption, solvability of A⊗ x = b means that A⊗ x
′
(A, b) = b. Then ith

equation of which gives,
n∑

j=1
⟨aTij , aIij , aFij⟩ ⊗ x

′
j(A; b) = bi. (4)

Le us suppose that in (4) the equality has been achieved in term k.

Thus, ⟨aTik, aIik, aFik⟩ ⊗ x
′
(A; b) = bi which is only possible if

⟨aTik, aIik, aFik⟩ ≥ ⟨bTi , bIi , bFi ⟩ as well as x
′
k(X; b) ≥ bi.

Since, A → C ← b, we get ⟨aTik, aIik, aFik⟩ ≥ ⟨cTik, cIik, cFik⟩ ≥ ⟨bTi , bIi , bFi ⟩ and Lemma 5.3

gives, x
′
k(C; b) ≥ x

′
k(A; b) ≥ bi. This implies, ⟨cTik, cIik, cFik⟩ ⊗ x

′
k(C; b) ≥ bj . Again for any NSM

C,C ⊗ x
′
(C; b) ≤ bi.

Hence the only possibility is, C ⊗ x
′
(C; b) = b, that is, C ⊗ b = b is solvable.

Lemma 5.5. Let us consider the system of NSLE A ⊗ x = b and x
′
(A; b) be its tolerable

solution. If there exists a NSM D such that, D ⊗ x = b is solvable with ρ(A,D) = δ, then

there exists NSM C such that A→ C ← b and ρ(A,C) ≤ δ with C ⊗ x = b is solvable.
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Proof: The NSM C can be chosen in three different way.

Case-1: If ⟨bTi , bIi , bFi ⟩ ≤ ⟨aTi , aIi , aFi ⟩ ≤ ⟨dTi , dIi , dFi ⟩ or
⟨bTi , bIi , bFi ⟩ ≥ ⟨aTi , aIi , aFi ⟩ ≥ ⟨dTi , dIi , dFi ⟩, we set

cij = ⟨cTij , cIij , cFij⟩ = ⟨max{bTi , aTij − (dTij − aTij)},max{bIi , aIij − (dIij − aIij)},
min{bFi , aFij + (aFij − dFij)}⟩

=⟨max{bTi , (2aTij − dTij)},max{bIi , (2aIij − dIij)},
min{bFi , (2aFij − dFij)}⟩, or

cij = ⟨cTij , cIij , cFij⟩ = ⟨min{bTi , aTij + (aTij − dTij)},min{bIi , aIij + (aIij − dIij)},
max{bFi , aFij − (dFij − aFij)}⟩
= ⟨min{bTi , (2aTij − dTij)},min{bIi , (2aIij − dIij)},
max{bFi , (2aFij − dFij)}⟩,

respectively.

Case-2: If ⟨aTi , aIi , aFi ⟩ ≤ ⟨dTi , dIi , dFi ⟩ ≤ ⟨bTi , bIi , bFi ⟩ or

⟨aTi , aIi , aFi ⟩ ≥ ⟨dTi , dIi , dFi ⟩ ≥ ⟨bTi , bIi , bFi ⟩,
then take cij = dij

Case-3: If ⟨aTi , aIi , aFi ⟩ ≤ ⟨bTi , bIi , bFi ⟩ ≤ ⟨dTi , dIi , dFi ⟩ or

⟨aTi , aIi , aFi ⟩ ≥ ⟨bTi , bIi , bFi ⟩ ≥ ⟨dTi , dIi , dFi ⟩,
then take cij = bij

Now from the construction of C by the above three cases, it is obviouse that ρ(A;C) ≤ δ

and A→ C ← b. More over, D → C ← b, hence by Lemma 5.4, C ⊗ x = b is solvable.

Definition 5.6. For a given NSM A ∈ N(m×n) and the NSV b ∈ N(n) we denote the NSM

D ∈ N(m×n) by (A,∆→ b) such that for each i ∈ {1, 2, 3, ...,m} and j ∈ {1, 2, 3, ..., n},

⟨dTij , dIij , dFij⟩ =

min{aTij +∆T , bTi },min{aIij +∆I , bIi },max{aFij −∆F , bFi } if aij < bi

max{aTij −∆T , bTi },max{aIij −∆I , bIi },min{aFij +∆F , bFi } if aij ≥ bi

It is obvious that, A→ (A,∆→ b)← b for any non-negative ∆ = ⟨∆T ,∆I ,∆F ⟩. More over as

∆ increase, we finally arrive at a NSM D such that dij = bi for all i ∈M, j ∈ N, which satisfy

the condition, D ⊗ x
′
(D; b) = b. So computation of the NSM D is an iterative process, which

can be described by the following flowchart.
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Algorithm MATRIX

begin k = 0;∆k = ⟨0, 0, 0⟩; A(∆k) = A;

compute x
′
(A; b);

If A⊗ x
′
(A; b) ̸= b then

repeat ∆k+1 = ⟨∆T
k+1,∆

I
k+1,∆

F
k+1⟩

= ⟨∆T
k +min{|A(δk)ij − bTi |;A(δTk )ij ̸= bTi },

∆I
k +min{|A(δk)ij − bIi |;A(δIk)ij ̸= bIi },

∆F
k +min{|A(δk)ij − bFi |;A(δFk )ij ̸= bFi }⟩,

k = k + 1;

A(∆k) = (A; δk → b)

until A(δk)⊗ x
′
(A(δk); b) = b;

output: A(δk);∆k

end MATRIX.
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START

k=0 ∆k=(0, 0, 0)
A (∆k) = A

x
′
=(A, b)

if A ∗ x′
(A, b)
̸= b

∆k+1 = (∆T
k+1,∆

I
k+1,∆

F
k+1)

k = k+1

A(∆k)=(A;∆k → b)

until
A (∆k)⊗

x
′
(A(∆k);b) = b

A (∆k) = ∆k

END

Yes

No

No

Yes

The following example illustrate the concept of the above flowchart.

Let us consider the system of NSLEs A⊗ x = b where,

Example 5.7. A =


⟨0.3 0.2 0.7⟩ ⟨0.6 0.5 0.4⟩ ⟨0.7 0.6 0.3⟩ ⟨0.4 0.5 0.6⟩ ⟨0.2 0.1 0.8⟩
⟨0.6 0.5 0.4⟩ ⟨0.2 0.1 08⟩ ⟨0.9 0.8 0.1⟩ ⟨0.1 0.1 0.9⟩ ⟨0.6 0.5 0.4⟩
⟨0.3 0.2 0.7⟩ ⟨0.8 0.7 0.2⟩ ⟨0.5 0.4 0.5⟩ ⟨0.4 0.3 0.6⟩ ⟨0.2 0.1 0.8⟩
⟨0.5 0.4 0.5⟩ ⟨0.7 0.6 0.3⟩ ⟨0.3 0.2 0.7⟩ ⟨0.7 0.6 0.3⟩ ⟨0.3 0.2 0.7⟩


and

b =


⟨0.4 0.3 0.6⟩
⟨0.9 0.8 0.1⟩
⟨0.3 0.2 0.7⟩
⟨0.5 0.4 0.5⟩

 .
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The corresponding tolerable solution will be

x
′
(A; b) = [⟨0.5 0.4 0.5⟩, ⟨0.3 0.2 0.7⟩, ⟨0.3 0.2 0.7⟩, ⟨0.3 0.2 0.7⟩, ⟨0.5 0.4 0.5⟩]t but

A⊗ x
′
(A; b) ≤ b so the system is unsolvable.

In the first iteration,

∆1⟨0.1, 0.1, 0.9⟩, A(∆1) =
⟨0.4 0.3 0.6⟩ ⟨0.5 0.4 0.5⟩ ⟨0.6 0.5 0.4⟩ ⟨0.4 0.5 0.6⟩ ⟨0.3 0.2 0.7⟩
⟨0.7 0.6 0.3⟩ ⟨0.3 0.2 07⟩ ⟨0.9 0.8 0.1⟩ ⟨0.2 0.1 0.8⟩ ⟨0.7 0.6 0.3⟩
⟨0.3 0.2 0.7⟩ ⟨0.7 0.6 0.3⟩ ⟨0.4 0.3 0.6⟩ ⟨0.3 0.2 0.7⟩ ⟨0.3 0.2 0.7⟩
⟨0.5 0.4 0.5⟩ ⟨0.6 0.5 0.4⟩ ⟨0.4 0.3 0.6⟩ ⟨0.6 0.5 0.4⟩ ⟨0.6 0.5 0.4⟩


and

x
′
(A(∆1); b) = [⟨1 1 0⟩, ⟨0.3 0.2 0.7⟩, ⟨0.3 0.2 0.7⟩, ⟨0.5 0.4 0.5⟩, ⟨0.5 0.4 0.5⟩]t.

Here , A⊗ x
′
(A(∆1); b) ≤ b.

In the second iteration,

∆2 = ⟨0.2 0.2 0.8⟩, A(∆2) =
⟨0.4 0.3 0.6⟩ ⟨0.4 0.3 0.6⟩ ⟨0.4 0.3 0.6⟩ ⟨0.4 0.5 0.6⟩ ⟨0.4 0.3 0.6⟩
⟨0.9 0.8 0.1⟩ ⟨0.5 0.4 05⟩ ⟨0.9 0.8 0.1⟩ ⟨0.4 0.3 0.6⟩ ⟨0.9 0.8 0.1⟩
⟨0.3 0.2 0.7⟩ ⟨0.5 0.4 0.5⟩ ⟨0.3 0.2 0.7⟩ ⟨0.3 0.2 0.7⟩ ⟨0.3 0.2 0.7⟩
⟨0.5 0.4 0.5⟩ ⟨0.5 0.4 0.5⟩ ⟨0.5 0.4 0.5⟩ ⟨0.5 0.4 0.5⟩ ⟨0.5 0.4 0.5⟩


and

x
′
(A(∆2); b) = [⟨1 1 0⟩, ⟨0.3 0.2 0.7⟩, ⟨1 1 0⟩, ⟨1 1 0⟩, ⟨1 1 0⟩]t.

In this case, A ⊗ x
′
(A(∆2); b) = b. So D = A(∆2) is the Chebychev best approximation of the

coefficient NSM A of the given system and x
′
(A(∆2); b) is the principal solution.

6. Conclusion

In this piece of work, we try to find the conditions under which a system of NSLE is solvable. We

have provided necessary examples to describe the theory. Further using the Chebychev approximation

discussed the principal solution when the given system (1) has no solution. As a future work we are

trying to apply this theory in all operation research problems.
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