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Abstract. The introducing of NeutroAlgebra by Smarandache opened the door for researchers to define many

related new concepts. NeutroOrderedAlgebra was one of these new related definitions. The aim of this paper

is to study productional NeutroOrderedSemigroup. In this regard, we firstly present many examples and study

subsets of productional NeutroOrderedSemigroups. Then, we find sufficient conditions for the productional

NeutroSemigroup to be a NeutroOrderedSemigroup. Finally, we find sufficient conditions for subsets of the

productional NeutroOrderedSemigroup to be NeutroOrderedSubSemigroups, NeutroOrderedIdeals, and Neu-

troOrderedFilters.
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—————————————————————————————————————————-

1. Introduction

Smarandache [1–3] introduced NeutroAlgebra as a generalization of the known Algebra.

It is known that in an Algebra, operations are well defined and axioms are always true whereas

for NeutroAlgebra, operations and axioms are partially true, partially indeterminate, and par-

tially false. The latter is considered as an extension of Partial Algebra where operations and

axioms are partially true and partially false. Many researchers worked on special types of Neu-

troAlgebras by applying them to different types of algebraic structures such as semigroups,

groups, rings, BE-Algebras, CI-Algebras, BCK-Algebras, etc. For more details about Neu-

troStructures, the reader may see [4–8]. l order on it that satisfies the monotone property, we

get an Ordered Algebra (as illustrated in Figure 1). And starting with a partial order on a
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Figure 1. Ordered Algebra

NeutroAlgebra, we get a NeutroStructure. The latter if it satisfies the conditions of Neutro-

Order, it becomes a NeutroOrderedAlgebra (as illustrated in Figure 2). In [9], the authors

Figure 2. NeutroOrderedAlgebra

defined NeutroOrderedAlgebra and applied it to semigroups by studying NeutroOrderedSemi-

groups and their subsets such as NeutrosOrderedSubSemigroups, NeutroOrderedIdeals, and

NeutroOrderedFilters.

Our paper is concerned about Cartesian product of NeutroOrderedSemigroups and the re-

mainder part of it is as follows: In Section 2, we present some definitions and examples related

to NeutroOrderedSemigroups. In Section 3, we define productional NeutroOrderedSemigroup

and find sufficient conditions for the Cartesian product of NeutroSemigroups and semigroups

to be NeutroOrderedSemigroups. Finally in Section 4, we find sufficient conditions for subsets

of the productional NeutroOrderedSemigroup to be NeutroOrderedSubSemigroups, Neutro-

OrderedIdeals, and NeutroOrderedFilters.

2. NeutroOrderedSemigroups

In this section, we present some definitions and examples about NeutroOrderedSemi-

groups, introduced and studied by the authors in [9], that are used throughout the paper.

Definition 2.1. [10] Let (S, ·) be a semigroup (“·” is an associative and a binary closed

operation) and “≤” a partial order on S. Then (S, ·,≤) is an ordered semigroup if for every

x ≤ y ∈ S, z · x ≤ z · y and x · z ≤ y · z for all z ∈ S.
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Definition 2.2. [10] Let (S, ·,≤) be an ordered semigroup and ∅ 6= M ⊆ S. Then

(1) M is an ordered subsemigroup of S if (M, ·,≤) is an ordered semigroup and (x] ⊆ M

for all x ∈M . i.e., if y ≤ x then y ∈M .

(2) M is an ordered left ideal of S if M is an ordered subsemigroup of S and for all x ∈M ,

r ∈ S, we have rx ∈M .

(3) M is an ordered right ideal of S if M is an ordered subsemigroup of S and for all

x ∈M , r ∈ S, we have xr ∈M .

(4) M is an ordered ideal of S if M is both: an ordered left ideal of S and an ordered right

ideal of S.

(5) M is an ordered filter of S if (M, ·) is a semigroup and for all x, y ∈ S with x · y ∈M ,

we have x, y ∈M and [y) ⊆M for all y ∈M . i.e., if y ∈M with y ≤ x then x ∈M .

For more details about semigroup theory and ordered algebraic structures, we refer to

[10,11].

Definition 2.3. [2] Let A be any non-empty set and “·” be an operation on A. Then “·” is

called a NeutroOperation on A if the following conditions hold.

(1) There exist x, y ∈ A with x · y ∈ A. (This condition is called degree of truth, “T”.)

(2) There exist x, y ∈ A with x · y /∈ A. (This condition is called degree of falsity, “F”.)

(3) There exist x, y ∈ A with x · y is indeterminate in A. (This condition is called degree

of indeterminacy, “I”.)

Where (T, I, F ) is different from (1, 0, 0) that represents the classical binary closed operation,

and from (0, 0, 1) that represents the AntiOperation.

Definition 2.4. [2] Let A be any non-empty set and “·” be an operation on A. Then “·” is

called a NeutroAssociative on A if there exist x, y, z, a, b, c, e, f, g ∈ A satisfying the following

conditions.

(1) x · (y · z) = (x · y) · z; (This condition is called degree of truth, “T”.)

(2) a · (b · c) 6= (a · b) · c; (This condition is called degree of falsity, “F”.)

(3) e · (f · g) is indeterminate or (e · f) · g is indeterminate or we can not find if e · (f · g)

and (e · f) · g are equal. (This condition is called degree of indeterminacy, “I”.)

Where (T, I, F ) is different from (1, 0, 0) that represents the classical associative axiom, and

from (0, 0, 1) that represents the AntiAssociativeAxiom.

Definition 2.5. [2] Let A be any non-empty set and “·” be an operation on A. Then (A, ·)
is called a NeutroSemigroup if “·” is either a NeutroOperation or NeutroAssociative.
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Definition 2.6. [9] Let (S, ·) be a NeutroSemigroup and “≤” be a partial order (reflexive, anti-

symmetric, and transitive) on S. Then (S, ·,≤) is a NeutroOrderedSemigroup if the following

conditions hold.

(1) There exist x ≤ y ∈ S with x 6= y such that z · x ≤ z · y and x · z ≤ y · z for all z ∈ S.

(This condition is called degree of truth, “T”.)

(2) There exist x ≤ y ∈ S and z ∈ S such that z · x � z · y or x · z � y · z. (This condition

is called degree of falsity, “F”.)

(3) There exist x ≤ y ∈ S and z ∈ S such that z ·x or z ·y or x ·z or y ·z are indeterminate,

or the relation between z · x and z · y, or the relation between x · z and y · z are

indeterminate. (This condition is called degree of indeterminacy, “I”.)

Where (T, I, F ) is different from (1, 0, 0) that represents the classical Ordered Semigroup, and

from (0, 0, 1) that represents the AntiOrderedSemigroup.

Definition 2.7. [9] Let (S, ·,≤) be a NeutroOrderedSemigroup . If “≤” is a total order on

A then A is called NeutroTotalOrderedSemigroup.

Example 2.8. [9] Let S1 = {s, a,m} and (S1, ·1) be defined by the following table.

·1 s a m

s s m s

a m a m

m m m m

By defining the total order

≤1= {(m,m), (m, s), (m, a), (s, s), (s, a), (a, a)}

on S1, we get that (S1, ·1,≤1) is a NeutroTotalOrderedSemigroup.

Example 2.9. Let S2 = {0, 1, 2, 3} and (S2, ·′2) be defined by the following table.

·′2 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 3 2

3 0 1 3 2

By defining the partial order

≤′
2= {(0, 0), (0, 1), (0, 2), (1, 1), (2, 2), (3, 3)}

on S2, we get that (S2, ·′2,≤′
2) is a NeutroOrderedSemigroup.
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Example 2.10. [9] Let S3 = {0, 1, 2, 3, 4} and (S3, ·3) be defined by the following table.

·3 0 1 2 3 4

0 0 0 0 3 0

1 0 1 2 1 1

2 0 4 2 3 3

3 0 4 2 3 3

4 0 0 0 4 0

By defining the partial order

≤3= {(0, 0), (0, 1), (0, 3), (0, 4), (1, 1), (1, 3), (1, 4), (2, 2), (3, 3), (3, 4), (4, 4)}

on S3, we get that (S3, ·3,≤3) is a NeutroOrderedSemigroup.

Example 2.11. Let Z be the set of integers and define “?” on Z as follows: x ? y = xy − 2

for all x, y ∈ Z. We define the partial order “≤?” on Z as −2 ≤? x for all x ∈ Z and for

a, b ≥ −2, a ≤? b is equivalent to a ≤ b and for a, b < −2, a ≤? b is equivalent to a ≥ b. In

this way, we get −2 ≤? −1 ≤? 0 ≤? 1 ≤? . . . and −2 ≤? −3 ≤? −4 ≤? . . .. Then (Z, ?,≤?) is a

NeutroOrderedSemigroup.

Definition 2.12. [9] Let (S, ·,≤) be a NeutroOrderedSemigroup and ∅ 6= M ⊆ S. Then

(1) M is a NeutroOrderedSubSemigroup of S if (M, ·,≤) is a NeutroOrderedSemigroup and

there exist x ∈M with (x] = {y ∈ S : y ≤ x} ⊆M .

(2) M is a NeutroOrderedLeftIdeal of S if M is a NeutroOrderedSubSemigroup of S and

there exists x ∈M such that r · x ∈M for all r ∈ S.

(3) M is a NeutroOrderedRightIdeal of S if M is a NeutroOrderedSubSemigroup of S and

there exists x ∈M such that x · r ∈M for all r ∈ S
(4) M is a NeutroOrderedIdeal of S if M is a NeutroOrderedSubSemigroup of S and there

exists x ∈M such that r · x ∈M and x · r ∈M for all r ∈ S.

(5) M is a NeutroOrderedFilter of S if (M, ·,≤) is a NeutroOrderedSemigroup and there

exists x ∈ S such that for all y, z ∈ S with x · y ∈M and z · x ∈M , we have y, z ∈M
and there exists y ∈M [y) = {x ∈ S : y ≤ x} ⊆M .

Definition 2.13. [9] Let (A, ?,≤A) and (B,~,≤B) be NeutroOrderedSemigroups and φ :

A→ B be a function. Then

(1) φ is called NeutroOrderedHomomorphism if φ(x ? y) = φ(x) ~ φ(y) for some x, y ∈ A
and there exist a ≤A b ∈ A with a 6= b such that φ(a) ≤B φ(b).

(2) φ is called NeutroOrderedIsomomorphism if φ is a bijective NeutroOrderedHomomor-

phism.
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(3) φ is called NeutroOrderedStrongHomomorphism if φ(x?y) = φ(x)~φ(y) for all x, y ∈ A
and a ≤A b ∈ A is equivalent to φ(a) ≤B φ(b) ∈ B.

(4) φ is called NeutroOrderedStrongIsomomorphism if φ is a bijective NeutroOrdered-

StrongHomomorphism.

Example 2.14. Let (S3, ·3,≤3) be the NeutroOrderedSemigroup presented in Example 2.10.

Then I = {0, 1, 2} is both: a NeutroOrderedLefttIdeal and a NeutroOrderedRightIdeal of S3.

Example 2.15. Let (Z, ?,≤?) be the NeutroOrderedSemigroup presented in Example 2.11.

Then I = {−2,−1, 0, 1,−2,−3,−4, . . .} is a NeutroOrderedIdeal of Z.

Example 2.16. Let (Z, ?,≤?) be the NeutroOrderedSemigroup presented in Example 2.11.

Then F = {−2,−1, 0, 1, 2, 3, 4, . . .} is a NeutroOrderedFilter of Z.

3. Productional NeutroOrderedSemigroups

Let (Aα,≤α) be a partial ordered set for all α ∈ Γ. We define “≤” on
∏
α∈ΓAα as follows:

For all (xα), (yα) ∈
∏
α∈ΓAα,

(xα) ≤ (yα)⇐⇒ xα ≤α yα for all α ∈ Γ.

One can easily see that (
∏
α∈ΓAα,≤) is a partial ordered set.

Let Aα be any non-empty set for all α ∈ Γ and “·α” be an operation on Aα. We define “·”
on

∏
α∈ΓAα as follows: For all (xα), (yα) ∈

∏
α∈ΓAα, (xα) · (yα) = (xα ·α yα).

Throughout the paper, we write NOS instead of NeutroOrderedSemigroup.

Theorem 3.1. Let (G1,≤1), (G2,≤2) be partially ordered sets with operations ·1, ·2 respec-

tively. Then (G1 ×G2, ·,≤) is an NOS if one of the following statements is true.

(1) G1 and G2 are NeutroSemigroups with at least one of them is an NOS.

(2) One of G1, G2 is an NOS and the other is a semigroup.

Proof. Without loss of generality, let G1 be an NOS. We prove 1. and 2. is done similarly. We

have three cases for “·1” and “·2”: Case “·1” is a NeutroOperation, Case “·2” is a NeutroOp-

eration, and Case “·1” and “·2” are NeutroAssociative.

Case “·1” is a NeutroOperation. There exist x1, y1, a1, b1 ∈ G1 such that x1 ·1 y1 ∈ G1

and a1 ·1 b1 /∈ G1 or x1 ·1 y1 is indeterminate in G1. Since G2 is a NeutroSemigroup, it follows

that there exist x2, y2 ∈ G2 6= ∅ such that x2 ·2 y2 ∈ G2 or x2 ·2 y2 is indeterminate in G2 (If

no such elements exist then G2 will be an AntiSemigroup.). Then (x1, x2) · (y1, y2) ∈ G1 ×G2

and (a1, x2) · (b1, y2) /∈ G1×G2 or (x1, x2) · (y1, y2) is indeterminate in G1×G2. Thus “·” is a

NeutroOperation.

Case “·2” is a NeutroOperation. This case can be done in a similar way to Case “·1” is a
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NeutroOperation.

Case “·1” and “·2” are NeutroAssociative. There exist x1, y1, z1, a1, b1, c1 ∈ G1 and

x2, y2, z2, a2, b2, c2 ∈ G2 such that

x1 ·1 (y1 ·1 z1) = (x1 ·1 y1) ·1 z1 , a1 ·1 (b1 ·1 c1) 6= (a1 ·1 b1) ·1 c1,

x2 ·2 (y2 ·2 z2) = (x2 ·2 y2) ·2 z2 , and a2 ·2 (b2 ·2 c2) 6= (a2 ·2 b2) ·2 c2.

The latter implies that

(x1, x2) · ((y1, y2) · (z1, z2)) = ((x1, x2) · (y1, y2)) · (z1, z2)

and

(a1, a2) · ((b1, b2) · (c1, c2)) = ((a1, a2) · (b1, b2)) · (c1, c2).

Thus, “·” is NeutroAssociative.

Having “≤1” a NeutroOrder on G1 implies that:

(1) There exist x ≤1 y ∈ G1 with x 6= y such that z ·1 x ≤1 z ·1 y and x ·1 z ≤1 y ·1 z for all

z ∈ G1.

(2) There exist x ≤1 y ∈ G1 and z ∈ G1 such that z ·1 x � z ·1 y or x ·1 z � y ·1 z.
(3) There exist x ≤1 y ∈ G1 and z ∈ G1 such that z ·1 x or z ·1 y or x ·1 z or y ·1 z are

indeterminate, or the relation between z ·1 x and z ·1 y, or the relation between x ·1 z
and y ·1 z are indeterminate.

Where (T, I, F ) is different from (1, 0, 0) and from (0, 0, 1).

Having b ≤2 b for all b ∈ G2 implies that:

By (1), we get that there exist (x, b) ≤ (y, b) ∈ G1 × G2 with (x, b) 6= (y, b). For all (z, a) ∈
G1 × G2, we have either a ·2 b ∈ G2 or a ·2 b /∈ G2 or a ·2 b is indeterminate in G2. Similarly

for b ·2 a. The latter implies that (z, a) · (x, b) ≤ (z, a) · (y, b) and (x, b) · (z, a) ≤ (y, b) · (z, a)

or (z, a) · (x, b) ≤ (z, a) · (y, b) is indeterminate in G1 × G2 or (x, b) · (z, a) ≤ (y, b) · (z, a) is

indeterminate in G1 ×G2.

By (2), we get that there exist (x, b) ≤ (y, b) ∈ G1 × G2 and (z, a) ∈ G1 × G2 such that

(z, a) · (x, b) � (z, a) · (y, b) or (x, b) · (z, a) � (y, b) · (z, a) or (z, a) · (x, b) ≤ (z, a) · (y, b) is

indeterminate in G1 ×G2 or (x, b) · (z, a) ≤ (y, b) · (z, a) is indeterminate in G1 ×G2.

By (3), we get that there exist (x, b) ≤ (y, b) ∈ G1 × G2 and (z, a) ∈ G1 × G2 such that

(z, a) · (x, b) ≤ (z, a) · (y, b) is indeterminate in G1 × G2 or (x, b) · (z, a) ≤ (y, b) · (z, a) is

indeterminate in G1 × G2 or (z, a) · (x, b) is indeterminate in G1 × G2 or (x, b) · (z, a) is

indeterminate in G1 ×G2. Therefore, (G1 ×G2, ·,≤) is an NOS.

Theorem 3.1 implies that G1 ×G2 is an NOS if either G1, G2 are both NOS, G1 is an NOS

and G2 is a NeutroSemigroup, G1 is an NOS and G2 is a semigroup (or odered semigroup),
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G1 is a NeutroSemigroup and G2 is an NOS, or G1 is a semigroup (or ordered semigroup) and

G2 is an NOS.

We present a generalization of Theorem 3.1.

Theorem 3.2. Let (Gα,≤α) be a partially ordered set with operation “·α” for all α ∈ Γ.

Then (
∏
α∈ΓGα, ·,≤) is an NOS if there exist α0 ∈ Γ such that (Gα0 , ·α0 ,≤α0) is an NOS and

(Gα, ·α) is a semigroup or NeutroSemigroup for all α ∈ Γ− {α0}.

Notation 1. Let (Gα,≤α) be a partially ordered set with operation “·α” for all α ∈ Γ. If

(
∏
α∈ΓGα, ·,≤) is an NOS then we call it the productional NOS.

Proposition 3.3. Let (G1, ·1,≤1) and (G2, ·2,≤2) be NeutroTotalOrderedSemigroups with

|G1|, |G2| ≥ 2. Then (G1 ×G2, ·,≤) is not a NeutroTotalOrderedSemigroup.

Proof. Since (G1, ·1,≤1) and (G2, ·2,≤2) are NeutroTotalOrderedSemigroups with |G1| ≥ 2

and |G2| ≥ 2, it follows that there exist a ≤1 b ∈ G1, c ≤2 d ∈ G2 with a 6= b and c 6= d.

One can easily see that (a, d) � (b, c) ∈ G1 × G2 and (b, c) � (a, d) ∈ G1 × G2. Therefore,

(G1 ×G2, ·,≤) is not a NeutroTotalOrderedSemigroup.

Corollary 3.4. Let (Gα, ·α,≤α) be NeutroTotalOrderedSemigroups for all α ∈ Γ with

|Gα0 |, |Gα1 | ≥ 2 for α0 6= α1 ∈ Γ. Then (
∏
α∈ΓGα, ·,≤) is not a NeutroTotalOrderedSemi-

group.

Proof. The proof follows from Proposition 3.3.

Example 3.5. Let S1 = {s, a,m}, (S1, ·1,≤1) be the NOS presented in Example 2.8, and

“≤′
1” be the trivial order on S1. Theorem 3.1 asserts that Cartesian product (S1 × S1, ·,≤)

resulting from (S1, ·1,≤1) and (S1, ·1,≤′
1) is an NOS of order 9.

Example 3.6. Let S1 = {s, a,m}, (S1, ·1,≤1) be the NOS presented in Example 2.8, and

(R, ·s,≤u) be the semigroup of real numbers under standard multiplication and usual order.

Theorem 3.1 asserts that Cartesian product (R× S1, ·,≤) is an NOS of infinite order.

Example 3.7. Let S1 = {s, a,m} and (S1, ·1,≤1) be the NOS presented in Example 2.8.

Theorem 3.2 asserts that (S1 × S1 × S1, ·,≤) is an NOS of order 27. Moreover, by means of

Proposition 3.3, (S1 × S1 × S1, ·,≤) is not a NeutroTotalOrderedSemigroup.

Example 3.8. Let (Z, ?,≤?) be the NOS presented in Example 2.11 and (Zn,�,≤t) be the

semigroup under standard multiplication of integers modulo n and “≤t” is defined as follows.

For all x, y ∈ Zn with 0 ≤ x, y ≤ n− 1,

x ≤t y ⇐⇒ x ≤ y ∈ Z.
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Then (Zn × Z, ·,≤) is an NOS.

Proposition 3.9. Let (Gα,≤α) be a partially ordered set with operation “·α” for all α ∈ Γ

and (Gα0 , ·α0 ,≤α0) be an NOS for some α0 ∈ Γ. Then φ : (
∏
α∈ΓGα, ·,≤) → Gα0 with

φ((xα)) = xα0 is a NeutroOrderedHomomorphism.

Proof. The proof is straightforward.

Remark 3.10. If |Γ| ≥ 2 and there exist α 6= α0 ∈ Γ with |Gα| ≥ 2 then the NeutroOrdered-

Homomorphism φ in Proposition 3.9 is not a NeutroOrderedIsomorphism.

Remark 3.11. If |Γ| ≥ 2 and there exist α 6= α0 ∈ Γ with |Gα| ≥ 2 then Gα0 �s
∏
α∈ΓGα.

This is clear as there exist no bijective function from Gα0 to
∏
α∈ΓGα.

Proposition 3.12. There are infinite non-isomorphic NOS.

Proof. Let (G, ·G,≤G) be an NOS with |G| ≥ 2, Γ ⊆ R, and |Γ| ≥ 2. Theorem 3.2 asserts that

(
∏
α∈ΓG, ·,≤) is an NOS for every Γ ⊆ R. For all Γ1,Γ2 ⊆ R with |Γ1| 6= |Γ2|, Remark 3.11

asserts that
∏
α∈Γ1

G �s
∏
α∈Γ2

G. Therefore, there are infinite non-isomorphic NOS.

Example 3.13. Let (Z, ?,≤?) be the NOS presented in Example 2.11. Then for every n ∈ N,

we have (
∏n
i=1 Z, ·,≤) is an NOS. Moreover, we have infinite such non-isomorphic NOS.

Theorem 3.14. Let (Gα, ·α,≤α) and (G′
α, ·′α,≤′

α) be NOS for all α ∈ Γ. Then the following

statements hold.

(1) If there is a NeutroOrderedHomomorphism from Gα to G′
α for all α ∈ Γ then there is

a NeutroOrderedHomomorphism from (
∏
α∈ΓGα, ·,≤) to (

∏
α∈ΓG

′
α, ·′,≤′).

(2) If there is a NeutroOrderedStrongHomomorphism from Gα to G′
α for all α ∈

Γ then there is a NeutroOrderedStrongHomomorphism from (
∏
α∈ΓGα, ·,≤) to

(
∏
α∈ΓG

′
α, ·′,≤′).

(3) If Gα ∼= G′
α for all α ∈ Γ then (

∏
α∈ΓGα, ·,≤) ∼= (

∏
α∈ΓG

′
α, ·′,≤′).

(4) If Gα ∼=s G
′
α for all α ∈ Γ then (

∏
α∈ΓGα, ·,≤) ∼=s (

∏
α∈ΓG

′
α, ·′,≤′).

Proof. We prove 1. and the proof of 2., 3., and 4. are done similarly. Let φα : Gα → G′
α

be a NeutroOrderedHomomorphism and define φ :
∏
α∈ΓGα →

∏
α∈ΓG

′
α as follows: For all

(xα) ∈
∏
α∈ΓGα,

φ((xα)) = (φα(xα)).

one can easily see that φ is a NeutroOrderedHomomorphism.
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4. Subsets of productional NeutroOrderedSemigroups

In this section, we find some sufficient conditions for subsets of the productional NOS to be

NeutroOrderedSubSemigroups, NeutroOrderedIdeals, and NeutroOrderedFilters. Moreover,

we present some related examples.

Proposition 4.1. Let (Aα,≤α) be a partial ordered set for all α ∈ Γ and (xα) ∈
∏
α∈ΓAα.

Then ((xα)] =
∏
α∈Γ(xα].

Proof. Let (yα) ∈ ((xα)]. Then (yα) ≤ (xα). The latter implies that yα ≤α xα for all α ∈ Γ and

hence, yα ∈ (xα] for all α ∈ Γ. We get now that (yα) ∈
∏
α∈Γ(xα]. Thus, ((xα)] ⊆

∏
α∈Γ(xα].

Similarly, we can prove that
∏
α∈Γ(xα] ⊆ ((xα)].

Proposition 4.2. Let (Aα,≤α) be a partial ordered set for all α ∈ Γ and (xα) ∈
∏
α∈ΓAα.

Then [(xα)) =
∏
α∈Γ[xα).

Proof. The proof is similar to that of Proposition 4.1.

Theorem 4.3. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Sα is a NeutroOrderedSubSemi-

group of Gα for all α ∈ Γ then
∏
α∈Γ Sα is a NeutroOrderedSubSemigroup of

∏
α∈ΓGα.

Proof. For all α ∈ Γ, we have Sα an NOS (as it is NeutroOrderedSubSemigroup of Gα).

Theorem 3.2 asserts that
∏
α∈Γ Sα is an NOS. Since Sα is a NeutroOrderedSubSemigroup of

Gα for every α ∈ Γ, it follows that for every α ∈ Γ there exist xα ∈ Sα with (xα] ⊆ Sα.

Using Proposition 4.1, we get that there exist (xα) ∈
∏
α∈Γ Sα such that ((xα)] =

∏
α∈Γ(xα] ⊆∏

α∈Γ Sα. Therefore,
∏
α∈Γ Sα is a NeutroOrderedSubSemigroup of

∏
α∈ΓGα.

Corollary 4.4. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such

that Sα0 is a NeutroOrderedSubSemigroup of Gα0 then
∏
α∈Γ,α<α0

Gα × Sα0 ×
∏
α∈Γ,α>α0

is a

NeutroOrderedSubSemigroup of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.3 and having Gα a NeutroOrderedSubSemigroup of

itself.

Theorem 4.5. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Iα is a NeutroOrderedLeftIdeal

of Gα for all α ∈ Γ then
∏
α∈Γ Iα is a NeutroOrderedLeftIdeal of

∏
α∈ΓGα.
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Proof. Having every NeutroOrderedLeftIdeal a NeutroOrderedSubSemigroup and that Iα is a

NeutroOrderedLeftIdeal of Gα for all α ∈ Γ implies, by means of Theorem 4.3, that
∏
α∈Γ Iα is

a NeutroOrderedSubSemigroup of
∏
α∈ΓGα. Since Iα is a NeutroOrderedLeftIdeal of Gα for all

α ∈ Γ, it follows that for every α ∈ Γ there exist xα ∈ Iα such that rα ·αxα ∈ Iα for all rα ∈ Gα.

The latter implies that there exist (xα) ∈
∏
α∈Γ Iα such that (rα) · (xα) = (rα ·α xα) ∈

∏
α∈Γ Iα

for all (rα) ∈
∏
α∈ΓGα. Therefore,

∏
α∈Γ Iα is a NeutroOrderedLeftIdeal of

∏
α∈ΓGα.

Corollary 4.6. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such that Iα0

is a NeutroOrderedLeftIdeal of Gα0 and for α 6= α0 there exist xα ∈ Gα such that rα ·αxα ∈ Gα
for all rα ∈ Gα then

∏
α∈Γ,α<α0

Gα×Iα0×
∏
α∈Γ,α>α0

is a NeutroOrderedLeftIdeal of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.5 and having Gα a NeutroOrderedLeftIdeal of itself.

Theorem 4.7. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Iα is a NeutroOrderedRightIdeal

of Gα for all α ∈ Γ then
∏
α∈Γ Iα is a NeutroOrderedRightIdeal of

∏
α∈ΓGα.

Proof. The proof is similar to that of Theorem 4.5.

Corollary 4.8. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such that Iα0

is a NeutroOrderedRightIdeal of Gα0 and for α 6= α0 there exist xα ∈ Gα such that xα·αrα ∈ Gα
for all rα ∈ Gαthen

∏
α∈Γ,α<α0

Gα×Iα0×
∏
α∈Γ,α>α0

is a NeutroOrderedRightIdeal of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.7 and having Gα a NeutroOrderedRightIdeal of

itself.

Theorem 4.9. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Iα is a NeutroOrderedIdeal of Gα

for all α ∈ Γ then
∏
α∈Γ Sα is a NeutroOrderedIdeal of

∏
α∈ΓGα.

Proof. The proof is similar to that of Theorem 4.5.

Corollary 4.10. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such that Iα0

is a NeutroOrderedIdeal of Gα0 and for α 6= α0 there exist xα ∈ Gα such that rα ·αxα, xα ·αrα ∈
Gα for all rα ∈ Gα then

∏
α∈Γ,α<α0

Gα×Iα0×
∏
α∈Γ,α>α0

is a NeutroOrderedIdeal of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.9 and having Gα a NeutroOrderedIdeal of itself.
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Example 4.11. Let (S3, ·3,≤3) be the NeutroOrderedSemigroup presented in Example

2.10. Example 2.14 asserts that I = {0, 1, 2} is both: a NeutroOrderedLefttIdeal and

a NeutroOrderedRightIdeal of S3. Theorem 4.5 and Theorem 4.7 imply that I × I =

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} is both: a NeutroOrderedLefttIdeal

and a NeutroOrderedRightIdeal of S3 × S3. Moreover, I × S3 and S3 × I are both: Neutro-

OrderedLefttIdeals and NeutroOrderedRightIdeals of S3 × S3.

Example 4.12. Let (Z, ?,≤?) be the NeutroOrderedSemigroup presented in Example 2.11.

Example 2.15 asserts that I = {−2,−1, 0, 1,−2,−3,−4, . . .} is a NeutroOrderedIdeal of Z.

Theorem 4.9 asserts that I × I × I is NeutroOrderedIdeal of Z× Z× Z.

Theorem 4.13. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Fα is a NeutroOrderedFilter of

Gα for all α ∈ Γ then
∏
α∈Γ Fα is a NeutroOrderedFilter of

∏
α∈ΓGα.

Proof. For all α ∈ Γ, we have Fα an NOS (as it is NeutroOrderedFilter of Gα). Theorem 3.2

asserts that
∏
α∈Γ Sα is an NOS. Having Fα is a NeutroOrderedFilter of Gα for all α ∈ Γ implies

that for every α ∈ Γ there exist xα ∈ Fα such that for all yα, zα ∈ Fα, xα ·α yα ∈ Fα and zα ·α
xα ∈ Fα imply that yα, zα ∈ Fα. We get now that there exist (xα) ∈

∏
α∈Γ Fα such that for all

(yα), (zα) ∈
∏
α∈Γ Fα, (xα) ·(yα) = (xα ·αyα) ∈

∏
α∈Γ Fα and (zα) ·(xα) = (zα ·αxα) ∈

∏
α∈Γ Fα

imply that (yα), (zα) ∈
∏
α∈Γ Fα. Since Fα is a NeutroOrderedFilter of Gα for every α ∈ Γ,

it follows that for every α ∈ Γ there exist xα ∈ Fα with [xα) ⊆ Fα. Using Proposition 4.2,

we get that there exist (xα) ∈
∏
α∈Γ Fα such that [(xα)) =

∏
α∈Γ[xα) ⊆

∏
α∈Γ Fα. Therefore,∏

α∈Γ Fα is a NeutroOrderedFilter of
∏
α∈ΓGα.

Corollary 4.14. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such that Fα0

is a NeutroOrderedFilter of Gα0 then
∏
α∈Γ,α<α0

Gα×Fα0×
∏
α∈Γ,α>α0

is a NeutroOrderedFilter

of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.13 and having Gα a NeutroOrderedFilter of itself.

Example 4.15. Let (Z, ?,≤?) be the NeutroOrderedSemigroup presented in Example 2.11.

Example 2.16 asserts that F = {−2,−1, 0, 1, 2, 3, 4, . . .} is a NeutroOrderedFilter of Z. Theo-

rem 4.13 implies that F × F × F × F is a NeutroOrderedFilter of Z× Z× Z× Z. Moreover,

Z× Z× F × Z is a NeutroOrderedFilter of Z× Z× Z× Z.

5. Conclusion

The class of NeutroAlgebras is very large. This paper considered NeutroOrderedSemi-

groups (introduced by the authors in [9]) as a subclass of NeutroAlgebras. Results related to

productional NOS and its subsets were investigated and some examples were elaborated.
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For future work, it will be interesting to investigate the following.

(1) Find necessary conditions for the productional NeutroSemigroup to be NeutroOrdered-

Semigroup.

(2) Check the possibility of introducing the quotient NeutroOrderedSemigroup and inves-

tigate its properties.

(3) Study other types of productional NetroOrderedStructures.
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