



# An Introduction to Neutro-Prime Topology and Decision Making Problem

Chinnadurai V<sup>1</sup>, Sindhu M P<sup>2</sup>, Bharathivelan K<sup>3</sup>

Department of Mathematics, Annamalai University, Annamalainagar, Tamilnadu, India; kv.chinnaduraimaths@gmail.com
 <sup>2</sup> Department of Mathematics, Karpagam College of Engineering, Coimbatore, Tamilnadu, India; <u>sindhu.mp@kce.ac.in</u>
 <sup>3</sup> Department of Mathematics, Hindustan College of Arts and Science, Chennai, Tamilnadu, India;

bharathivelan81@gmail.com

Correspondence: kv.chinnaduraimaths@gmail.com

Abstract: In this industrial era the innovation of industrial machines had a significant impact on industrial evaluation which minimize manpower, time consumption for product making, material wastage. Heavy usage of machines leads to the occurrence of some faults in it. Such damaged parts of each machine have been identified to overhaul which is defined as a set called neutro-prime set under its topological structure. Some related properties of such space have been proved and some are disproved with counterexamples. Also, the idea of interior and closure dealt with this space with few basic properties. This article provides a decision-making process to identify the best fit of those damages under a neutrosophic environment and the priority is given to the heavily damaged machine. We also use step by step algorithm and formulae to compute machine values. Our objective is to demonstrate that our proposed algorithm can calculate key measurements for fault diagnostic in machines as well as to provide fair and reliable forecasted outcomes.

**Keywords:** Neutro-prime sets; neutro-prime topological spaces; neutro-prime interior; neutro-prime closure; neutro-prime absolute complement; decision making.

# 1. Introduction

Throughout history, the relation between humans and machines became most important in moral, ethical, social, economic, and the environment. Machines have confirmed to grasp the key to further developments we humans so extremely need. In the process of doing so, a machine whether or not in continuous use will get damaged and worn-out. In our daily life, we need to reduce the risk of its expensive cost, bad maintenance, and repair parts.

The principles of three autonomous membership degrees such as truth, falsity, and indeterminacy, committed to each element of a set which categorized to neutrosophic set (NS) as instigated by (1998) Smarandache [20, 21], which is an explanation of a fuzzy set (FS) defined by (1965) Zadeh [33], and intuitionistic fuzzy set (IFS) generated by (1986) Atanassov [32]. It is an active organization that hypothesizes the notion of all other sets introduced before. It goes out to be a treasured mathematical implement to observe unformed, damaged, indistinct facts. In recent years many researchers have further expanded and developed the theory and application of NSs [1, 2, 3, 5, 6, 14, 16-19]. Also, (2017) Smarandache [22] originated a new trend set called plithogenic set and others developed [4, 9, 12, 15].

Topology plays a vital role among many sets such as FS, NS, soft sets (SS), neutrosophic soft set (NSS), etc., These types of sets are extended by different researchers [7, 10, 11, 13, 23-27, 29, 30, 31] and its application in decision making (DM) problems [8]. Chinnadurai and Sindhu [28] introduced the notion of prime sets (PSs) and prime-topological spaces (PTSs) (2020), as one of the mathematical utensils for dealing with the subsets of the universe set.

The major achievements of this research are:

- Initiating a neutrosophic environment on prime sets under a topological space.
- Demonstrating the decision-making problem for analyzing the amount of damage in machines.
- An outcome of the proposed algorithm fits in a better way with the number of faults in machines by diagnosis the set values.

To overcome the disadvantages of machines, solving algorithms are presented in this study. A decision-making process delivers to identify the best fit of those damages under a neutrosophic environment and the priority is given to the heavily damaged machine with the use of step by step algorithm and formulae to compute machine values. The main tool used to find the faults in machines are complement and absolute complements of the specified set.

The structure of this study is as follows: Some significant definitions interrelated to the study are presented in part 2. Part 3 introduces the definition of neutro-prime sets, neutro-prime topological spaces, neutro-prime interior and neutro-prime closure with fundamental properties, and related examples. Part 4 explains the DM problem to repair the sample machines with some damages. The algorithm and formulae are presented to find the final result. Finally, the contributions of this study are concluded with future works in part 5.

## 2. Preliminaries

In this part, some essential definitions connected to this work are pointed.

**Definition 2.1** Let *W* be a non-empty set and  $w \in W$ . A NS *D* in *W* is characterized by a truth-membership function  $T_D$ , an indeterminacy-membership function  $I_D$ , and a false-membership function  $F_D$  which are subsets of [0, 1] and is defined as

 $D = \left\{ \langle w, T_D(w), I_D(w), F_D(w) \rangle \colon w \in W \right\},\$ 

where

 $0 \le \sup T_D(w) + \sup I_D(w) + \sup F_D(w) \le 3.$ 

**Definition 2.2** Let NS(W) denote the family of all NSs over W and  $\tau_n \subset NS(W)$ . Then  $\tau_\eta$  is called a neutrosophic topology (NT) on W if it satisfies the following conditions

(i)  $0_n, 1_n \in \tau_n$ , where null NS  $0_n = \{\langle w, 0, 0, 1 \rangle : w \in W\}$  and an absolute NS  $1_n = \{\langle w, 1, 1, 0 \rangle : w \in W\}$ .

(ii) the intersection of any finite number of members of  $\tau_n$  belongs to  $\tau_n$ .

(iii) the union of any collection of members of  $\tau_n$  belongs to  $\tau_n$ .

Then the pair (W,  $\tau_n$ ) is called a NTS.

Every member of  $\tau_n$  is called  $\tau_n$ -open neutrosophic set ( $\tau_n$ - ONS). An NS is called  $\tau_n$ -closed ( $\tau_n$ - CNS) if and only if its complement is  $\tau_n$ - ONS.

**Definition 2.3** Let *D* be a NS over *W*. Then the complement of is denoted by *D'* and defined by  $D' = \{ \langle w, F_D(w), 1 - I_D(w), T_D(w) \rangle : w \in W \}$ .

Clearly, (D')' = D.

**Definition 2.4** Let  $(W, \tau)$  be a topological space (TS), where W is the universe and  $\tau$  is a topology. Let *K* be a proper nonempty subset of *W*. Let *D* be a  $\tau$ -open set, where  $D \neq \phi, W$ . Then the prime set (PS) over *W* is denoted by  $\xi$  and defined by  $\xi = \{\phi, W, K : K \cap D \neq \phi\}$ .

**Definition 2.5** Let (*W*,  $\tau$ ) be a TS. Then  $\tau_p$  is called a prime topology (PT) if it satisfies the following conditions

- (i)  $\phi, W \in \tau_n$ .
- (ii) the intersection of any finite number of members of  $\tau_p$  belongs to  $\tau_p$ .

(iii) the union of any collection of members of  $\tau_p$  belongs to  $\tau_p$ .

Then the pair (W,  $\tau_p$ ) is called a prime topological space (PTS).

Every member of  $\tau_p$  is called  $\tau_p$ -prime open set ( $\tau_p$ -POS). The complement of every  $\tau_p$ -POS of W is called the  $\tau_p$  -prime closed set ( $\tau_p$  - PCS) of W and this collection is denoted by  ${\tau_p}^*$ .

**Example 2.6** Let  $W = \{w_1, w_2, w_3\}$  with topology  $\tau = \{\phi, W, \{w_1\}\}$ .

Clearly,  $(W, \tau)$  is a TS over W.

Then

 $\tau_p = \{\phi, W, \{w_1\}, \{w_1, w_2\}, \{w_1, w_3\}\} = PS(W)$ 

and its members are  $\tau_p$  - POSs.

Thus (W,  $\tau_p$ ) is a PTS over W.

Then

 $\tau_{p}^{*} = \{ \phi, W, \{w_{2}, w_{3}\}, \{w_{3}\}, \{w_{2}\} \}$ 

and its members are  $\tau_p$  - PCSs, whose complements are  $\tau_p$  - POSs.

**Definition 2.7** Let *W* be a set of universe and  $w_i \in W$  where  $i \in I$ . Let *D* be a NS over *W*. Then the subset of NS (sub-NS) *D* is denoted as  $\xi_D(W^*)$  and defined as

 $\xi_{D}(W^{*}) = \left\{ \langle w_{i}, T_{D}(w_{i}), I_{D}(w_{i}), F_{D}(w_{i}) \rangle, \langle (w_{i}, w_{i}), \max(T_{D}(w_{i}), T_{D}(w_{i})) \rangle, \max(I_{D}(w_{i}), I_{D}(w_{i})) \rangle, \min(F_{D}(w_{i}), F_{D}(w_{i})) \rangle \right\}$ where  $i, j \in I$  and  $i \neq j$ . Clearly,  $(w_i, w_i) = (w_i, w_i)$ .

**Example 2.8** Let  $W = \{w_1, w_2, w_3\}$  be a set of features of the washing machine, where  $w_1$  = energy efficiency,  $w_2$  = capacity,  $w_3$  = price. Let *D* be a NS over *W*, defined as

 $D = \left\{ \langle w_1, .7, .5, .4 \rangle, \langle w_2, .2, .7, .9 \rangle, \langle w_3, .4, .1, .3 \rangle \right\}.$ 

```
Then the sub-NS D is
```

$$\xi_D(W^*) = \langle \langle w_1, .7, .5, .4 \rangle, \langle w_2, .2, .7, .9 \rangle, \langle w_3, .4, .1, .3 \rangle, \langle (w_1, w_2), .7, .7, .4 \rangle, \langle (w_1, w_3), .7, .5, .3 \rangle, \langle (w_2, w_3), .4, .7, .3 \rangle \rangle$$

**Definition 2.9** Let *W* be a set of universe and  $w_i \in W$  where  $i \in I$ . Let *V* be any proper nonempty subset of W, say  $\{w_i\}$  and  $\{w_i, w_i\}$ . Let D be a NS over W. Then the subset of NS D with respect to  $w_i$  (sub-NS  $D_{w_i}$ ) and  $w_i, w_j$  (sub-NS  $D_{w_i, w_j}$ ) are denoted as  $\xi_D(w_i)$  and  $\xi_D(w_i, w_j)$ , and defined as

$$\xi_{D}(w_{i}) = \left\{ \left( w_{i}, T_{D}(w_{i}), I_{D}(w_{i}), F_{D}(w_{i}) \right), \left( (w_{i}, w_{j}), \max(T_{D}(w_{i}), T_{D}(w_{j})), \max(I_{D}(w_{i}), I_{D}(w_{j})), \min(F_{D}(w_{i}), F_{D}(w_{j})) \right) \right\}$$

$$\left\{ w_{k}, T_{D}(0_{n}), I_{R}(0_{n}), F_{R}(0_{n}) \right\}, \left( (w_{k}, w_{l}), T_{D}(0_{n}), I_{R}(0_{n}), F_{D}(0_{n}) \right) \right\}$$
ere  $i \in I - \{i\}$ ,  $k \in I - \{i\}$ , and  $k \neq I$ .

where  $i \in I$ ,  $j \in I - \{i\}$ ,  $k, l \in I - \{i, j\}$  and  $k \neq l$ 

and

$$\begin{aligned} \xi_{D}(w_{i},w_{j}) &= \left\{ \langle w_{i},T_{D}(w_{i}),I_{D}(w_{i}),F_{D}(w_{i}) \rangle, \left\langle w_{j},T_{D}(w_{j}),I_{D}(w_{j}),F_{D}(w_{j}) \rangle, \left\langle w_{k},T_{D}(0_{n}),I_{D}(0_{n}),F_{D}(0_{n}) \rangle, \left\langle (w_{i},w_{j}),\max(T_{D}(w_{i}),T_{D}(w_{j})),\max(I_{D}(w_{i}),I_{D}(w_{j})),\min(F_{D}(w_{i}),F_{D}(w_{j})) \rangle, \left\langle (w_{i},w_{k}),\max(T_{D}(w_{i}),T_{D}(w_{k})),\max(I_{D}(w_{i}),I_{D}(w_{k})),\min(F_{D}(w_{i}),F_{D}(w_{k})) \rangle, \left\langle (w_{j},w_{k}),\max(T_{D}(w_{j}),T_{D}(w_{k})),\max(I_{D}(w_{j}),I_{D}(w_{k})),\min(F_{D}(w_{j}),F_{D}(w_{k})) \rangle, \right\rangle \right\} \end{aligned}$$

where  $i, j, k \in I$  and  $i \neq j \neq k$ , respectively.

**Example 2.10** Let  $W = \{w_1, w_2, w_3\}$ . Let *D* and *F* be two NSs over *W* and are defined as follows  $D = \{(w_1, .1, .2, .8), (w_2, .4, .7, .3), (w_3, .6, .5, .2)\}$ 

and

 $F = \left\{ \langle w_1, .6, .5, .3 \rangle, \langle w_2, .9, .8, .1 \rangle, \langle w_3, .7, .6, .1 \rangle \right\}.$ 

Then sub-NS  $D_{w_2, w_3}$  and sub-NS  $F_{w_2}$  are defined as

$$\xi_{D}(w_{2},w_{3}) = \left\langle w_{1},0,0,1 \right\rangle, \left\langle w_{2},.4,.7,.3 \right\rangle, \left\langle w_{3},.6,.5,.2 \right\rangle, \left\langle w_{1,2},.4,.7,.3 \right\rangle, \left\langle w_{1,3},.6,.5,.2 \right\rangle, \left\langle w_{2,3},.6,.7,.2 \right\rangle \right\} \text{ and } \\ \xi_{F}(w_{2}) = \left\langle w_{1},0,0,1 \right\rangle, \left\langle w_{2},.9,.8,.1 \right\rangle, \left\langle w_{3},0,0,1 \right\rangle, \left\langle w_{1,2},.9,.8,.1 \right\rangle, \left\langle w_{1,3},0,0,1 \right\rangle, \left\langle w_{2,3},.9,.8,.1 \right\rangle \right\rangle, \text{ respectively}$$

#### 3. Neutro-Prime Topology

In this part, the new type of set is initiated as neutro-prime sets and defined its topological space as neutro-prime topological spaces. Some of its basic properties are examined with illustrative examples.

**Definition 3.1** Let  $(W, \tau_n)$  be a neutrosophic topological space (NTS), where *W* is the universe and  $\tau_n$  is a neutrosophic topology (NT). Let *D* be a  $\tau_n$ -open neutrosophic set, where  $D \neq \phi, W$ . Let *V* be any proper nonempty subset of *W*. Then

 $\eta_p D(V) = \left\{ \xi_D(V^*) : V \cap V^* \neq \phi \right\},\$ 

for all proper nonempty subset  $V^*$  of W.

Thus the elements belongs to  $\eta_p D(V)$  are said to be neutro-prime sets (NPSs) over *W* and denoted by  $\xi_D(V^*)$ .

**Example 3.2** Let  $W = \{w_1, w_2, w_3\}$  be a set of features of the washing machine, where  $w_1$  = energy efficiency,  $w_2$  = capacity,  $w_3$  = price. Let *D* be a NS over *W*, defined as

$$D = \{ \langle w_1, .7, .5, .4 \rangle, \langle w_2, .2, .7, .9 \rangle, \langle w_3, .4, .1, .3 \rangle \}.$$

Then NPS

 $\eta_p D(w_3) = \{\xi_D(w_3), \xi_D(w_1, w_3), \xi_D(w_2, w_3)\},\$ 

where

 $\xi_{D}(w_{3}) = \left\{ \langle w_{1}, 0, 0, 1 \rangle, \langle w_{2}, 0, 0, 1 \rangle, \langle w_{3}, .4, .1, .3 \rangle, \langle (w_{1}, w_{2}), 0, 0, 1 \rangle, \langle (w_{1}, w_{3}), .7, .5, .3 \rangle, \langle (w_{2}, w_{3}), .4, .7, .3 \rangle \right\}, \\ \xi_{D}(w_{1}, w_{3}) = \left\{ \langle w_{1}, .7, .5, .4 \rangle, \langle w_{2}, 0, 0, 1 \rangle, \langle w_{3}, .4, .1, .3 \rangle, \langle (w_{1}, w_{2}), .7, .7, .4 \rangle, \langle (w_{1}, w_{3}), .7, .5, .3 \rangle, \langle (w_{2}, w_{3}), .4, .7, .3 \rangle \right\}$ 

and

$$\xi_D(w_2, w_3) = \{ \langle w_1, 0, 0, 1 \rangle, \langle w_2, .2, .7, .9 \rangle, \langle w_3, .4, .1, .3 \rangle, \langle (w_1, w_2), .7, .7, .4 \rangle, \langle (w_1, w_3), .7, .5, .3 \rangle, \langle (w_2, w_3), .4, .7, .3 \rangle \}$$

**Definition 3.3** Let *W* be a set of the universe and *V* be any proper nonempty subset of the *W*. Then the null NPS is denoted as  $0_{np}$  and defined as

$$0_{np} = \{ \langle V, T_R(V) = 0, I_R(V) = 0, F_R(V) = 1 \rangle : \forall V \}$$

Definition 3.4 Let *W* be a set of the universe and *V* be any proper nonempty subset of the *W*. Then the absolute NPS is denoted as  $1_{np}$  and defined as

$$1_{np} = \{ \langle V, T_R(V) = 1, I_R(V) = 1, F_R(V) = 0 \rangle : \forall V \}.$$

**Definition 3.5** Let  $\xi_D(V_1^*)$  and  $\xi_D(V_2^*)$  be two NPSs over *W*. Then their union is denoted as  $\xi_D(V_1^*) \bigcup \xi_D(V_2^*) = \xi_D(V_{1 \lor 2}^*)$  and is defined as

$$\xi_D(V_{1\vee2}^*) = \left\langle V_{1\vee2}^*, \max(T_R(V_1^*), T_R(V_2^*)) \max(I_R(V_1^*), I_R(V_2^*)) \min(F_R(V_1^*), F_R(V_2^*)) \right\rangle \right\rangle.$$

**Definition 3.6** Let  $\xi_D(V_1^*)$  and  $\xi_D(V_2^*)$  be two NPSs over *W*. Then their intersection is denoted as  $\xi_D(V_1^*) \cap \xi_D(V_2^*) = \xi_D(V_{1 \wedge 2}^*)$  and is defined as

$$\xi_D(V_{1\wedge2}^*) = \left\langle \left\langle V_{1\wedge2}^*, \min\left(T_R(V_1^*), T_R(V_2^*)\right), \min\left(I_R(V_1^*), I_R(V_2^*)\right), \max\left(F_R(V_1^*), F_R(V_2^*)\right) \right\rangle \right\rangle.$$

**Definition 3.7** Let  $\xi_D(V^*)$  be a NPS over W. Then its complement is denoted as  $\xi_D(V^*)'$  and is defined as

$$\xi_D(V^*)' = \left\{ \!\! \left\langle V^*, T_D(V^*), 1 - I_D(V^*), F_D(V^*) \right\rangle \!\! \right\}$$

Clearly, the complement of  $\xi_D(V^*)'$  equals  $\xi_D(V^*)$ . i.e.,  $\left(\xi_D(V^*)'\right)' = \xi_D(V^*)$ .

**Definition 3.8** Let  $\xi_D(V_1^*)$  and  $\xi_D(V_2^*)$  be two NPSs over W. Then  $\xi_D(V_1^*)$  is said to be a neutro-prime subset of  $\xi_D(V_2^*)$  if

 $T_R(V_1^*) \le T_R(V_2^*), \ T_R(I_1^*) \le T_R(I_2^*), \ F_R(V_1^*) \ge F_R(V_2^*).$ It is denoted by  $\xi_D(V_1^*) \subseteq \xi_D(V_2^*)$ .

Also  $\xi_D(V_1^*)$  is said to be neutro-prime equal to  $\xi_D(V_2^*)$  if  $\xi_D(V_1^*)$  is a neutro-prime subset of  $\xi_D(V_2^*)$  and  $\xi_D(V_2^*)$  is a neutro-prime subset of  $\xi_D(V_1^*)$ . It is denoted by  $\xi_D(V_1^*) = \xi_D(V_2^*)$ .

**Proposition 3.9** Let  $\xi_D(V_1^*)$ ,  $\xi_D(V_2^*)$  and  $\xi_D(V_3^*)$  be NPSs over *W*. Then,

- (i)  $\xi_D(V_1^*) \bigcup 0_{nn} = \xi_D(V_1^*)$ .
- (ii)  $\xi_D(V_1^*) \bigcup 1_{np} = 1_{np}$ .
- (iii)  $\xi_D(V_1^*) \cup [\xi_D(V_2^*) \cup \xi_D(V_3^*)] = [\xi_D(V_1^*) \cup \xi_D(V_2^*)] \cup \xi_D(V_3^*).$ (iv)  $\xi_D(V_1^*) \cup [\xi_D(V_2^*) \cap \xi_D(V_3^*)] = [\xi_D(V_1^*) \cup \xi_D(V_2^*)] \cap [\xi_D(V_1^*) \cup \xi_D(V_3^*)].$

Proof. Straightforward.

**Proposition 3.10** Let  $\xi_D(V_1^*)$ ,  $\xi_D(V_2^*)$  and  $\xi_D(V_3^*)$  be NPSs over *W*. Then,

(i) 
$$\xi_D(V_1^*) \cap 0_{np} = 0_{np}$$
.

(ii) 
$$\xi_D(V_1^*) \cap 1_{np} = \xi_D(V_1^*)$$

(iii)  $\xi_D(V_1^*) \cap [\xi_D(V_2^*) \cap \xi_D(V_3^*)] = [\xi_D(V_1^*) \cap \xi_D(V_2^*)] \cap \xi_D(V_3^*).$ 

(iv) 
$$\xi_D(V_1^*) \cap [\xi_D(V_2^*) \cup \xi_D(V_3^*)] = [\xi_D(V_1^*) \cap \xi_D(V_2^*)] \cup [\xi_D(V_1^*) \cap \xi_D(V_3^*)]$$

Proof. Straightforward.

**Proposition 3.11** Let  $\xi_D(V_1^*)$  and  $\xi_D(V_2^*)$  be two NPSs over *W*. Then,

(i)  $\left[\xi_D(V_1^*) \cup \xi_D(V_2^*)\right] = \xi_D(V_1^*)' \cap \xi_D(V_2^*)'.$ (ii)  $\left[\xi_D(V_1^*) \cap \xi_D(V_2^*)\right] = \xi_D(V_1^*)' \cup \xi_D(V_2^*)'.$ 

Proof. Straightforward.

**Proposition 3.12** Let  $\xi_D(V_1^*)$ ,  $\xi_D(V_2^*)$  and  $\xi_F(V_1^*)$  be NPSs over *W* for NSs *D* and *F*. Then,

- (i)  $D \subseteq F \Longrightarrow \xi_D(V_1^*) \subseteq \xi_F(V_1^*)$ .
- (ii)  $\xi_D(V_1^*) \bigcup \xi_D(V_2^*) = \xi_D(V_1^* \bigcup V_2^*).$
- (iii)  $\xi_D(V_1^*) \cap \xi_D(V_2^*) \subseteq \xi_D(V_1^*)$  and  $\xi_D(V_1^*) \cap \xi_D(V_2^*) \subseteq \xi_D(V_2^*)$ .
- (iv)  $\xi_D(V_1^*) \bigcup \xi_D(V_2^*) \supseteq \xi_D(V_1^*)$  and  $\xi_D(V_1^*) \bigcup \xi_D(V_2^*) \supseteq \xi_D(V_2^*)$ .
- (v)  $\xi_D(V_1^*) \subseteq \xi_D(V_2^*) \Longrightarrow \xi_D(V_1^*)' \subseteq \xi_D(V_2^*)'.$

Proof. Straightforward.

**Definition 3.13** Let  $(W, \tau_n)$  be a NTS. Let NPS(W) be the collection of NPSs  $\xi_D(V^*)$  over W and D be a  $\tau_n$  -open neutrosophic set (ONS), where  $D \neq \phi, W$ . Then  $\tau_{np} \subset NPS(W)$  is called a neutro-prime topology (NPT) if it satisfies the following conditions

(i)  $0_{np}, 1_{np} \in \tau_{np}$ .

(ii) the union of any collection of members of  $\tau_{np}$  belongs to  $\tau_{np}$ .

(iii) the intersection of any finite number of members of  $\tau_{np}$  belongs to  $\tau_{np}$ .

Then the pair (W,  $\tau_{np}$ ) is said to be a neutro-prime topological space (NPTS).

Every member of  $\tau_{np}$  is said to be a  $\tau_{np}$ -neutro-prime open set ( $\tau_{np}$ - NPOS). The complement of every  $\tau_{np}$ - NPOS of *W* is said to be a  $\tau_{np}$ -neutro-prime closed set ( $\tau_{np}$ - NPCS) of *W* and this collection is denoted by  $\tau_{np}^{*}$ .

**Example 3.14** Let  $W = \{w_1, w_2, w_3\}$  and  $\tau_n = \{0_n, 1_n, D, F\}$  where *D* and *F* are NSs over *W* and are defined as follows

 $D = \left\{ \langle w_1, .1, .2, .8 \rangle, \langle w_2, .4, .7, .3 \rangle, \langle w_3, .6, .5, .2 \rangle \right\}$ 

and

 $F = \{ \langle w_1, .6, .5, .3 \rangle, \langle w_2, .9, .8, .1 \rangle, \langle w_3, .7, .6, .1 \rangle \}.$ 

Thus  $(W, \tau_n)$  is a NTS over W.

Here NPSs are

$$\eta_p D(w_1, w_3) = \{\xi_D(w_1), \xi_D(w_3), \xi_D(w_1, w_2), \xi_D(w_1, w_3), \xi_D(w_2, w_3)\},\$$

where

$$\begin{split} \xi_D(w_1) &= \left\{ \langle w_1, .1, .2, .8 \rangle, \langle w_2, 0, 0, 1 \rangle, \langle w_3, 0, 0, 1 \rangle, \langle (w_1, w_2), .4, .7, .3 \rangle, \langle (w_1, w_3), .6, .5, .2 \rangle, \langle (w_2, w_3), 0, 0, 1 \rangle \right\}, \\ \xi_D(w_3) &= \left\{ \langle w_1, 0, 0, 1 \rangle, \langle w_2, 0, 0, 1 \rangle, \langle w_3, .6, .5, .2 \rangle, \langle (w_1, w_2), 0, 0, 1 \rangle, \langle (w_1, w_3), .6, .5, .2 \rangle, \langle (w_2, w_3), .6, .7, .2 \rangle \right\}, \\ \xi_D(w_1, w_2) &= \left\{ \langle w_1, .1, .2, .8 \rangle, \langle w_2, .4, .7, .3 \rangle, \langle w_3, 0, 0, 1 \rangle, \langle (w_1, w_2), .4, .7, .3 \rangle, \langle (w_1, w_3), .6, .5, .2 \rangle, \langle (w_2, w_3), .6, .7, .2 \rangle \right\}, \\ \xi_D(w_1, w_3) &= \left\{ \langle w_1, .1, .2, .8 \rangle, \langle w_2, 0, 0, 1 \rangle, \langle w_3, .6, .5, .2 \rangle, \langle (w_1, w_2), .4, .7, .3 \rangle, \langle (w_1, w_3), .6, .5, .2 \rangle, \langle (w_2, w_3), .6, .7, .2 \rangle \right\}, \\ \xi_D(w_2, w_3) &= \left\{ \langle w_1, 0, 0, 1 \rangle, \langle w_2, .4, .7, .3 \rangle, \langle w_3, .6, .5, .2 \rangle, \langle (w_1, w_2), .4, .7, .3 \rangle, \langle (w_1, w_3), .6, .5, .2 \rangle, \langle (w_2, w_3), .6, .7, .2 \rangle \right\}, \\ \xi_D(w_2, w_3) &= \left\{ \langle w_1, 0, 0, 1 \rangle, \langle w_2, .4, .7, .3 \rangle, \langle w_3, .6, .5, .2 \rangle, \langle (w_1, w_2), .4, .7, .3 \rangle, \langle (w_1, w_3), .6, .5, .2 \rangle, \langle (w_2, w_3), .6, .7, .2 \rangle \right\}, \\ and \end{aligned}$$

 $\eta_p F(w_2) = \left\{ \xi_F(w_2), \xi_F(w_1, w_2), \xi_F(w_2, w_3) \right\},\$ 

where

$$\xi_F(w_2) = \left\{ \langle w_1, 0, 0, 1 \rangle, \langle w_2, .9, .8, .1 \rangle, \langle w_3, 0, 0, 1 \rangle, \langle (w_1, w_2), .9, .8, .1 \rangle, \langle (w_1, w_3), 0, 0, 1 \rangle, \langle (w_2, w_3), .9, .8, .1 \rangle \right\}$$

 $\tau_{np} = \{ 0_{np}, 1_{np}, \xi_D(w_1, w_2), \xi_F(w_1, w_2) \} \text{ is a NPT.}$ 

Thus (W,  $\tau_{np}$ ) is a NPTS over W.

Also, the complement of the NPT  $\tau_{np}$  is

$$\tau_{np}^{*} = \left\{ 0_{np}, 1_{np}, \xi_{D}(w_{1}, w_{2})', \xi_{F}(w_{1}, w_{2})' \right\},\$$

where

 $\xi_D(w_1, w_2)' = \{ \langle w_1, .8, .8, .1 \rangle, \langle w_2, .3, .3, .4 \rangle, \langle w_3, 1, 1, 0 \rangle, \langle (w_1, w_2), .3, .3, .4 \rangle, \langle (w_1, w_3), .2, .5, .6 \rangle, \langle (w_2, w_3), .2, .3, .6 \rangle \}$ and  $\xi_F(w_1, w_2)' = \{ \langle w_1, .3, .5, .6 \rangle, \langle w_2, .1, .2, .9 \rangle, \langle w_3, 1, 1, 0 \rangle, \langle (w_1, w_2), .1, .2, .9 \rangle, \langle (w_1, w_3), .1, .4, .7 \rangle, \langle (w_2, w_3), .1, .2, .9 \rangle \}.$ 

**Remark 3.15** The collection of NPS  $\eta_p D(V)$  can generate one or more NPT, which is illustrated in the following example.

Example 3.16 Consider Example 3.14.

Here

 $1\tau_{np} = \{0_{np}, 1_{np}, \xi_D(w_1, w_2), \xi_F(w_1, w_2)\}$  and

 $2\tau_{np} = \{0_{np}, 1_{np}, \xi_D(w_2, w_3), \xi_F(w_2, w_3)\}$  are NPTs

Thus (W,  $1\tau_{np}$ ) and (W,  $2\tau_{np}$ ) are NPTSs over W.

Also, the complement of the NPTs  $1\tau_{np}$  and  $2\tau_{np}$  are

$$\begin{split} &1{\tau_{np}}^{*} = \left\{\!\! 0_{np},\! 1_{np},\! \xi_{D}(w_{1},\!w_{2})',\! \xi_{F}(w_{1},\!w_{2})'\right\} \text{ and } \\ &2{\tau_{np}}^{*} = \left\{\!\! 0_{np},\! 1_{np},\! \xi_{D}(w_{2},\!w_{3})',\! \xi_{F}(w_{2},\!w_{3})'\right\} \text{ , respectively,} \end{split}$$

where

 $\xi_{D}(w_{1},w_{2})' = \left\{ \langle w_{1},8,.8,.1 \rangle, \langle w_{2},.3,.3,.4 \rangle, \langle w_{3},1,1,0 \rangle, \langle (w_{1},w_{2}),.3,.3,.4 \rangle, \langle (w_{1},w_{3}),.2,.5,.6 \rangle, \langle (w_{2},w_{3}),.2,.3,.6 \rangle \right\}$   $\xi_{F}(w_{1},w_{2})' = \left\{ \langle w_{1},3,.5,.6 \rangle, \langle w_{2},.1,2,.9 \rangle, \langle w_{3},1,1,0 \rangle, \langle (w_{1},w_{2}),.1,2,.9 \rangle, \langle (w_{1},w_{3}),.1,.4,.7 \rangle, \langle (w_{2},w_{3}),.1,2,.9 \rangle \right\}$ and  $\xi_{D}(w_{2},w_{3})' = \left\{ \langle w_{1},1,1,0 \rangle, \langle w_{2},.3,.3,.4 \rangle, \langle w_{3},.2,.5,.6 \rangle, \langle (w_{1},w_{2}),.3,.3,.4 \rangle, \langle (w_{1},w_{3}),.2,.5,.6 \rangle, \langle (w_{2},w_{3}),.2,.3,.6 \rangle \right\}$  $\xi_{F}(w_{2},w_{3})' = \left\{ \langle w_{1},1,1,0 \rangle, \langle w_{2},.1,2,.9 \rangle, \langle w_{3},.1,4,.7 \rangle, \langle (w_{1},w_{2}),.1,2,.9 \rangle, \langle (w_{1},w_{3}),.1,4,.7 \rangle, \langle (w_{2},w_{3}),.1,2,.9 \rangle \right\}.$ 

**Definition 3.17** A NPT  $\tau_{np}$  is said to be a neutro-prime discrete topology if  $\tau_{np} = NPS(W)$  for all the subsets of *W*.

**Definition 3.18** A NPT  $\tau_{np}$  is said to be a neutro-prime indiscrete topology if  $\tau_{np}$  contains only  $0_{np}$  and  $1_{np}$ .

**Proposition 3.19** Let  $(W, 1\tau_{np})$  and  $(W, 2\tau_{np})$  be two NPTSs over W and let  $1\tau_{np} \cap 2\tau_{np} = \{D \in NPS(W) : D \in 1\tau_{np} \cap 2\tau_{np}\}$ . Then  $1\tau_{np} \cap 2\tau_{np}$  is also a NPT over W. Proof. Let  $(W, 1\tau_{np})$  and  $(W, 2\tau_{np})$  be two NPTSs over W.

(i)  $0_{np}, 1_{np} \in 1\tau_{np} \cap 2\tau_{np}$ .

(ii) Let  $D_1, D_2 \in 1\tau_{np} \cap 2\tau_{np}$ .

Then  $D_1, D_2 \in 1\tau_{np}$  and  $D_1, D_2 \in 2\tau_{np}$ .

 $\Rightarrow D_1 \cap D_2 \in 1\tau_{np} \text{ and } D_1 \cap D_2 \in 2\tau_{np}.$   $\Rightarrow D_1 \cap D_2 \in 1\tau_{np} \cap 2\tau_{np}.$ (iii) Let  $D_i \in 1\tau_{np} \cap 2\tau_{np}, i \in I.$ Then  $D_i \in 1\tau_{np}$  and  $D_i \in 2\tau_{np}, i \in I.$   $\Rightarrow \bigcup_{i \in I} D_i \in 1\tau_{np} \text{ and } \Rightarrow \bigcup_{i \in I} D_i \in 2\tau_{np}, i \in I.$   $\Rightarrow \bigcup_{i \in I} D_i \in 1\tau_{np} \cup 2\tau_{np}.$ Thus  $1\tau_{np} \cap 2\tau_{np}$  is also a NPT over W.

**Remark 3.20** The union of two NPTs need not be a NPT. The following example illustrates this remark.

Example 3.21 Consider Example 3.14.

Here NPTs are

 $1\tau_{np} = \{0_{np}, 1_{np}, \xi_D(w_1, w_2), \xi_F(w_1, w_2)\},\$ 

where

 $\xi_D(w_1, w_2) = \left\{ \langle w_1, .1, .2, .8 \rangle, \langle w_2, .4, .7, .3 \rangle, \langle w_3, 0, 0, 1 \rangle, \langle (w_1, w_2), .4, .7, .3 \rangle, \langle (w_1, w_3), .6, .5, .2 \rangle, \langle (w_2, w_3), .6, .7, .2 \rangle \right\}, \\ \xi_F(w_1, w_2) = \left\{ \langle w_1, .6, .5, .3 \rangle, \langle w_2, .9, .8, .1 \rangle, \langle w_3, 0, 0, 1 \rangle, \langle (w_1, w_2), .9, .8, .1 \rangle, \langle (w_1, w_3), .7, .6, .1 \rangle, \langle (w_2, w_3), .9, .8, .1 \rangle \right\}$ and

$$2\tau_{np} = \{0_{np}, 1_{np}, \xi_D(w_2, w_3), \xi_F(w_2, w_3)\},\$$

where

 $\xi_D(w_2, w_3) = \{ \langle w_1, 0, 0, 1 \rangle, \langle w_2, .4, .7, .3 \rangle, \langle w_3, .6, .5, .2 \rangle, \langle (w_1, w_2), .4, .7, .3 \rangle, \langle (w_1, w_3), .6, .5, .2 \rangle, \langle (w_2, w_3), .6, .7, .2 \rangle \}, \\ \xi_F(w_2, w_3) = \{ \langle w_1, 0, 0, 1 \rangle, \langle w_2, .9, .8, .1 \rangle, \langle w_3, .7, .6, .1 \rangle, \langle (w_1, w_2), .9, .8, .1 \rangle, \langle (w_1, w_3), .7, .6, .1 \rangle, \langle (w_2, w_3), .9, .8, .1 \rangle \}. \\ \text{Thus } (W, 1\tau_{np}) \text{ and } (W, 2\tau_{np}) \text{ are NPTSs over } W.$ 

Clearly,

$$1\tau_{np} \bigcup 2\tau_{np} = \{0_{np}, 1_{np}, \xi_D(w_1, w_2), \xi_F(w_1, w_2), \xi_D(w_2, w_3), \xi_F(w_2, w_3)\}.$$

Then

$$\begin{split} &\xi_D(w_1, w_2) \cap \xi_D(w_2, w_3) \\ &= \left\{\!\! \left< w_1, 0, 0, 1 \right>, \left< w_2, .4, .7, .3 \right>, \left< w_3, 0, 0, 1 \right>, \left< (w_1, w_2), .4, .7, .3 \right>, \left< (w_1, w_3), .6, .5, .2 \right>, \left< (w_2, w_3), .6, .7, .2 \right> \right\} \\ &\text{Thus } 1\tau_{np} \bigcup 2\tau_{np} \text{ is not a NPTS, since } \xi_D(w_1, w_2) \cap \xi_D(w_2, w_3) \notin 1\tau_{np} \bigcup 2\tau_{np} \,. \end{split}$$

Hence the union of two NPTs need not be a NPT.

**Proposition 3.22** Let  $\xi_D(V_1^*)$  and  $\xi_D(V_2^*)$  be two  $\tau_{np}$ -NPOSs over *W*. Then

(i) 
$$\left(\xi_D(V_1^*) \bigcup \xi_D(V_2^*)\right)' = \xi_D(V_1^*)' \cap \xi_D(V_2^*)'.$$
  
(ii)  $\left(\xi_D(V_1^*) \cap \xi_D(V_2^*)\right)' = \xi_D(V_1^*)' \cup \xi_D(V_2^*)'.$   
Proof. Straightforward.

**Definition 3.23** Let  $(W, \tau_{np})$  be a NPTS over W. Let  $\xi_D(V^*)$  be any NPSs over W. Then the neutro-prime interior of  $\xi_D(V^*)$  is denoted by  $\operatorname{int}_{np}(\xi_D(V^*))$  and defined by

$$\operatorname{int}_{np}\left(\xi_D(V^*)\right) = \bigcup_{j\in D} \left(U^*\right) \colon \xi_D(U^*) \in \tau_{np} \quad and \quad \xi_D(U^*) \subseteq \xi_D(V^*) \right\}$$

Clearly, it is the union of all  $\tau_{np}$ -NPOSs contained in  $\xi_D(V^*)$ .

**Definition 3.24** Let  $(W, \tau_{np})$  be a NPTS over W. Let  $\xi_D(V^*)$  be any NPSs over W. Then the neutro-prime closure of  $\xi_D(V^*)$  is denoted by  $cl_{np}(\xi_D(V^*))$  and defined by

$$cl_{np}(\xi_D(V^*)) = \bigcap_{\xi_D}(U^*) : \xi_D(U^*) \in \tau_{np}^* \quad and \quad \xi_D(U^*) \supseteq \xi_D(V^*) \}$$

Clearly, it is the intersection of all  $\tau_{np}^{*}$ -NPCSs containing  $\xi_D(V^*)$ .

**Example 3.25** Let  $W = \{w_1, w_2, w_3\}$  and  $\tau_n = \{0_n, 1_n, A, B, C, D\}$  where *A*, *B*, *C*, and *D* are NSs over *W* and are defined as follows

 $A = \{ \langle w_1, .1, .2, .3 \rangle, \langle w_2, .4, .5, .6 \rangle, \langle w_3, .2, .4, .6 \rangle \}, \\B = \{ \langle w_1, .4, .5, .6 \rangle, \langle w_2, .7, .8, .2 \rangle, \langle w_3, .1, .2, .3 \rangle \}, \\C = \{ \langle w_1, .1, .2, .6 \rangle, \langle w_2, .4, .5, .6 \rangle, \langle w_3, .1, .2, .6 \rangle \} \text{ and } \\D = \{ \langle w_1, .4, .5, .3 \rangle, \langle w_2, .7, .8, .2 \rangle, \langle w_3, .2, .4, .3 \rangle \}.$ 

Here  $A \cup B = D$ ,  $A \cup D = D$ ,  $A \cup C = A$ ,  $B \cup D = D$ ,  $B \cup C = B$ ,  $D \cup C = D$  and  $A \cap B = A$ ,  $A \cap D = A$ ,  $A \cap C = C$ ,  $B \cap D = B$ ,  $B \cap C = C$ ,  $D \cap C = C$ . Then *A*, *B*, *C*, and *D* are  $\tau_n$ -ONSs over *W*.

Thus  $(W, \tau_n)$  is a NTS over W.

Here NPSs are

 $\eta_p A(w_2) = \{\xi_A(w_2), \xi_A(w_1, w_2), \xi_A(w_2, w_3)\},\$ 

where

 $\xi_{A}(w_{2}) = \left\{ \langle w_{1}, 0, 0, 1 \rangle, \langle w_{2}, .4, .5, .6 \rangle, \langle w_{3}, 0, 0, 1 \rangle, \langle (w_{1}, w_{2}), .4, .5, .3 \rangle, \langle (w_{1}, w_{3}), 0, 0, 1 \rangle, \langle (w_{2}, w_{3}), .4, .5, .6 \rangle \right\}, \\ \xi_{A}(w_{1}, w_{2}) = \left\{ \langle w_{1}, .1, .2, .3 \rangle, \langle w_{2}, .4, .5, .6 \rangle, \langle w_{3}, 0, 0, 1 \rangle, \langle (w_{1}, w_{2}), .4, .5, .3 \rangle, \langle (w_{1}, w_{3}), .2, .4, .3 \rangle, \langle (w_{2}, w_{3}), .4, .5, .6 \rangle \right\}, \\ \xi_{A}(w_{2}, w_{3}) = \left\{ \langle w_{1}, 0, 0, 1 \rangle, \langle w_{2}, .4, .5, .6 \rangle, \langle w_{3}, .2, .4, .6 \rangle, \langle (w_{1}, w_{2}), .4, .5, .3 \rangle, \langle (w_{1}, w_{3}), .2, .4, .3 \rangle, \langle (w_{2}, w_{3}), .4, .5, .6 \rangle \right\};$ 

 $\eta_p B(w_1) = \{\xi_B(w_1), \xi_B(w_1, w_2), \xi_B(w_1, w_3)\},\$ 

where

$$\begin{split} &\xi_B(w_1) = \left\{ & w_1, 4, .5, .6 \right\}, \left\langle w_2, 0, 0, 1 \right\rangle, \left\langle w_3, 0, 0, 1 \right\rangle, \left\langle (w_1, w_2), .7, .8, .2 \right\rangle, \left\langle (w_1, w_3), .4, .5, .3 \right\rangle, \left\langle (w_2, w_3), 0, 0, 1 \right\rangle \right\}, \\ &\xi_B(w_1, w_2) = \left\{ & w_1, .4, .5, .6 \right\}, \left\langle w_2, .7, .8, .2 \right\rangle, \left\langle w_3, 0, 0, 1 \right\rangle, \left\langle (w_1, w_2), .7, .8, .2 \right\rangle, \left\langle (w_1, w_3), .4, .5, .3 \right\rangle, \left\langle (w_2, w_3), .7, .8, .2 \right\rangle \right\}, \\ &\xi_B(w_1, w_3) = \left\{ & w_1, .4, .5, .6 \right\}, \left\langle w_2, 0, 0, 1 \right\rangle, \left\langle w_3, .1, .2, .3 \right\rangle, \left\langle (w_1, w_2), .7, .8, .2 \right\rangle, \left\langle (w_1, w_3), .4, .5, .3 \right\rangle, \left\langle (w_2, w_3), .7, .8, .2 \right\rangle \right\}; \end{split}$$

 $\eta_p C(w_1, w_3) = \left\{ \xi_C(w_1), \xi_C(w_3), \xi_C(w_1, w_2), \xi_C(w_1, w_3), \xi_C(w_2, w_3) \right\},\$ 

where

$$\begin{split} & \xi_C(w_1) = \left\{ \!\! \left< \!\! w_1, 1, 2, .6 \right> \!\! \left< \!\! w_2, 0, 0, 1 \right> \!\! \left< \!\! w_3, 0, 0, 1 \right> \!\! \left< \!\! \left< \!\! (w_1, w_2), 4, .5, .6 \right> \!\! \left< \!\! \left< \!\! (w_1, w_3), .1, 2, .6 \right> \!\! \left< \!\! \left< \!\! (w_2, w_3), 0, 0, 1 \right> \!\! \right> \!\! \right\} \!\! \right\} \!\! \right\} \!\! \right\} \!\! \\ & \xi_C(w_3) = \left\{ \!\! \left< \!\! w_1, 0, 0, 1 \right> \!\! \left< \!\! w_2, 0, 0, 1 \right> \!\! \left< \!\! w_3, 1, 2, .6 \right> \!\! \left< \!\! \left< \!\! (w_1, w_2), 0, 0, 1 \right> \!\! \left< \!\! \left< \!\! (w_1, w_3), .1, 2, .6 \right> \!\! \left< \!\! \left< \!\! (w_2, w_3), 0, 0, 1 \right> \!\! \right> \!\! \right\} \!\! \right\} \!\! \\ & \xi_C(w_1, w_2) = \left\{ \!\! \left< \!\! w_1, .1, 2, .6 \right> \!\! \left< \!\! w_2, .4, .5, .6 \right> \!\! \left< \!\! \left< \!\! w_3, 0, 0, 1 \right> \!\! \left< \!\! \left< \!\! \left< \!\! (w_1, w_2), .4, .5, .6 \right> \!\! \left< \!\! \left< \!\! \left< \!\! (w_1, w_3), .1, .2, .3 \right> \!\! \left< \!\! \left< \!\! \left< \!\! (w_2, w_3), .4, .5, .6 \right> \!\! \right> \!\! \right\} \!\! \right\} \!\! \\ & \xi_C(w_1, w_3) = \left\{ \!\! \left< \!\! w_1, .1, .2, .6 \right> \!\! \left< \!\! \left< \!\! w_2, 0, 0, 1 \right> \!\! \left< \!\! \left< \!\! w_3, .1, .2, .6 \right> \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! w_1, .1, .2, .3 \right> \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! w_2, .4, .5, .6 \right> \!\! \right> \!\! \right> \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! w_1, .1, .2, .3 \right> \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! w_2, .4, .5, .6 \right> \!\! \right> \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! w_1, .1, .2, .3 \right> \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! w_2, .4, .5, .6 \right> \!\! \right> \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! w_1, .1, .2, .3 \right> \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! w_2, .4, .5, .6 \right> \!\! \right> \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! w_1, .1, .2, .3 \right> \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! w_2, .4, .5, .6 \right> \!\! \right> \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! w_1, .1, .2, .3 \right> \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! \left< \!\! w_2, .4, .5, .6 \right> \!\! \right> \!\! \left< \!\! \left<$$

 $\eta_p D(w_3) = \left\{ \xi_D(w_3), \xi_D(w_1, w_3), \xi_D(w_2, w_3) \right\},\,$ 

where

$$\begin{split} \xi_D(w_3) &= \left\{ \! \langle w_1, 0, 0, 1 \rangle, \langle w_2, 0, 0, 1 \rangle, \langle w_3, .2, .4, .3 \rangle, \langle (w_1, w_2), 0, 0, 1 \rangle, \langle (w_1, w_3), .4, .5, .3 \rangle, \langle (w_2, w_3), .7, .8, .2 \rangle \right\}, \\ \xi_D(w_1, w_3) &= \left\{ \! \langle w_1, .4, .5, .3 \rangle, \langle w_2, 0, 0, 1 \rangle, \langle w_3, .2, .4, .3 \rangle, \langle (w_1, w_2), .7, .8, .2 \rangle, \langle (w_1, w_3), .4, .5, .3 \rangle, \langle (w_2, w_3), .7, .8, .2 \rangle \right\}, \\ \xi_D(w_2, w_3) &= \left\{ \! \langle w_1, 0, 0, 1 \rangle, \langle w_2, .7, .8, .2 \rangle, \langle w_3, .2, .4, .3 \rangle, \langle (w_1, w_2), .7, .8, .2 \rangle, \langle (w_1, w_3), .4, .5, .3 \rangle, \langle (w_2, w_3), .7, .8, .2 \rangle \right\}. \\ \text{Then} \end{split}$$

 $\tau_{np} = \{0_{np}, 1_{np}, \xi_B(w_1), \xi_C(w_1)\}$  is a NPT.

Thus (W,  $\tau_{np}$ ) is a NPTS over W.

Also, the complement of the NPT  $\tau_{np}$  is

$$\tau_{np}^{*} = \left\{ 0_{np}, 1_{np}, \xi_{B}(w_{1})', \xi_{C}(w_{1})' \right\},$$
where
$$\xi_{B}(w_{1})' = \left\{ \left\langle w_{1}, .6, .5, .4 \right\rangle, \left\langle w_{2}, 1, 1, 0 \right\rangle, \left\langle w_{3}, 1, 1, 0 \right\rangle, \left\langle (w_{1}, w_{2}), .2, .2, .7 \right\rangle, \left\langle (w_{1}, w_{3}), .3, .5, .4 \right\rangle, \left\langle (w_{2}, w_{3}), 1, 1, 0 \right\rangle \right\}$$
and
$$\xi_{C}(w_{1})' = \left\{ \left\langle w_{1}, .6, .8, .1 \right\rangle, \left\langle w_{2}, 1, 1, 0 \right\rangle, \left\langle w_{3}, 1, 1, 0 \right\rangle, \left\langle (w_{1}, w_{2}), .6, .5, .4 \right\rangle, \left\langle (w_{1}, w_{3}), .6, .8, .1 \right\rangle, \left\langle (w_{2}, w_{3}), 1, 1, 0 \right\rangle \right\}.$$

Consider a NPS for NS B,

 $\xi_B(w_1, w_3) = \left\{ \langle w_1, .4, .5, .6 \rangle, \langle w_2, 0, 0, 1 \rangle, \langle w_3, .1, .2, .3 \rangle, \langle (w_1, w_2), .7, .8, .2 \rangle, \langle (w_1, w_3), .4, .5, .3 \rangle, \langle (w_2, w_3), .7, .8, .2 \rangle \right\}.$ Clearly,

$$\xi_B(w_1, w_3) \supseteq \mathcal{O}_{np}, \xi_B(w_1) \,.$$

Thus

 $\operatorname{int}_{np}(\xi_B(w_1, w_3)) = 0_{np} \bigcup \xi_B(w_1) = \xi_B(w_1).$ 

Also,

 $\xi_B(w_1,w_3) \subseteq \mathbf{1}_{np} \,.$ 

Thus

 $cl_{np}(\xi_{B}(w_{1},w_{3})) = 1_{np}.$ Consider a NPS for NS *C*,  $\xi_{C}(w_{3}) = \{ \langle w_{1},0,0,1 \rangle, \langle w_{2},0,0,1 \rangle, \langle w_{3},.1,.2,.6 \rangle, \langle (w_{1},w_{2}),0,0,1 \rangle, \langle (w_{1},w_{3}),.1,.2,.6 \rangle, \langle (w_{2},w_{3}),.4,.5,.6 \rangle \}.$ Clearly,  $\xi_{C}(w_{3}) \ge 0_{np}.$ 

Thus

 $\operatorname{int}_{np}(\xi_C(w_3)) = 0_{nn}.$ 

Also,

$$\xi_C(w_3) \subseteq \mathbf{1}_{np}, \xi_C(w_1)'.$$

Thus

$$cl_{np}(\xi_C(w_3)) = 1_{np} \bigcap \xi_C(w_1)' = \xi_C(w_1)'$$

Theorem 3.26 Let  $(W, \tau_{np})$  be a NPTS over W. Let  $\xi_D(V_1^*)$  and  $\xi_F(V_1^*)$  be NPSs over W for NSs Dand F. Then (i)  $\inf_{np}(\xi_D(V_1^*)) \subseteq \xi_D(V_1^*)$  and  $\inf_{np}(\xi_D(V_1^*))$  is the largest  $\tau_{np}$ -NPOS. (ii)  $D \subseteq F \Rightarrow \inf_{np}(\xi_D(V_1^*)) \subseteq \inf_{np}(\xi_F(V_1^*))$ . (iii)  $\inf_{np}(\xi_D(V_1^*))$  is an  $\tau_{np}$ -NPOS. (iv)  $\xi_D(V_1^*)$  is a  $\tau_{np}$ -NPOS iff  $\inf_{np}(\xi_D(V_1^*)) = \xi_D(V_1^*)$ . (v)  $\inf_{np}(\inf_{np}(\xi_D(V_1^*))) = \inf_{np}(\xi_D(V_1^*))$ . (vi)  $\inf_{np}(0_{np}) = 0_{np}$  and  $\inf_{np}(1_{np}) = 1_{np}$ .

(vii)  $\operatorname{int}_{np}\left(\xi_D(V_1^*) \cap \xi_F(V_1^*)\right) = \operatorname{int}_{np}\left(\xi_D(V_1^*)\right) \cap \operatorname{int}_{np}\left(\xi_F(V_1^*)\right).$ (viii)  $\operatorname{int}_{np}\left(\xi_D(V_1^*) \cup \xi_F(V_1^*)\right) \subseteq \operatorname{int}_{np}\left(\xi_D(V_1^*)\right) \cup \operatorname{int}_{np}\left(\xi_F(V_1^*)\right).$ 

Proof. Follows from Definition 3.23.

**Theorem 3.27** Let  $(W, \tau_{np})$  be a NPTS over W. Let  $\xi_D(V_1^*)$  and  $\xi_F(V_1^*)$  be NPSs over W for NSs D and F. Then

(i) 
$$\xi_D(V_1^*) \subseteq cl_{np}(\xi_D(V_1^*))$$
 and  $cl_{np}(\xi_D(V_1^*))$  is the smallest  $\tau_{np}$ -NPCS.  
(ii)  $D \subseteq F \Rightarrow cl_{np}(\xi_D(V_1^*)) \subseteq cl_{np}(\xi_F(V_1^*))$ .  
(iii)  $cl_{np}(\xi_D(V_1^*))$  is an  $\tau_{np}$ -NPCS.  
(iv)  $\xi_D(V_1^*)$  is a  $\tau_{np}$ -NPCS iff  $cl_{np}(\xi_D(V_1^*)) = \xi_D(V_1^*)$ .  
(v)  $cl_{np}(cl_{np}(\xi_D(V_1^*))) = cl_{np}(\xi_D(V_1^*))$ .  
(vi)  $cl_{np}(\xi_D(V_1^*)) = cl_{np}(\xi_D(V_1^*))$ .  
(vii)  $cl_{np}(\xi_D(V_1^*) \cup \xi_F(V_1^*)) = cl_{np}(\xi_D(V_1^*)) \cup cl_{np}(\xi_F(V_1^*))$ .  
(viii)  $cl_{np}(\xi_D(V_1^*) \cap \xi_F(V_1^*)) \subseteq cl_{np}(\xi_D(V_1^*)) \cap cl_{np}(\xi_F(V_1^*))$ .  
Proof. Follows from Definition 3.24.

**Theorem 3.28** Let  $(W, \tau_{np})$  be a NPTS over W. Let  $\xi_D(V^*)$  be a NPS over W for a NS D. Then

(i) 
$$\left( \inf_{np} \left( \xi_D(V_1^*) \right) \right) = c l_{np} \left( \xi_D(V^*)' \right).$$
  
(ii)  $\left( c l_{np} \left( \xi_D(V_1^*) \right) \right) = \inf_{np} \left( \xi_D(V^*)' \right).$ 

Proof. Follows from Definitions 3.23 and 3.24.

#### 4. Decision Making in NPTS

In this section, the real-life application dealt to repair the sample machines with some damages. To repair it, priority is given to the high damaged machine. The solving techniques are given in the algorithm and formulae for evaluation are given. Some examples are considered to decide on these DM problems.

**Definition 4.1** Let  $\xi_D(V^*)$  be a  $\tau_{np}$ -NPOS over *W* of a NPTS  $(W, \tau_{np})$ . Then the neutro-prime absolute complement of  $\xi_D(V^*)$  is denoted as  $\tilde{\xi}_D((V^*)')$  and defined as  $\tilde{\xi}_D((V^*)') = \tilde{\xi}_D((W-V^*))$ .

Thus the collection of  $\tilde{\xi}_D((V^*)')$  is denoted as  $\tilde{\tau}_{np}$  and defined as  $\tilde{\tau}_{np} = \{0_{np}, 1_{np}, \tilde{\xi}_D((V^*)')\}$ . The elements belong to  $\tilde{\xi}_D((V^*)')$  are said to be neutro-prime absolute open sets (NPAOSs) over  $(W, \tau_{np})$  and the complement of NPOSs are said to be neutro-prime absolute closed sets (NPACSs) over  $(W, \tau_{np})$  and denote the collection by  $\tilde{\tau}_{np}^*$ .

**Example 4.2** Let  $W = \{w_1, w_2, w_3\}$  and  $\tau_n = \{0_n, 1_n, D\}$  where *D* is a NS over *W* and are defined as follows

 $D = \{ \langle w_1, .9, .4, .6 \rangle, \langle w_2, .6, .5, .1 \rangle, \langle w_3, .7, .8, .1 \rangle \}.$ Thus  $(W, \tau_n)$  is a NTS over W. Then NPS  $\eta_p D(w_3) = \{ \xi_D(w_3), \xi_D(w_1, w_3), \xi_D(w_2, w_3) \},$ where  $\xi_D(w_3) = \{ \langle w_1, 0, 0, 1 \rangle, \langle w_2, 0, 0, 1 \rangle, \langle w_3, .7, .8, .1 \rangle, \langle (w_1, w_2), 0, 0, 1 \rangle, \langle (w_1, w_3), .9, .8, .1 \rangle, \langle (w_2, w_3), .7, .8, .1 \rangle \},$   $\xi_D(w_1, w_3) = \{ \langle w_1, .9, .4, .6 \rangle, \langle w_2, 0, 0, 1 \rangle, \langle w_3, .7, .8, .1 \rangle, \langle (w_1, w_2), .9, .5, .1 \rangle, \langle (w_1, w_3), .9, .8, .1 \rangle, \langle (w_2, w_3), .7, .8, .1 \rangle \}$ and

 $\xi_D(w_2, w_3) = \left\{ \langle w_1, 0, 0, 1 \rangle, \langle w_2, .6, .5, .1 \rangle, \langle w_3, .7, .8, .1 \rangle, \langle (w_1, w_2), .9, .5, .1 \rangle, \langle (w_1, w_3), .9, .8, .1 \rangle, \langle (w_2, w_3), .7, .8, .1 \rangle \right\}.$  Then

 $\tau_{np} = \{0_{np}, 1_{np}, \xi_D(w_1, w_3)\}$  is a NPT.

Thus (W,  $\tau_{np}$ ) is a NPTS over W.

Also, the complement of the NPT  $\tau_{np}$  is

$$\tau_{np}^{*} = \{0_{np}, 1_{np}, \xi_D(w_1, w_3)'\},\$$

where

$$\xi_D(w_1, w_3)' = \left\{ \langle w_1, .6, .6, .9 \rangle, \langle w_2, 1, 1, 0 \rangle, \langle w_3, .1, .2, .7 \rangle, \langle (w_1, w_2), .1, .5, .9 \rangle, \langle (w_1, w_3), .1, .2, .9 \rangle, \langle (w_2, w_3), .1, .2, .7 \rangle \right\}$$

Then NPAOSs over (W,  $\tau_{np}$ ) is

$$\widetilde{\tau}_{np} = \left\{ 0_{np}, 1_{np}, \widetilde{\xi}_D ((w_1, w_3)') \right\} = \left\{ 0_{np}, 1_{np}, \widetilde{\xi}_D (w_2) \right\},\$$

where  $\tilde{\xi}_D((w_1, w_3)') = \tilde{\xi}_D(w_2) = \langle \langle w_1, 0, 0, 1 \rangle, \langle w_2, .6, .5, .1 \rangle, \langle w_3, 0, 0, 1 \rangle, \langle (w_1, w_2), .9, .5, .1 \rangle, \langle (w_1, w_3), 0, 0, 1 \rangle, \langle (w_2, w_3), .7, .8, .1 \rangle \rangle$ 

Also, NPACSs over  $(W, \tau_{np})$  is

$$\widetilde{\tau}_{np}^{*} = \left\{ 0_{np}, 1_{np}, \widetilde{\xi}_{D} \left( (w_1, w_3)' \right)' \right\}$$

where

$$\widetilde{\xi}_{D}((w_{1},w_{3})')' = \widetilde{\xi}_{D}(w_{2})' = \left\{ \langle w_{1},1,1,0 \rangle, \langle w_{2},.1,.5,.6 \rangle, \langle w_{3},1,1,0 \rangle, \langle (w_{1},w_{2}),.1,.5,.9 \rangle, \langle (w_{1},w_{3}),1,1,0 \rangle, \langle (w_{2},w_{3}),.1,.2,.7 \rangle \right\}$$

**Definition 4.3** Let *W* be a set of universe and  $w \in W$ . Let *D* be a NS over *W* and *U* be any proper non-empty subset of *W*. Let  $\xi_D(U)$  be a  $\tau_{np}$ -NPOS over *W* of a NFTS ( $W, \tau_{np}$ ).

Then the value of D with respect to U is denoted by Val[D(U)] and is calculated by the formula

$$Val[D(U)] = \left| \frac{\left[\sum_{i} \left(\tilde{T}_{D}(U')\right)_{i} - \sum_{i} \left(F_{D}(U)'\right)_{i}\right] + \left[\sum_{i} \left(T_{D}(U)'\right)_{i} - \sum_{i} \left(\tilde{F}_{D}(U')\right)_{i}\right]}{2} \times \left[1 - \frac{\sum_{i} \left(\tilde{T}_{D}(U')\right)_{i} - \sum_{i} \left(T_{D}(U')'\right)_{i}}{2}\right]\right|, \quad (4.3.1)$$

where

 $\sum_{i} (T_D(U)')_i, \sum_{i} (I_D(U)')_i \text{ and } \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy and falsity values of } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy and falsity values of } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy and falsity values of } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy and falsity values of } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy and falsity values } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy and falsity values } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i \text{ are the sum of all truth, indeterminacy } I_i = \sum_{i} (F_D(U)')_i = \sum_{i} (F_D(U)')_i = \sum_{i} (F_D(U)')_i = \sum_{i} (F_D(U)')_i$ 

 $\xi_D(U)'$  respectively, and  $\sum_i \left( \widetilde{T}_R(U') \right)_i$ ,  $\sum_i \left( \widetilde{I}_R(U') \right)_i$  and  $\sum_i \left( \widetilde{F}_D(U') \right)_i$  are the sum of all truth, indeterminacy, and falsity values of  $\widetilde{\xi}_D((U'))$  respectively.

Then the grand value of D is denoted by GV[D] and is calculated by the formula

$$GV[D] = \sum_{i} Val[D(U_i)], \text{ for all } i.$$
(4.3.2)

# Algorithm

Step 1: List the set of machines for the sample.

**Step 2:** List some of its damaged parts as the universe *W*, where  $w \in W$ .

Step 3: Go through the damages of the machines.

Step 4: Define each machines as NSs, say *M*.

**Step 5:** Collect these NSs which defines a NT  $\tau_n$  and so (*W*,  $\tau_n$ ) is a NTS.

**Step 6:** Define NPSs for each NS with respect to their damaged parts, say  $\xi_M(U)$ , where *U* is a proper non-empty subset of *W*.

**Step 7:** Define all possible NPTs  $\tau_{np}$  and  $\xi_M(U) \in \tau_{np}$ , where *U* is a proper non-empty singleton

subset of W.

**Step 8:** Define NPTSs (W,  $\tau_{np}$ ) for all possible NPTs  $\tau_{np}$ .

Step 9: Find the complement and neutro-prime absolute complement of each NPTs.

**Step 10:** Calculate *Val*[*M*(*U*)] for all *M* with respect to some *U*, by using the formula 4.3.1.

Step 11: Tabulate all the estimated values of *Val*[*M*(*U*)].

**Step 12:** Calculate *GV*[*M*] for all *M*, by using the formula 4.3.2.

**Step 13:** Tabulate all the estimated values of *GV*[*M*].

**Step 14:** Select the highest value among all the *GV*[*M*].

**Step 15:** If two or more GV[M] are similar for a particular *U*, replace that *U* with some other damaged parts and repeat the process.

**Step 16:** End the process, till getting a unique *GV*[*M*].

**Example 4.4** Consider the problem that a technician came to repair damaged machines. Let *M*I, *M*II, *M*III, and *M*IV be sample machines whose damages to be repaired. Let  $W = \{p_1, p_2, p_3\}$  be some parts of each damaged machine, where  $p_1$ -part 1,  $p_2$ -part 1 and  $p_3$ -part 3. Here the technician gives priority to the high damaged machine and to repair it initially.

1. Let *MI*, *MII*, *MIII*, and *MIV* be sample machines whose damages to be repaired.

2. Let  $W = \{p_1, p_2, p_3\}$  be the universe, where  $p_1$ -part 1,  $p_2$ -part 2, and  $p_3$ -part 3.

3. The technician goes through the damages on each machine.

4. Define *MI*, *MII*, *MIII*, and *MIV* as NSs.

$$MI = \{ \langle p_1, .7, .6, .3 \rangle, \langle p_2, .4, .5, .4 \rangle, \langle p_3, .5, .3, .4 \rangle \},\$$

$$MII = \{ \langle p_1, .6, .3, .1 \rangle, \langle p_2, .6, .8, .4 \rangle, \langle p_3, .2, .2, .7 \rangle \},\$$

$$MIII = \left\{ \left( p_1, .7, .6, .1 \right), \left( p_2, .6, .8, .4 \right), \left( p_3, .5, .3, .4 \right) \right\} \text{ and }$$

$$MIV = \{ \langle p_1, .6, .3, .3 \rangle, \langle p_2, .4, .5, .4 \rangle, \langle p_3, .2, .2, .7 \rangle \}.$$

5. Thus  $\tau_n = \{0_n, 1_n, MI, MII, MIII, MIV\}$  is a NT and so  $(W, \tau_n)$  is a NTS.

6. Define NPSs for each NS with respect to their damaged parts as follows:

$$\eta_p MI(p_1, p_3) = \{\xi_{MI}(p_1), \xi_{MI}(p_3), \xi_{MI}(p_1, p_2), \xi_{MI}(p_1, p_3), \xi_{MI}(p_2, p_3)\},\$$

where

$$\xi_{MI}(p_1) = \left\{ \left( p_1, .7, .6, .3 \right), \left\langle p_2, 0, 0, 1 \right\rangle, \left\langle p_3, 0, 0, 1 \right\rangle, \left\langle (p_1, p_2), .7, .6, .3 \right\rangle, \left\langle (p_1, p_3), .7, .6, .3 \right\rangle, \left\langle (p_2, p_3), 0, 0, 1 \right\rangle \right\},$$

$$\begin{split} &\xi_{MI}(p_3) = \left\{ \left< p_1, 0, 0, 1 \right>, \left< p_2, 0, 0, 1 \right>, \left< p_3, .5, .3, .4 \right>, \left< (p_1, p_2), 0, 0, 1 \right>, \left< (p_1, p_3), .7, .6, .3 \right>, \left< (p_2, p_3), .5, .5, .4 \right> \right\}, \\ &\xi_{MI}(p_1, p_2) = \left\{ \left< p_1, .7, .6, .3 \right>, \left< p_2, .4, .5, .4 \right>, \left< p_3, 0, 0, 1 \right>, \left< (p_1, p_2), .7, .6, .3 \right>, \left< (p_1, p_3), .7, .6, .3 \right>, \left< (p_2, p_3), .5, .5, .4 \right> \right\}, \\ &\xi_{MI}(p_1, p_3) = \left\{ \left< p_1, .7, .6, .3 \right>, \left< p_2, 0, 0, 1 \right>, \left< p_3, .5, .3, .4 \right>, \left< (p_1, p_2), .7, .6, .3 \right>, \left< (p_1, p_3), .7, .6, .3 \right>, \left< (p_2, p_3), .5, .5, .4 \right> \right\}, \\ &\xi_{MI}(p_2, p_3) = \left\{ \left< p_1, 0, 0, 1 \right>, \left< p_2, .4, .5, .4 \right>, \left< p_3, .5, .3, .4 \right>, \left< (p_1, p_2), .7, .6, .3 \right>, \left< (p_1, p_3), .7, .6, .3 \right>, \left< (p_2, p_3), .5, .5, .4 \right> \right\}, \\ &\xi_{MI}(p_2, p_3) = \left\{ \left< p_1, 0, 0, 1 \right>, \left< p_2, .4, .5, .4 \right>, \left< p_3, .5, .3, .4 \right>, \left< (p_1, p_2), .7, .6, .3 \right>, \left< (p_1, p_3), .7, .6, .3 \right>, \left< (p_2, p_3), .5, .5, .4 \right> \right\}; \end{split}$$

 $\eta_{p}MII(p_{2}) = \{\xi_{MII}(p_{2}), \xi_{MII}(p_{1}, p_{2}), \xi_{MII}(p_{2}, p_{3})\},\$ 

where

$$\begin{split} \xi_{MII}(p_2) &= \left\{\!\! \left< p_1, 0, 0, 1 \right>\!\! , \left< p_2, .6, .8, .4 \right>\!\! , \left< p_3, 0, 0, 1 \right>\!\! , \left< (p_1, p_2), .6, .8, .1 \right>\!\! , \left< (p_1, p_3), 0, 0, 1 \right>\!\! , \left< (p_2, p_3), .6, .8, .4 \right>\!\! \right>\!\! , \\ \xi_{MII}(p_1, p_2) &= \left<\!\! \left< p_1, .6, .3, .1 \right>\!\! , \left< p_2, .6, .8, .4 \right>\!\! , \left< p_3, 0, 0, 1 \right>\!\! , \left< (p_1, p_2), .6, .8, .1 \right>\!\! , \left< (p_1, p_3), .6, .3, .1 \right>\!\! , \left< (p_2, p_3), .6, .8, .4 \right>\!\! \right>\!\! , \\ \xi_{MII}(p_2, p_3) &= \left<\!\! \left< p_1, 0, 0, 1 \right>\!\! , \left< p_2, .6, .8, .4 \right>\!\! , \left< p_3, .2, .2, .7 \right>\!\! , \left< (p_1, p_2), .6, .8, .1 \right>\!\! , \left< (p_1, p_3), .6, .3, .1 \right>\!\! , \left< (p_2, p_3), .6, .8, .4 \right>\!\! \right>\!\! \right\}; \end{split}$$

$$\eta_{p}MIII(p_{1}, p_{2}) = \{\xi_{MIII}(p_{1}), \xi_{MIII}(p_{2}), \xi_{MIII}(p_{1}, p_{2}), \xi_{MIII}(p_{1}, p_{3}), \xi_{MIII}(p_{2}, p_{3})\}, \xi_{MIII}(p_{2}, p_{3})\}$$

where

$$\begin{split} &\xi_{MIII}\left(p_{1}\right) = \left\{\!\!\left\langle p_{1}, 7, 6, 1\right\rangle\!\!, \left\langle p_{2}, 0, 0, 1\right\rangle\!\!, \left\langle p_{3}, 0, 0, 1\right\rangle\!\!, \left\langle (p_{1}, p_{2}), 7, 8, 1\right\rangle\!, \left\langle (p_{1}, p_{3}), 7, 6, 1\right\rangle\!, \left\langle (p_{2}, p_{3}), 0, 0, 1\right\rangle\!\right\}\!, \\ &\xi_{MIII}\left(p_{2}\right) = \left\{\!\!\left\langle p_{1}, 0, 0, 1\right\rangle\!, \left\langle p_{2}, 6, 8, 4\right\rangle\!, \left\langle p_{3}, 0, 0, 1\right\rangle\!, \left\langle (p_{1}, p_{2}), 7, 8, 1\right\rangle\!, \left\langle (p_{1}, p_{3}), 0, 0, 1\right\rangle\!, \left\langle (p_{2}, p_{3}), 6, 8, 4\right\rangle\!\right\}\!, \\ &\xi_{MIII}\left(p_{1}, p_{2}\right) = \left\{\!\!\left\langle p_{1}, 7, 6, 1\right\rangle\!, \left\langle p_{2}, 6, 8, 4\right\rangle\!, \left\langle p_{3}, 0, 0, 1\right\rangle\!, \left\langle (p_{1}, p_{2}), 7, 8, 1\right\rangle\!, \left\langle (p_{1}, p_{3}), 7, 6, 1\right\rangle\!, \left\langle (p_{2}, p_{3}), 6, 8, 4\right\rangle\!\right\}\!, \\ &\xi_{MIII}\left(p_{1}, p_{3}\right) = \left\{\!\!\left\langle p_{1}, 7, 6, 1\right\rangle\!, \left\langle p_{2}, 0, 0, 1\right\rangle\!, \left\langle p_{3}, 5, 3, 4\right\rangle\!, \left\langle (p_{1}, p_{2}), 7, 8, 1\right\rangle\!, \left\langle (p_{1}, p_{3}), 7, 6, 1\right\rangle\!, \left\langle (p_{2}, p_{3}), 6, 8, 4\right\rangle\!\right\}\!, \\ &\xi_{MIII}\left(p_{2}, p_{3}\right) = \left\{\!\!\left\langle p_{1}, 0, 0, 1\right\rangle\!, \left\langle p_{2}, 6, 8, 4\right\rangle\!, \left\langle p_{3}, .5, .3, .4\right\rangle\!, \left\langle (p_{1}, p_{2}), 7, .8, .1\right\rangle\!, \left\langle (p_{1}, p_{3}), 7, .6, .1\right\rangle\!, \left\langle (p_{2}, p_{3}), .6, .8, .4\right\rangle\!\right\}\!\right\}$$
and

$$\eta_{p}MIV(p_{1}) = \{\xi_{MIV}(p_{1}), \xi_{MIV}(p_{1}, p_{2}), \xi_{MIV}(p_{1}, p_{3})\},\$$

where

$$\begin{split} &\xi_{MIV}(p_1) = \left\{\!\!\left< p_1,.6,.3,.3 \right>\!\!, \left< p_2,0,0,1 \right>\!\!, \left< p_3,0,0,1 \right>\!\!, \left< (p_1,p_2),.6,.5,.3 \right>\!\!, \left< (p_1,p_3),.6,.3,.3 \right>\!\!, \left< (p_2,p_3),0,0,1 \right>\!\!\right\}, \\ &\xi_{MIV}(p_1,p_2) = \left\{\!\!\left< p_1,.6,.3,.3 \right>\!\!, \left< p_2,.4,.5,.4 \right>\!\!, \left< p_3,0,0,1 \right>\!\!, \left< (p_1,p_2),.6,.5,.3 \right>\!\!, \left< (p_1,p_3),.6,.3,.3 \right>\!\!, \left< (p_2,p_3),.4,.5,.4 \right>\!\!\right\}, \\ &\xi_{MIV}(p_1,p_3) = \left<\!\!\left< p_1,.6,.3,.3 \right>\!\!, \left< p_2,0,0,1 \right>\!\!, \left< p_3,.2,.2,.7 \right>\!\!, \left< (p_1,p_2),.6,.5,.3 \right>\!\!, \left< (p_1,p_3),.6,.3,.3 \right>\!\!, \left< (p_2,p_3),.4,.5,.4 \right>\!\!\right\}. \end{split}$$

7. The possible NPTs for all proper non-empty singleton subset of *W* are defined as follows:

$$\begin{aligned} & \left\{ \tau_{np} = \left\{ 0_{np}, 1_{np}, \xi_{MI}(p_1), \xi_{MIII}(p_1), \xi_{MIV}(p_1) \right\} \\ & 2\tau_{np} = \left\{ 0_{np}, 1_{np}, \xi_{MII}(p_2), \xi_{MIII}(p_2) \right\} \text{ and } \\ & 3\tau_{np} = \left\{ 0_{np}, 1_{np}, \xi_{MI}(p_3) \right\}. \end{aligned}$$

8. Thus (W,  $1\tau_{np}$ ), (W,  $2\tau_{np}$ ) and (W,  $3\tau_{np}$ ) are NPTSs over W.

9. The complement and neutro-prime absolute complement of NPT  $1\tau_{np}$  are as follows,

$$1\tau_{np}^{*} = \{0_{np}, 1_{np}, \xi_{MI}(p_{1})', \xi_{MIII}(p_{1})', \xi_{MIV}(p_{1})'\},\$$

where

$$\begin{split} \xi_{MI}(p_{1})' &= \left\{ \left< p_{1},.3,.4,.7 \right>, \left< p_{2},1,1,0 \right>, \left< p_{3},1,1,0 \right>, \left< (p_{1},p_{2}),.3,.4,.7 \right>, \left< (p_{1},p_{3}),.3,.4,.7 \right>, \left< (p_{2},p_{3}),1,1,0 \right> \right\} \right\} \\ \xi_{MIII}(p_{1})' &= \left\{ \left< p_{1},.1,.4,.7 \right>, \left< p_{2},1,1,0 \right>, \left< p_{3},1,1,0 \right>, \left< (p_{1},p_{2}),.1,2,.7 \right>, \left< (p_{1},p_{3}),.1,.4,.7 \right>, \left< (p_{2},p_{3}),1,1,0 \right> \right\} \right\} \\ \xi_{MIV}(p_{1})' &= \left\{ \left< p_{1},.3,.7,.6 \right>, \left< p_{2},1,1,0 \right>, \left< p_{3},1,1,0 \right>, \left< (p_{1},p_{2}),.3,.5,.6 \right>, \left< (p_{1},p_{3}),.3,.7,.6 \right>, \left< (p_{2},p_{3}),1,1,0 \right> \right\} \right\} \\ \text{and} \end{split}$$

$$1\tilde{\tau}_{np} = \left\{ 0_{np}, 1_{np}, \tilde{\xi}_{MI}(p_2, p_3), \tilde{\xi}_{MIII}(p_2, p_3), \tilde{\xi}_{MIV}(p_2, p_3) \right\},$$

where

$$\begin{split} \widetilde{\xi}_{MI}(p_2, p_3) &= \left\{\!\!\left< p_1, 0, 0, 1 \right>\!\!, \left< p_2, .4, .5, .4 \right>\!\!, \left< p_3, .5, .3, .4 \right>\!\!, \left< (p_1, p_2), .7, .6, .3 \right>\!\!, \left< (p_1, p_3), .7, .6, .3 \right>\!\!, \left< (p_2, p_3), .5, .5, .4 \right>\!\!\right\} \right\} \\ \widetilde{\xi}_{MIII}(p_2, p_3) &= \left\{\!\!\left< p_1, 0, 0, 1 \right>\!\!, \left< p_2, .6, .8, .4 \right>\!\!, \left< p_3, .5, .3, .4 \right>\!\!, \left< (p_1, p_2), .7, .8, .1 \right>\!\!, \left< (p_1, p_3), .7, .6, .1 \right>\!\!, \left< (p_2, p_3), .6, .8, .4 \right>\!\!\right\} \right\} \end{split}$$

$$\widetilde{\xi}_{MIV}(p_2, p_3) = \left\{ \langle p_1, 0, 0, 1 \rangle, \langle p_2, .4, .5, .4 \rangle, \langle p_3, .2, .2, .7 \rangle, \langle (p_1, p_2), .6, .5, .3 \rangle, \langle (p_1, p_3), .6, .3, .3 \rangle, \langle (p_2, p_3), .4, .5, .4 \rangle \right\}.$$

The complement and neutro-prime absolute complement of NPT  $2\tau_{np}$  are as follows,

$$2\tau_{np}^{*} = \left\{ 0_{np}, 1_{np}, \xi_{MII}(p_{2})', \xi_{MIII}(p_{2})' \right\}$$

where

 $\xi_{MII}(p_2)' = \{ \langle p_1, 1, 1, 0 \rangle, \langle p_2, .4, .2, .6 \rangle, \langle p_3, 1, 1, 0 \rangle, \langle (p_1, p_2), .1, .2, .6 \rangle, \langle (p_1, p_3), 1, 1, 0 \rangle, \langle (p_2, p_3), .4, .2, .6 \rangle \}$   $\xi_{MIII}(p_2)' = \{ \langle p_1, 1, 1, 0 \rangle, \langle p_2, .4, .2, .6 \rangle, \langle p_3, 1, 1, 0 \rangle, \langle (p_1, p_2), .1, .2, .7 \rangle, \langle (p_1, p_3), 1, 1, 0 \rangle, \langle (p_2, p_3), .4, .2, .6 \rangle \}$ and

$$2\tilde{\tau}_{np} = \left\{ 0_{np}, 1_{np}, \tilde{\xi}_{MII}(p_1, p_3), \tilde{\xi}_{MIII}(p_1, p_3) \right\}$$

where

$$\begin{split} \widetilde{\xi}_{MII}\left(p_{1},p_{3}\right) &= \left\{\!\!\left\langle p_{1},.6,.3,.1\right\rangle\!\!,\!\left\langle p_{2},0,0,1\right\rangle\!\!,\!\left\langle p_{3},.2,.2,.7\right\rangle\!\!,\!\left\langle (p_{1},p_{2}),.6,.8,.1\right\rangle\!\!,\!\left\langle (p_{1},p_{3}),.6,.3,.1\right\rangle\!\!,\!\left\langle (p_{2},p_{3}),.6,.8,.4\right\rangle\!\right\} \\ \widetilde{\xi}_{MIII}\left(p_{1},p_{3}\right) &= \left\{\!\!\left\langle p_{1},.7,.6,.1\right\rangle\!,\!\left\langle p_{2},0,0,1\right\rangle\!,\!\left\langle p_{3},.5,.3,.4\right\rangle\!,\!\left\langle (p_{1},p_{2}),.7,.8,.1\right\rangle\!,\!\left\langle (p_{1},p_{3}),.7,.6,.1\right\rangle\!,\!\left\langle (p_{2},p_{3}),.6,.8,.4\right\rangle\!\right\}. \end{split}\right.$$

The complement and neutro-prime absolute complement of NPT  $3\tau_{np}$  are as follows,

$$3\tau_{np}^{*} = \{0_{np}, 1_{np}, \xi_{MI}(p_3)'\},\$$

where

$$\xi_{MI}(p_3)' = \left\{ \langle p_1, 1, 1, 0 \rangle, \langle p_2, 1, 1, 0 \rangle, \langle p_3, .4, .7, .5 \rangle, \langle (p_1, p_2), 1, 1, 0 \rangle, \langle (p_1, p_3), .3, .4, .7 \rangle, \langle (p_2, p_3), .4, .5, .5 \rangle \right\}$$
  
and

$$3\widetilde{\tau}_{np} = \{0_{np}, 1_{np}, \widetilde{\xi}_{MI}(p_1, p_2)\},\$$

where

$$\widetilde{\xi}_{MI}(p_1, p_2) = \left\{ \langle p_1, .7, .6, .3 \rangle, \langle p_2, .4, .5, .4 \rangle, \langle p_3, 0, 0, 1 \rangle, \langle (p_1, p_2), .7, .6, .3 \rangle, \langle (p_1, p_3), .7, .6, .3 \rangle, \langle (p_2, p_3), .5, .5, .4 \rangle \right\}$$

10. By using the formula 4.3.1, evaluated the values of all machines with respect to each proper non-empty singleton subset of *W*.

i.e. *Val*[*M*I(*pi*)], *Val*[*M*II(*pi*)], *Val*[*M*III(*pi*)] and *Val*[*M*IV(*pi*)], for *i* = 1, 2, 3. 11. These estimated values are tabulated in the following table.

|      | <b>p</b> 1 | <b>p</b> <sub>2</sub> | <b>p</b> <sub>3</sub> |
|------|------------|-----------------------|-----------------------|
| MI   | 2.025      | 0                     | 3.645                 |
| MII  | 0          | 2.3                   | 0                     |
| MIII | 1.59       | 3.6425                | 0                     |
| MIV  | 1.35       | 0                     | 1.59                  |

Table 4.4.1. Value Table

12. By using the formula 4.3.2, evaluated the grand values of all machines. i.e. *GV*[*M*I], *GV*[*M*II], *GV*[*M*II], and *GV*[*M*IV].

13. These estimated values are tabulated in the following table.

|      | <b>p</b> 1 | <b>p</b> <sub>2</sub> | <b>p</b> <sup>3</sup> | GV     |
|------|------------|-----------------------|-----------------------|--------|
| MI   | 2.025      | 0                     | 3.645                 | 5.67   |
| MII  | 0          | 2.3                   | 0                     | 2.3    |
| MIII | 1.59       | 3.6425                | 0                     | 5.2325 |
| MIV  | 1.35       | 0                     | 1.59                  | 1.35   |

14. Thus *GV*[*M*I] is the highest value.

Hence the technician gives priority to repairing the damaged machine MI.

Example 4.5 Consider the problem explained in Example 4.4.

- 1. Let MI, MII, and MIII be sample machines whose damages to be repaired.
- 2. Let  $W = \{p_1, p_2, p_3\}$  be the universe, where  $p_1$ -part 1,  $p_2$ -part 2, and  $p_3$ -part 3.
- 3. The technician goes through the damages on each machine.
- 4. Define *MI*, *MII*, and *MIII* as NSs.

٢.

$$MI = \{ \langle p_1, .7, .6, .1 \rangle, \langle p_2, .6, .8, .4 \rangle, \langle p_3, .7, .6, .1 \rangle \},$$
  

$$MII = \{ \langle p_1, .6, .3, .1 \rangle, \langle p_2, .6, .8, .4 \rangle, \langle p_3, .2, .2, .7 \rangle \} \text{ and}$$
  

$$MIII = \{ \langle p_1, .7, .6, .1 \rangle, \langle p_2, .6, .8, .4 \rangle, \langle p_3, .7, .6, .1 \rangle \} .$$

5. Thus  $\tau_n = \{0_n, 1_n, MI, MII, MII\}$  is a NT and so  $(W, \tau_n)$  is a NTS.

6. Define NPSs for each NS with respect to their damaged parts as follows:

$$\eta_p MI(p_3) = \{\xi_{MI}(p_3), \xi_{MI}(p_1, p_3), \xi_{MI}(p_2, p_3)\},\$$

where

$$\begin{split} \xi_{MI}(p_3) &= \left\{ \left< p_1, 0, 0, 1 \right>, \left< p_2, 0, 0, 1 \right>, \left< p_3, .7, .6, .1 \right>, \left< (p_1, p_2), 0, 0, 1 \right>, \left< (p_1, p_3), .7, .6, .1 \right>, \left< (p_2, p_3), .7, .8, .1 \right> \right\}, \\ \xi_{MI}(p_1, p_3) &= \left\{ \left< p_1, .7, .6, .1 \right>, \left< p_2, 0, 0, 1 \right>, \left< p_3, .7, .6, .1 \right>, \left< (p_1, p_2), .7, .8, .1 \right>, \left< (p_1, p_3), .7, .6, .1 \right>, \left< (p_2, p_3), .7, .8, .1 \right> \right\}, \\ \xi_{MI}(p_2, p_3) &= \left\{ \left< p_1, .7, .6, .1 \right>, \left< p_2, .6, .8, .4 \right>, \left< p_3, 0, 0, 1 \right>, \left< (p_1, p_2), .7, .8, .1 \right>, \left< (p_1, p_3), .7, .6, .1 \right>, \left< (p_2, p_3), .7, .8, .1 \right> \right\}; \end{split}$$

$$\eta_p MII(p_2) = \{\xi_{MII}(p_2), \xi_{MII}(p_1, p_2), \xi_{MII}(p_2, p_3)\},\$$

where

$$\begin{split} &\xi_{MII}\left(p_{2}\right) = \left\{\!\!\left\langle p_{1},0,0,1\right\rangle\!\!,\left\langle p_{2},.6,.8,.4\right\rangle\!\!,\left\langle p_{3},0,0,1\right\rangle\!,\left\langle (p_{1},p_{2}),.6,.8,.1\right\rangle\!,\left\langle (p_{1},p_{3}),0,0,1\right\rangle\!,\left\langle (p_{2},p_{3}),.6,.8,.4\right\rangle\!\right\}\!,\\ &\xi_{MII}\left(p_{1},p_{2}\right) = \left\{\!\!\left\langle p_{1},.6,.3,.1\right\rangle\!,\left\langle p_{2},.6,.8,.4\right\rangle\!,\left\langle p_{3},0,0,1\right\rangle\!,\left\langle (p_{1},p_{2}),.6,.8,.1\right\rangle\!,\left\langle (p_{1},p_{3}),.6,.3,.1\right\rangle\!,\left\langle (p_{2},p_{3}),.6,.8,.4\right\rangle\!\right\}\!,\\ &\xi_{MII}\left(p_{2},p_{3}\right) = \left\{\!\!\left\langle p_{1},0,0,1\right\rangle\!,\left\langle p_{2},.6,.8,.4\right\rangle\!,\left\langle p_{3},.2,.2,.7\right\rangle\!,\left\langle (p_{1},p_{2}),.6,.8,.1\right\rangle\!,\left\langle (p_{1},p_{3}),.6,.3,.1\right\rangle\!,\left\langle (p_{2},p_{3}),.6,.8,.4\right\rangle\!\right\}\!\right\} \text{ and } \end{split}$$

 $\eta_{p}MIII(p_{1}) = \{\xi_{MIII}(p_{1}), \xi_{MIII}(p_{1}, p_{2}), \xi_{MIII}(p_{1}, p_{3})\},\$ 

where

7. The possible NPTs for all proper non-empty singleton subset of *W* are defined as follows:

$$\begin{aligned} &1\tau_{np} = \left\{ 0_{np}, 1_{np}, \xi_{MIII}(p_1) \right\} , \\ &2\tau_{np} = \left\{ 0_{np}, 1_{np}, \xi_{MII}(p_2) \right\} \text{ and } \\ &3\tau_{np} = \left\{ 0_{np}, 1_{np}, \xi_{MI}(p_3) \right\}. \end{aligned}$$

8. Thus (W,  $1\tau_{np}$ ), (W,  $2\tau_{np}$ ) and (W,  $3\tau_{np}$ ) are NPTSs over W.

9. The complement and neutro-prime absolute complement of NPT  $1\tau_{np}$  are as follows,

$$1\tau_{np}^{*} = \{0_{np}, 1_{np}, \xi_{MIII}(p_{1})'\},\$$

where

$$\begin{aligned} \xi_{MIII}(p_1)' &= \left\{ \left( p_1, .1, .4, .7 \right), \left\langle p_2, 1, 1, 0 \right\rangle, \left\langle p_3, 1, 1, 0 \right\rangle, \left\langle (p_1, p_2), .1, .2, .7 \right\rangle, \left\langle (p_1, p_3), .1, .4, .7 \right\rangle, \left\langle (p_2, p_3), 1, 1, 0 \right\rangle \right\} \end{aligned} \\ \text{and} \\ 1 \widetilde{\tau}_{np} &= \left\{ 0_{np}, 1_{np}, \widetilde{\xi}_{MIII}(p_2, p_3)' \right\}, \end{aligned}$$

where

$$\widetilde{\xi}_{MIII}(p_2, p_3) = \left\{\!\!\left< p_1, 0, 0, 1 \right>\!\!, \left< p_2, .6, .8, .4 \right>\!\!, \left< p_3, .5, .3, .4 \right>\!\!, \left< (p_1, p_2), .7, .8, .1 \right>\!\!, \left< (p_1, p_3), .7, .6, .1 \right>\!\!, \left< (p_2, p_3), .6, .8, .4 \right>\!\!\right>\!\!\right\}.$$

The complement and neutro-prime absolute complement of NPT  $2\tau_{np}$  are as follows,

$$\begin{aligned} & 2\tau_{np}^{*} = \left\{ \!\! 0_{np}, \!\! 1_{np}, \xi_{MII}(p_{2})' \right\}, \\ & \text{where} \\ & \xi_{MII}(p_{2})' = \left\{ \!\! \left\{ \!\! p_{1}, \!\! 1, \!\! 1, \!\! 0 \right\}, \!\! \left\langle \!\! p_{2}, \!\! .4, \!\! 2, \!\! .6 \right\rangle, \!\! \left\langle \!\! p_{3}, \!\! 1, \!\! 1, \!\! 0 \right\rangle, \!\! \left\langle \!\! (p_{1}, p_{2}), \!\! .1, \!\! 2, \!\! .6 \right\rangle, \!\! \left\langle \!\! (p_{1}, p_{3}), \!\! 1, \!\! 1, \!\! 0 \right\rangle, \!\! \left\langle \!\! (p_{2}, p_{3}), \!\! .4, \!\! .2, \!\! .6 \right\rangle \right\} \\ & \text{and} \\ & 2\tilde{\tau}_{np} = \left\{ \!\! 0_{np}, \!\! 1_{np}, \!\! \tilde{\xi}_{MII}(p_{1}, p_{3}) \right\}, \end{aligned}$$

where

$$\widetilde{\xi}_{MII}(p_1, p_3) = \left\{ \left( p_1, .6, .3, .1 \right), \left( p_2, 0, 0, 1 \right), \left( p_3, .2, .2, .7 \right), \left( (p_1, p_2), .6, .8, .1 \right), \left( (p_1, p_3), .6, .3, .1 \right), \left( (p_2, p_3), .6, .8, .4 \right) \right\}$$

The complement and neutro-prime absolute complement of NPT  $3\tau_{np}$  are as follows,

$$3\tau_{np}^{*} = \{0_{np}, 1_{np}, \xi_{MI}(p_3)'\},\$$

where

$$\begin{split} \xi_{MI}(p_3)' &= \left\{ \langle p_1, 1, 1, 0 \rangle, \langle p_2, 1, 1, 0 \rangle, \langle p_3, .1, .4, .7 \rangle, \langle (p_1, p_2), 1, 1, 0 \rangle, \langle (p_1, p_3), .1, .4, .7 \rangle, \langle (p_2, p_3), .1, .2, .7 \rangle \right\} \\ \text{and} \\ &3 \tilde{\tau}_{np} = \left\{ 0_{np}, 1_{np}, \tilde{\xi}_{MI}(p_1, p_2) \right\}, \end{split}$$

where

$$\widetilde{\xi}_{MI}(p_1, p_2) = \left\{ \langle p_1, .7, .6, .1 \rangle, \langle p_2, .6, .8, .4 \rangle, \langle p_3, 0, 0, 1 \rangle, \langle (p_1, p_2), .7, .8, .1 \rangle, \langle (p_1, p_3), .7, .6, .1 \rangle, \langle (p_2, p_3), .7, .8, .1 \rangle \right\}.$$

10. By using the formula 4.3.1, evaluated the values of all machines with respect to each proper non-empty singleton subset of W.

i.e. *Val*[*M*I(*pi*)], *Val*[*M*II(*pi*)] and *Val*[*M*III(*pi*)], for *i* = 1, 2, 3.

11. These estimated values are tabulated in the following table.

|      | Table 4.5.1. | Value Table           |                       |
|------|--------------|-----------------------|-----------------------|
|      | <b>p</b> 1   | <b>p</b> <sub>2</sub> | <b>p</b> <sub>3</sub> |
| МІ   | 0            | 0                     | 3.92                  |
| MII  | 0            | 2.3                   | 0                     |
| MIII | 3.92         | 0                     | 0                     |

12. By using the formula 4.3.2, evaluated the grand values of all machines.

i.e. GV[MI], GV[MII] and GV[MIII].

13. These estimated values are tabulated in the following table.

|      | <b>p</b> 1 | <b>p</b> <sup>2</sup> | <b>p</b> <sup>3</sup> | GV   |
|------|------------|-----------------------|-----------------------|------|
| MI   | 0          | 0                     | 3.92                  | 3.92 |
| MII  | 0          | 2.3                   | 0                     | 2.3  |
| MIII | 3.92       | 0                     | 0                     | 3.92 |

Table 4.5.2. Grand Value Table

14. Thus both *GV*[*M*I] and *GV*[*M*III] are the highest value.

15. In this situation, replace part 3 ( $p_3$ ) with some other damaged part, say  $p_4$ , and repeat the process.

1. Let MI, MII, and MIII be sample machines whose damages to be repaired.

- 2. Let  $W = \{p_1, p_2, p_4\}$  be the universe, where  $p_1$ -part 1,  $p_2$ -part 2, and  $p_4$ -part 4.
- 3. The technician goes through the damages on each machine.

4. Define *MI*, *MII*, and *MIII* as NSs.

$$\begin{split} MI &= \left\{ \left< p_1, .7, .6, .1 \right>, \left< p_2, .6, .8, .4 \right>, \left< p_4, .5, .3, .4 \right> \right\}, \\ MII &= \left\{ \left< p_1, .6, .3, .1 \right>, \left< p_2, .6, .8, .4 \right>, \left< p_4, .4, .3, .6 \right> \right\} \text{ and} \\ MIII &= \left\{ \left< p_1, .7, .6, .1 \right>, \left< p_2, .6, .8, .4 \right>, \left< p_4, .5, .3, .4 \right> \right\} . \end{split}$$

5. Thus  $\tau_n = \{0_n, 1_n, MI, MII, MII\}$  is a NT and so  $(W, \tau_n)$  is a NTS.

6. Define NPSs for each NS with respect to their damaged parts as follows:

$$\eta_p MI(p_4) = \{\xi_{MI}(p_4), \xi_{MI}(p_1, p_4), \xi_{MI}(p_2, p_4)\},\$$

where

$$\begin{split} &\xi_{MI}(p_4) = \left\{\!\!\left< p_1, 0, 0, 1 \right>\!\!, \left< p_2, 0, 0, 1 \right>\!\!, \left< p_4, .5, .3, .4 \right>\!\!, \left<\!\!\left< (p_1, p_2), 0, 0, 1 \right>\!\!, \left< (p_1, p_4), .7, .6, .1 \right>\!\!, \left< (p_2, p_4), .6, .8, .4 \right>\!\!\right\}\!\right\}, \\ &\xi_{MI}(p_1, p_4) = \left\{\!\!\left< p_1, .7, .6, .1 \right>\!\!, \left< p_2, 0, 0, 1 \right>\!\!, \left< p_4, .5, .3, .4 \right>\!\!, \left< (p_1, p_2), .7, .8, .1 \right>\!\!, \left< (p_1, p_4), .7, .6, .1 \right>\!\!, \left< (p_2, p_4), .6, .8, .4 \right>\!\!\right\}, \\ &\xi_{MI}(p_2, p_4) = \left\{\!\!\left< p_1, 0, 0, 1 \right>\!\!, \left< p_2, .6, .8, .4 \right>\!\!, \left< p_4, .5, .3, .4 \right>\!\!, \left< (p_1, p_2), .7, .8, .1 \right>\!\!, \left< (p_1, p_4), .7, .6, .1 \right>\!\!, \left< (p_2, p_4), .6, .8, .4 \right>\!\!\right\}; \end{split}$$

 $\eta_p MII(p_2) = \{\xi_{MII}(p_2), \xi_{MII}(p_1, p_2), \xi_{MII}(p_2, p_4)\},\$ 

where

$$\begin{split} \xi_{MII}(p_2) &= \left\{\!\!\left< p_1, 0, 0, 1 \right>\!\!, \left< p_2, .6, .8, .4 \right>\!\!, \left< p_4, 0, 0, 1 \right>\!\!, \left< (p_1, p_2), .6, .8, .1 \right>\!\!, \left< (p_1, p_4), 0, 0, 1 \right>\!\!, \left< (p_2, p_4), .6, .8, .4 \right>\!\!\right>\!\!, \\ \xi_{MII}(p_1, p_2) &= \left\{\!\!\left< p_1, .6, .3, .1 \right>\!\!, \left< p_2, .6, .8, .4 \right>\!\!, \left< p_4, 0, 0, 1 \right>\!\!, \left< (p_1, p_2), .6, .8, .1 \right>\!\!, \left< (p_1, p_4), .6, .3, .1 \right>\!\!, \left< (p_2, p_4), .6, .8, .4 \right>\!\!\right>\!\!, \\ \xi_{MII}(p_2, p_4) &= \left<\!\!\left< p_1, 0, 0, 1 \right>\!\!, \left< p_2, .6, .8, .4 \right>\!\!, \left< p_4, .4, .3, .6 \right>\!\!, \left< (p_1, p_2), .6, .8, .1 \right>\!\!, \left< (p_1, p_4), .6, .3, .1 \right>\!\!, \left< (p_2, p_4), .6, .8, .4 \right>\!\!\right>\!\!\right\} \\ \text{and} \end{split}$$

$$\begin{split} \eta_{p}MIII(p_{1},p_{2}) &= \left\{ \xi_{MIII}(p_{1}), \xi_{MIII}(p_{2}), \xi_{MIII}(p_{1},p_{2}), \xi_{MIII}(p_{1},p_{4}), \xi_{MIII}(p_{2},p_{4}) \right\}, \end{split}$$
 where  $\xi_{MIII}(p_{1}) &= \left\{ \langle p_{1}, 7, 6, 1 \rangle, \langle p_{2}, 0, 0, 1 \rangle, \langle p_{4}, 0, 0, 1 \rangle, \langle (p_{1}, p_{2}), 7, 8, 1 \rangle, \langle (p_{1}, p_{4}), 7, 6, 1 \rangle, \langle (p_{2}, p_{4}), 0, 0, 1 \rangle \right\}, \\ \xi_{MIII}(p_{2}) &= \left\{ \langle p_{1}, 0, 0, 1 \rangle, \langle p_{2}, 6, 8, 4 \rangle, \langle p_{4}, 0, 0, 1 \rangle, \langle (p_{1}, p_{2}), 7, 8, 1 \rangle, \langle (p_{1}, p_{4}), 0, 0, 1 \rangle, \langle (p_{2}, p_{4}), 6, 8, 4 \rangle \right\}, \\ \xi_{MIII}(p_{1}, p_{2}) &= \left\{ \langle p_{1}, 7, 6, 1 \rangle, \langle p_{2}, 6, 8, 4 \rangle, \langle p_{4}, 0, 0, 1 \rangle, \langle (p_{1}, p_{2}), 7, 8, 1 \rangle, \langle (p_{1}, p_{4}), 7, 6, 1 \rangle, \langle (p_{2}, p_{4}), 6, 8, 4 \rangle \right\}, \\ \xi_{MIII}(p_{1}, p_{4}) &= \left\{ \langle p_{1}, 7, 6, 1 \rangle, \langle p_{2}, 0, 0, 1 \rangle, \langle p_{4}, 5, 3, 4 \rangle, \langle (p_{1}, p_{2}), 7, 8, 1 \rangle, \langle (p_{1}, p_{4}), 7, 6, 1 \rangle, \langle (p_{2}, p_{4}), 6, 8, 4 \rangle \right\}, \\ \xi_{MIII}(p_{2}, p_{4}) &= \left\{ \langle p_{1}, 0, 0, 1 \rangle, \langle p_{2}, 6, 8, 4 \rangle, \langle p_{4}, 5, 3, 4 \rangle, \langle (p_{1}, p_{2}), 7, 8, 1 \rangle, \langle (p_{1}, p_{4}), 7, 6, 1 \rangle, \langle (p_{2}, p_{4}), 6, 8, 4 \rangle \right\}, \end{split}$ 

7. The possible NPTs for all proper non-empty singleton subset of *W* are defined as follows:

$$\begin{split} & 1\tau_{np} = \left\{ \! 0_{np}, \! 1_{np}, \! \xi_{MIII}\left(p_{1}\right) \! \right\} , \\ & 2\tau_{np} = \left\{ \! 0_{np}, \! 1_{np}, \! \xi_{MII}\left(p_{2}\right), \! \xi_{MIII}\left(p_{2}\right) \! \right\} \text{ and } \\ & 3\tau_{np} = \left\{ \! 0_{np}, \! 1_{np}, \! \xi_{MI}\left(p_{4}\right) \! \right\}. \end{split}$$

8. Thus  $(W, 1\tau_{np})$ ,  $(W, 2\tau_{np})$  and  $(W, 3\tau_{np})$  are NPTSs over W.

9. The complement and neutro-prime absolute complement of NPT  $1\tau_{np}$  are as follows,

$$1\tau_{np}^{*} = \{0_{np}, 1_{np}, \xi_{MIII}(p_{1})'\},\$$

where

$$\xi_{MIII}(p_1)' = \left\{ \langle p_1, .1, .4, .7 \rangle, \langle p_2, 1, 1, 0 \rangle, \langle p_4, 1, 1, 0 \rangle, \langle (p_1, p_2), .1, .2, .7 \rangle, \langle (p_1, p_4), .1, .4, .7 \rangle, \langle (p_2, p_4), 1, 1, 0 \rangle \right\}$$
  
and

$$\tilde{\tau}_{np} = \left\{ 0_{np}, 1_{np}, \widetilde{\xi}_{MIII}(p_2, p_4)' \right\},\$$

where

 $\widetilde{\xi}_{MIII}(p_2, p_4) = \left\{ \langle p_1, 0, 0, 1 \rangle, \langle p_2, .6, .8, .4 \rangle, \langle p_4, .5, .3, .4 \rangle, \langle (p_1, p_2), .7, .8, .1 \rangle, \langle (p_1, p_4), .7, .6, .1 \rangle, \langle (p_2, p_4), .6, .8, .4 \rangle \right\}.$ The complement and neutro-prime absolute complement of NPT  $2\tau_{np}$  are as follows,

$$2\tau_{np}^{*} = \{0_{np}, 1_{np}, \xi_{MII}(p_{2})', \xi_{MIII}(p_{2})'\},\$$

where

 $\xi_{MII}(p_2)' = \left\{ \langle p_1, 1, 1, 0 \rangle, \langle p_2, .4, .2, .6 \rangle, \langle p_4, 1, 1, 0 \rangle, \langle (p_1, p_2), .1, .2, .6 \rangle, \langle (p_1, p_4), 1, 1, 0 \rangle, \langle (p_2, p_4), .4, .2, .6 \rangle \right\}$  $\xi_{MIII}(p_2)' = \left\{ \langle p_1, 1, 1, 0 \rangle, \langle p_2, .4, .2, .6 \rangle, \langle p_4, 1, 1, 0 \rangle, \langle (p_1, p_2), .1, .2, .7 \rangle, \langle (p_1, p_4), 1, 1, 0 \rangle, \langle (p_2, p_4), .4, .2, .6 \rangle \right\}$ and

$$2\tilde{\tau}_{np} = \left\{ 0_{np}, 1_{np}, \tilde{\xi}_{MII}(p_1, p_4) \tilde{\xi}_{MIII}(p_1, p_4) \right\},\$$

where

$$\begin{split} \widetilde{\xi}_{MII}(p_1, p_4) &= \left\{ \left< p_1, .6, .3, .1 \right>, \left< p_2, 0, 0, 1 \right>, \left< p_4, .2, .2, .7 \right>, \left< (p_1, p_2), .6, .8, .1 \right>, \left< (p_1, p_4), .6, .3, .1 \right>, \left< (p_2, p_4), .6, .8, .4 \right> \right\} \right\} \\ \widetilde{\xi}_{MIII}(p_1, p_4) &= \left\{ \left< p_1, .7, .6, .1 \right>, \left< p_2, 0, 0, 1 \right>, \left< p_4, .5, .3, .4 \right>, \left< (p_1, p_2), .7, .8, .1 \right>, \left< (p_1, p_4), .7, .6, .1 \right>, \left< (p_2, p_4), .6, .8, .4 \right> \right\} \right\} \end{split}$$

The complement and neutro-prime absolute complement of NPT  $3\tau_{np}$  are as follows,

 $3\tau_{np}^{*} = \{0_{np}, 1_{np}, \xi_{MI}(p_4)'\},\$ 

where

$$\begin{aligned} \xi_{MI}(p_4)' &= \left\{ \left( p_1, 1, 1, 0 \right), \left\langle p_2, 1, 1, 0 \right\rangle, \left\langle p_4, .4, .7, .5 \right\rangle, \left\langle (p_1, p_2), 1, 1, 0 \right\rangle, \left\langle (p_1, p_4), .1, .4, .7 \right\rangle, \left\langle (p_2, p_4), .4, .2, .6 \right\rangle \right\} \end{aligned} \\ \text{and} \\ 3\tilde{\tau}_{np} &= \left\{ 0_{np}, 1_{np}, \tilde{\xi}_{MI}(p_1, p_2) \right\}, \end{aligned}$$

where

 $\widetilde{\xi}_{MI}(p_1, p_2) = \left\{ \langle p_1, .7, .6, .1 \rangle, \langle p_2, .6, .8, .4 \rangle, \langle p_4, 0, 0, 1 \rangle, \langle (p_1, p_2), .7, .8, .1 \rangle, \langle (p_1, p_4), .7, .6, .1 \rangle, \langle (p_2, p_4), .6, .8, .4 \rangle \right\}.$ 

10. By using the formula 4.3.1, evaluated the values of all machines with respect to each proper non-empty singleton subset of *W*.

i.e. *Val*[*M*I(*pi*)], *Val*[*M*II(*pi*)] and *Val*[*M*III(*pi*)], for *i* = 1, 2, 3. 11. These estimated values are tabulated in the following table.

| <b>Table 4.5.3.</b> Value Tab | le |
|-------------------------------|----|
|-------------------------------|----|

|      | <b>p</b> 1 | <b>p</b> <sup>2</sup> | <b>P</b> <sup>4</sup> |
|------|------------|-----------------------|-----------------------|
| MI   | 0          | 0                     | 4.8675                |
| MII  | 0          | 2.665                 | 0                     |
| MIII | 1.59       | 3.6425                | 0                     |

12. By using the formula 4.3.2, evaluated the grand values of all machines. i.e. *GV*[*M*I], *GV*[*M*II] and *GV*[*M*III].

13. These estimated values are tabulated in the following table.

|      | <b>p</b> 1 | <b>p</b> <sup>2</sup> | <b>P</b> <sup>4</sup> | GV     |
|------|------------|-----------------------|-----------------------|--------|
| MI   | 0          | 0                     | 4.8675                | 4.8675 |
| MII  | 0          | 2.665                 | 0                     | 2.665  |
| MIII | 1.59       | 3.6425                | 0                     | 5.2325 |

Table 4.5.4. Grand Value Table

## 14. Thus *GV*[*M*III] is the highest value.

Hence the technician gives priority to repairing the damaged machine *M*III.

## 5. Conclusions

The major contribution of this work is initiating a neutrosophic environment on prime sets under a topological space. Some related properties of NPTSs have been proved and some are disproved with counterexamples. Also, the idea of interior and closure dealt with such space with few basic properties. The novelty of this study is to merge two different poles. The decision-making problem is demonstrated with an example to analyze the number of faults in industrial machines. Sample machines are represented as NSs and their damages are represented as NPSs under its topological space. The values of fault machines are detected by finding the complement and absolute complement of each NPS. The various values of faults are taken as different subsets, for analysis. The proposed algorithm analyzes through the NPSs and finds the best suitable set values which indicate the heavy damage in machines. The lower fault machines are neglected by decision-making problems.

The primary results of this study are:

- Prime set is studied under the environment of neutrosophic.
- Related properties are stated with proof and also disproved in counter examples.
- The intersection of two NPTs is a NPT but not for its union.
- Demonstrating the decision-making problem of analyzing the number of damages in machines.
- The complement and absolute complement of NPSs are evaluated to find the best fit of fault by diagnosis the machines.

In the future, this set may develop more genetic algorithms to predict multi-criteria DM problems. Many more sets like soft sets, rough sets, crisp sets, etc., can be developed on NPTSs. More ideas may be claimed and investigated to achieve a deeper understanding of the economic and social consequences of robotization.

### References

- 1. Abdel-Baset, M.; Chang, V.; Gamal, A.; Smarandache, F. An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Computers in Industry **2019**, 106, 94-110.
- 2. Abdel-Baset, M.; Gamal, A.; Chakrabortty, R. K.; Ryan, M. Development of a Hybrid Multi-Criteria Decision-making Approach for Sustainablility Evaluation of Bioenergy Production Technologies: A Case Study. Journal of Cleaner Production, 125805.
- 3. Abdel-Baset, M.; Gamal, A.; Chakrabortty, R. K.; Ryan, M. Evaluation Approach for Sustainable Renewable Energy Systems under Uncertain Environment: A Case Study. Renewable Energy.
- 4. Abdel-Baset, M.; Mohamed, R. A novel plithogenic TOPSIS-CRITIC model for sustainable supply chain risk management. Journal of Cleaner Production **2020**, 247, 119586.
- 5. Abdel-Baset, M.; Mohamed, R. A novel and powerful framework based on neutrosophic sets to aid patients with cancer. Future Generation Computer Systems **2019**, *98*, 144-153.

- 6. Abishek, G.; Saurabh, S.; Rakesh, K. B. On Parametric Divergence Measure of Neutrosophic Sets with its Application in Decision-Making Models. Neutrosophic Sets and Systems **2019**, 29, 101-120.
- 7. Anjan, M. Vague-Valued Possibility Neutrosophic Vague Soft Expert Set Theory and Its Applications. Neutrosophic Sets and Systems **2019**, 29, 142-157.
- 8. Abhishek, G.; Rakesh, K. B. Technique for Reducing Dimensionality of Data in Decision-Making Utilizing Neutrosophic Soft Matrices. Neutrosophic Sets and Systems **2019**, *29*, 129-141.
- 9. Shazia, R.; Madiha, Q.; Muhammad, S.; Smarandache, F.; Bakhtawar, A. K. Plithogenic Fuzzy Whole Hypersoft Set, Construction of Operators and their Application in Frequency Matrix Multi Attribute Decision Making Technique. Neutrosophic Sets and Systems **2019**, *28*, 34-50.
- Bera, T.; Mahapatra, N. K. On Neutrosophic Soft Topological Space. Neutrosophic Sets and Systems 2018, 19, 3-15.
- 11. Cruz, R. A.; Irudhayam, F. N. Neutrosophic Soft Cubic Set in Topological Spaces. Neutrosophic Sets and Systems **2018**, 23, 23-44.
- 12. Smarandache, F. Extension of Soft Set to Hypersoft Set, and then to Plithogenic Hypersoft Set. Neutrosophic Sets and Systems **2018**, 22, 168-170.
- Bera, T.; Mahapatra, N. K. On Neutrosophic Soft Prime Ideal. Neutrosophic Sets and Systems 2018, 20, 54-75.
- 14. Abdel-Basset, M.; Manogaran, G.; Gamal, A.; Smarandache, F. A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection. Journal of medical systems **2019**, 43(2), 38.
- 15. Abdel-Basset, M.; Mohamed, R.; Zaied, A. E. N. H.; Smarandache, F. A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics. Symmetry **2019**, 11(7), 903.
- 16. Abdel-Basset, M.; Saleh, M.; Gamal, A.; Smarandache, F. An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Applied Soft Computing **2019**, *77*, 438-452.
- 17. Abdel-Basset, M.; Nabeeh, N. A.; El-Ghareeb, H. A.; Aboelfetouh, A. Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise Information Systems **2019**, 1-21.
- 18. Abdel-Baset, M.; Chang, V.; Gamal, A. Evaluation of the green supply chain management practices: A novel neutrosophic approach. Computers in Industry **2019**, 108, 210-220.
- 19. Abdel-Basset, M.; Mohamed, M.; Smarandache, F. An Extension of Neutrosophic AHP–SWOT Analysis for Strategic Planning and Decision Making. Symmetry **2018**, 10, 116.
- 20. Smarandache, F. Neutrosophy, Neutrosophic Probability, Set and Logic. American Research Press, Rehoboth, USA **1998**, 105.
- 21. Smarandache, F. Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. International Journal of Pure and Applied Mathematics **2005**, 24, 287-297.
- 22. Smarandache, F. Plithogeny, Plithogenic Set, Logic, Probability, and Statistics; Infinity Study 2017, 141.
- 23. Chinnadurai, V.; Sindhu, M. P. A Novel Approach for Pairwise Separation axioms on Bi-Soft Topology Using Neutrosophic Sets and An Output Validation in Real Life Application. Neutrosophic Sets and Systems **2020**, *35*, 435-463.
- 24. Chinnadurai, V.; Sindhu, M. P. Generalization of Level Sets in Neutrosophic Soft Sets and Points: A New Approach. Tathapi with ISSN 2320-0693 is an UGC CARE Journal **2020**, 19 (50), 54-81.
- 25. Chinnadurai, V.; Sindhu, M. P. A Novel Approach: Neutro-Spot Topology and Its Supra Topology With Separation Axioms and Computing the Impact on COVID-19. Neutrosophic Sets and Systems **2020**, 38, 189-213.
- 26. Chinnadurai, V.; Sindhu, M. P. An Introduction to Neutro-Fine Topology with Separation Axioms and Decision Making. International Journal of Neutrosophic Science **2020**, 12 (1), 13-28.
- 27. Chinnadurai, V.; Sindhu, M. P. Some Remarks on Neutro-Fine Topology. Journal of Fuzzy Extensions and Applications **2020**, 1 (3), 169-186.
- 28. Chinnadurai, V.; Sindhu, M. P. An Introduction to Prime Topology along with the concept of COVID-19 and Separation Axioms. Indian Journal of Natural Sciences **2020**, 11 (63), 1-10.
- 29. Chinnadurai, V.; Smarandache, F.; Bobin, A. Multi-Aspect Decision-Making Process in Equity Investment Using Neutrosophic Soft Matrices. Neutrosophic Sets and Systems **2020**, 31, 224-241.

- 30. Chinnadurai, V.; Swaminathan, A.; Bobin, A.; Kathar Kani, B. Generalised Interval Valued Intuitionistic Fuzzy Soft Matrices and Their Application to Multicriteria Decision Making. Recent Trends in Pure and Applied Mathematics **2019**, AIP Conf. Proc. 2177, 020019-1–020019-11.
- 31. Salma, A. A.; Alblowi, S. A. Neutrosophic set and neutrosophic topological spaces. IOSR Journal of Applied Mathematics **2012**; 3, 31-35.
- 32. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986, 20, 87-96.
- 33. Zadeh, L. A. Fuzzy sets. Information and Control 1965, 8, 338-353.

Received: Jan 7, 2021. Accepted: March 10, 2021.