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Abstract: In the present study, we present a multi-attribute-decision-making (MADM) strategy in
Single Valued Pentapartitioned Neutrosophic Set (SVPNS) environment based on Grey Relational
Analysis (GRA) which we call SVPNS- MADM strategy. We define Hamming distance between two
single valued pentapartitioned neutrosophic sets and prove its basic properties. The notion of
pentapartitioned neutrosophic set is a powerful mathematical tool to deal with incomplete,
indeterminate, ignorance, and inconsistent information. In this paper, we extend the neutrosophic
GRA strategy to pentapartitioned neutrosophic GRA strategy. Then we employ it to an MADM
strategy. Further, we demonstrate the developed MADM strategy by solving an illustrative

numerical example that reflects the efficiency and applicability of the proposed strategy.

Keywords: Neutrosophic set, Single valued neutrosophic set, Pentapartitioned neutrosophic set;

Multi attribute decision making, Grey relational analysis.

1. Introduction

The idea of neutrosophic set (NS) was presented by Smarandache [38], which was a powerful
mathematical tool to deal with incomplete, indeterminate, and inconsistent information. The notion
of NS and its various extensions have been successfully applied in the many fields such as decision
making [1-13, 16-19, 21, 25-31, 36-38, 43, 45], medical diagnosis [32-33, 44], data mining [20], conflict
resolution [35], etc. In the recent past, the NSs [6, 22, 23-24, 39-42] have drawn a great attention during
the last two decades. Different models of Multi-Attribute Decision Making (MADM) for crisp set,
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fuzzy set, intuitionistic fuzzy set and NS environments have been already proposed by so many
researchers. Biswas et al. [5] proposed an entropy based grey relational analysis strategy for MADM
model under The Single Valued Neutrosophic Set (SVNS) environment. Mondal and Pramanik [16]
also proposed a neutrosophic decision making model for clay-brick selection in construction field
based on Grey Relational Analysis GRA) in SVNS environment. The notion of Pentapartitioned
Neutrosophic Set (PNS) was grounded by Mallick and Pramanik [15] by in the year 2020, which was
also very powerful mathematical tool to deal with the data includes incomplete, indeterminate,
ignorance, and unknown information. Since PNS has been restricted in the [0,1], we call it Single
Valued PNS (SVPNS).

There is no study in the literature relating to MADM in SVPNS environment. To explore the
unexplored MADM in SVPNS environment, we present an MADM strategy under in SVPNS

environment based on GRA.

The rest of the paper is organized in the following way:

Section 2 recalls some relevant results on SVPNSs. Section 3 presents some new definitions relating
to SVPNS that are useful to develop the present paper. Section 4 devotes to develop the GRA based
SVPNS-MADM strategy. In section 5, we present a numerical example to demonstrate the proposed
SVPNS-MADM strategy. In section 6, we present the concluding remarks and future scope of

research.

2. Some Relevant Results:

In this section, we give some existing definitions, properties of PNS. We also provide some illustrative

examples on PNS.

Definition 2.1.[15] Suppose that ¥ be a non-empty set. Then a PNS V over ¥ is defined by:
V=A{(s,Tw(s),Cv(s),Gv(s),Uv(s),Fv(s)): s€ P}, where Tv(s), Cv(s), Gv(s), Uv(s), Fv(s) € [0,1] arethe degree
of truth, contradiction, ignorance, unknown, and falsity membership of se'¥. Therefore 0
< Tv(s)+Cv(s)+ Gv(s)+Uv(s)+EFv(s) < 5.

Example 2.1. Let ¥ = {r, s}. Then W={(r,0.8,0.3,0.4,0.8,0.9), (5,0.9,0.9,0.2,0.4,0.5)} is a PNS over Y.
Definition 2.2.[15] Suppose that V= {(s, Tv(s), Cv(s), Gv(s), Uv(s), Fv(s)): se ¥} and Y = {(s, T¥(s), Cx(s),
Gv(s), Ux(s), Fx(s)): sV} be two PNSs over Y. Then

(H))VOY = {(s, max {Tv(s), Tx(s)}, max {Cv(s), Cx(s)}, min {Gv(s), Gx(s)}, min {Uv(s), Ux(s)}, min {Fv(s),
Fy(s)}):se'P};

(i) VMY = {(s, min {Tv(s), Tx(s)}, min {Cv(s), Cx(s)}, max {Gv(s), G¥(s)}, max {Uw(s), Ux(s)}, max {Fv(s),
Fy(s)}):se');

(iii) Ve ={(s, Fv(s), Uw(s), 1-Gv(s), Cv(s), Tv(s)): s€ ¥'};

(iv) VY iff Tv(s)<Tx(s), Cv(s)<Cx(s), Gv(s)=Gx(s), Uv(s)=>Ux(s), Fv(s)>Fx(s), for all se‘F.

Example 2.2. Suppose that W={s, r}. Let V={(5,0.3,0.8,0.8,0.5,0.2), (r,0.50.9,0.50.2,0.3)} and
Y={(5,0.9,0.6,0.6,0.7,0.2), (r,0.8,0.6,0.3,0.1,0.9)} be two PNSs over ¥. Then
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(i) VUY={(5,0.9,0.8,0.6,0.5,0.2), (r,0.8,0.9,0.3,0.1,0.3)};

(il) VMY={(s5,0.3,0.6,0.8,0.7,0.2), (r,0.5,0.6,0.5,0.2,0.9)};

(iii) Ve={(s,0.2,0.5,0.2,0.8,0.3), (+,0.3,0.2,0.5,0.9,0.5)}, Y*={(s,0.2,0.7,0.4,0.6,0.9), (+,0.9,0.1,0.7,0.6,0.8)}
Example 2.3. Suppose that W={s, r}. Let V={(5,0.3,0.3,0.8,0.7,0.2), (r,0.8,0.9,0.50.2,0.3)} and
Y={(5,0.9,0.9,0.6,0.7,0.2), (r,0.8,1.0,0.3,0.1,0.1)} be two PNSs over ¥. Then VY.

3. Single Valued Pentapartitioned Neutrosophic Set (SVPNS):
Definition 3.1. An SVPNS [15] Y over a fixed set ¥ are characterized by a truth-membership function
(Tyv), a contradiction-membership function (Cy), an ignorance-membership function (Gy), an
unknown-membership function (Uy), a falsity-membership function (Fy). Here Tx(s), Cx(s), Gy(s),
Ux(s), Fx(s)€[0,1], Vse¥. The SVPNS Y is denoted as follows:
Y={(s, Tx(s), Cx(s), Gx(s), Ux(s), F¥(s)): se'¥}.
Definition 3.2. Assume that B={(s, Ts(s), Cs(s), Gs(s), Us(s), Fs(s)): se ¥} and D= {(s, Tn(s), Cp(s), Go(s),
Ub(s), Fo(s)): se P} be two SVPNSs [15] over Y. Then,
(i) BeD iff Ts(s) < To(s), Cs(s) < Co(s), Gs(s) = Go(s), Us(s) = Up(s), Fr(s) = Fp(s), Vse¥;
(ii) B=D iff DcB and BcD.
Definition 3.3. Assume that B = {(s, Ts(s), Cs(s), Gs(s), Us(s), F5(s)): se ¥} and D= {(s, Tn(s), Cp(s), Go(s),
Ub(s), Fo(s)): se ¥} be two SVPNSs over Y. Let the cardinality of ¥ be n. The Hamming distance (Ha)
between B and D is defined by
H«(B, D)=
Lsew(ITp(s) = Tp ()| + [Cp(s) = Cp(s)| + 1Gp(s) = Gp(s)| + [Up(s) = Up(s)| + |Fp(s) = Fp()) (1)
where 0 < Hi(B, D) < 5n.
Example 3.1. Suppose that V= {(s, 0.3, 0.3, 0.8, 0.7, 0.2), (, 0.8, 0.9, 0.5, 0.2, 0.3)} and Y={(s, 0.9, 0.9, 0.6,
0.7,0.2), (r,0.8,1.0,0.3, 0.1, 0.1)} be two SVPN sets over ¥={s, r}. Then, the Hamming distance between
Vand Yis HaV, Y) = 2.
Theorem 3.1. The Hamming distance between two SVPNSs is bounded.
Proof. Suppose that B = {(s, Ts(s), Cs(s), Gs(s), Us(s), Fs(s)): s€ ¥} and D= {(s, To(s), Co(s), Go(s), Ub(s),
Fp(s)): se'¥} be two SVPNSs over ¥, where cardinality of ¥ is n. Therefore, 0<Ts(s)<1, 0<Cs(s)<1,
0<Gs(s)<1, 0<Us(s)<1, 0<Fs(s)<1, 0<Tp(s)<1, 0<Cp(s)<1, 0<Gn(s)<1, 0<Ub(s)<1, and 0<Fp(s)<1, for each
se¥. This implies 0<|Tg(s) — Tp(s)| <1, 0<|Cp(s) — Cp(s)| <1, 0<|Gp(s) — Gp(s)| <1, 0<|Ug(s) —
Up(s)|<1, 0<|Fg(s) — Fp(s)|<1, for each se'P.
Therefore we have,

0<[Tp(s) = Tp(s)|+ |Cp(s) = Cp()I+ |Gp(s) = Gp(S)I+ [Up(s) = Up(s)|+ |Fg(s) = Fp(s)|<5
=0 < Ysew (ITp(s) = Tp ()] + [Cp(s) = Cp ()] + [Gp(s) = Gp(s)| + |Up(s) = Up ()| + |Fp(s) = Fp(s)])
<5n
=0<Ha4 (B, D)<5n
= H«(B, D) € [0, 5n].

Therefore, the Hamming distance between two SVPNSs is bounded.
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Theorem 3.2. Suppose that D = {(s, To(s), Cp(s), Go(s), Up(s), Fo(s)): se¥}, B = {(s, Ts(s), Cs(s), Gs(s),

Us(s), Fa(s)): seW} and A= {(s, Ta(s), Ca(s), Ga(s), Ua(s), Fa(s)): sV} be three SVPNSs over ¥, where

cardinality of ¥ isn. If D ¢ B c A, then

(i) Ha(D, B) < Ha(D, A);

(ii) Ha(B, A) < Ha(D, A).

Proof. Let D = {(s, To(s), Co(s), Go(s), Up(s), Fp(s)): s€¥}, B = {(s, Ts(s), Cs(s), Ga(s), Us(s), Fa(s)): se 'V}

and A= {(s, Ta(s), Ca(s), Ga(s), Ua(s), Fa(s)): s€'¥} be three SVPNSs over ¥, where cardinality of ¥ is n.

(i) Suppose that D < B < A. So |Tp(s) — Tg(s)| < [Tp(s) — Tu(s)|, [Cp(s) — C(s)| < [Cp(s) — Cu(s)l,
1Gp(s) = G()| < 1Gp(s) = Gals)], [Up(s) = Up(s)| < |Up(s) = Ua(), |Fp(s) = Fp(s)| < |Fp(s) —

F,(s)|, for each seV.

Therefore,

sew(|Tp(s) = T($)| + [Cp(s) — Cp($)| + |Gp(s) — G(s)| + [Up(s) — Up(s)| + |Fp(s) — Fz(s)])

< Ysew(ITp(8) = Ty ()| + [Cp(s) = Ca(s)| + 1Gp(s) — Gu($)] + [Up(s) — Us($)] + [Fp(s) — F4(s)])

Now, we have

Ha(D, B)

= Lsew(ITp(s) = Te(s)| + |Cp(s) — Cp(s)| + |Gp(s) — Ga(S)| + [Up(s) — Ua(S)| + [Fp(s) — F4(s))

< Ysew(ITp(8) = Ta($)| + [Cp(s) — Ca(s)| + |Gp(s) — Ga(s)| + |Up(s) — Ua(s)| + [Fp(s) — Fa(s)])
=Ha(D, A).

Hence, Hi(D, B) < Ha(D, A).

(ii) Assume that D = B = A. So |T(s) — T4(s)| < |Tp(s) — Ta(s)|, [Cp(s) — C4(s)]| < |Cp(s) — C4(s)],
[Gg(s) — Ga(s)| < |Gp(s) = Ga(S)], |Up(s) = Uy(s)| < |Up(s) = Un(s)|, |Fp(s) — Fa(s)| < |Fp(s) —

F,(s)|, for each se¥.

Therefore,

Ysew(|Tg(s) = Ta(S)| + [Ca(s) — Cu(s)| + [Gp(s) — Ga(s)| + |Up(s) — Up(s)| + |[Fe(s) — F4(s)])

< Xsew(Tp () = Ta(s)| + |Cp(s) = Ca($)| + 1Gp () — Ga($)| + |Up(s) — Ua(S)| + [Fp(s) — Fa(s)])

Now, we have

Ha(B, A)

= Lsew(ITs(s) = Ta(s)| + |Cp(s) — C4($)| + |Gp(s) — Ga(S)| + [Up(s) — Ua($)| + |Fp(s) — Fa(s)])

< Xsew(Tp () = Ta(s)| + [Cp(s) = Ca($)| + 1Gp () — Ga($)| + |Up(s) — Ua(S)| + [Fp(s) — Fa(s)])
=Ha(D, A).

Hence, Ha(B, A) <Ha(D, A).

Definition 3.4. Assume that B= {(s, Ts(s), Cs(s), Ga(s), Us(s), Fa(s)): se ¥} and D= {(s, To(s), Cp(s), Gb(s),
Ub(s), Fo(s)): se ¥} be two SVPN sets over V. Let the cardinality of ¥ be n. The normalized Hamming
distance (N-Hd) between B and D is defined by

N-Hu(B, D)=
%Zse‘l’(lTB(s) = Tp(s)| + |Cp(s) — Cp(s)| + |Gp(s) — Gp(s)| + |Up(s) — Up(s)| + [Fp(s) — Fp(s)]) (2)

where 0 < N-Hu(B, D) < 1.
Example 3.2. Suppose that V and Y are two SVPNSs over W={s, r} as shown in Example 3.1. Then N-
Hq(V, Y)=0.2.

Theorem 3.3. The Normalized Hamming distance between two SVPNSs is bounded.
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Proof. Suppose that B = {(s, Ts(s), Cs(s), Gs(s), Us(s), F(s)): s€'¥} and D= {(s, To(s), Co(s), Go(s), Ub(s),
Fp(s)): se'¥} be two SVPNSs over ¥, where cardinality of ¥ is n. Therefore, 0<Ts(s)<1, 0<Cs(s)<1, 0 <
Ga(s) <1,0< Us(s) <1,0< Fa(s) <1,0< Tn(s) <1,0 < Cp(s) £1,0 < Gp(s) <1, 0 < Up(s) £ 1, and 0 < Fp(s)
< 1. This implies 0 < |Tg(s) = Tp(s)|< 1, 0 <|Cp(s) — Cp(s)|< 1, 0 <|Gp(s) — Gp(s)|< 1, 0 <|Up(s) —
Up(s)|£1,0<|Fg(s) — Fp(s)|< 1.

Therefore we have,

0<|Tg(s) = Tp($)|+ |Cp(s) — Cp(s)|+ [Gp(s) — Gp(s)|+ [Ug(s) — Up(s)|+ |Fp(s) — Fp(s)[<5

= 0 < Ysew(Ts(s) = Tp ()| + [Cp(s) — Cp ()| + 1Gp(s) = Gp ()| + [Up(s) = Up(s)| + |Fp(s) — Fp(s)D)
<5n

(ITg(s) = Tp ()| + [Cr(s) — Cp(s)| + [Gp(s) — Gp(s)] +

Us(s) — Up ()] + |F () — Fo ()] <1

1
:OSEZSE‘P

= 0<N-Ha(B,D)<1

— N-Hu(B, D) € [0, 1].

Theorem 3.4. Suppose that D = {(s, To(s), Cp(s), Go(s), Up(s), Fo(s)): se'¥}, B = {(s, Ts(s), Ca(s), Ga(s),
Us(s), Fr(s)): seV} and A= {(s, Ta(s), Ca(s), Ga(s), Ua(s), Fa(s)): se¥} be three SVPNSs over ¥, where
cardinality of Y isn. If Bc D c A, then

(i) N-Ha(B, D) < N-Ha (B, A);

(ii) N-Ha (D, A) < N-Ha(B, A).

Proof. Let D = {(s, To(s), Co(s), Go(s), Up(s), Fp(s)): se¥}, B = {(s, Ts(s), Cs(s), Ga(s), Us(s), Fr(s)): se ¥V}
and A= {(s, Ta(s), Ca(s), Ga(s), Ua(s), Fa(s)): s€'¥} be three SVPNSs over ¥, where cardinality of ¥ is n.
(i) Suppose that B = D < A. So |Tg(s) — Tp(s)| < [Tp(s) — T4(s)|, |1Cs(s) — Cp(s)| < [Cp(s) — C4(s)],
|G (s) = Gp(s)| < |Gp(s) = Ga($)], |Up(s) = Up(s)| < [Up(s) — Ua(s)|, |Fs(s) — Fp(s)| < [Fg(s) —
F,(s)|, for each se¥.

Therefore,

%Zse‘P(lTB(s) = Tp(s)| + |Cp(s) — Cp(s)| + |G (s) — Gp(s)| + |Ug(s) — Up(s)| + |Fp(s) — Fp(s)])

< ﬁZse‘i’(lTB(s) —T4(S)| + [Cp(s) — Ca(s)| + |Gp(s) — G4(s)| + |Up(s) — Us(s)| + |F(s) — Fa(s)])

Now, we have
N-Ha(B, D)

= izsew(ng(s) —Tp ()] + [Cp(s) = Cp ()] + |Gp(s) = Gp(s)| + |Up(s) = Up(s)| + [Fp(s) — Fp(s)])

< = Few(ITa(8) = Ta(S)] + |Ca(s) = Ca ()] + 1Ga(s) = Ga(S)] + [Up(5) — Un(s)| + |Fz(s) = Fa(s))

= N-Hu(B, A).
Hence, N-Ha (B, D) < N-Ha(B, A).

(ii) Assume that B < D < A. So |Tp(s) — Tu(s)| < |Te(s) = Ta(s)|, [Cp(s) — Ca(s)| < [Cp(s) — Cu(s)],
|Gp(s) — Ga(s)| < |Gp(s) = Ga(s)|, [Up(s) = Ua(s)| < |Up(s) = Us(s)|, |Fp(s) — Fa(s)| < |Fp(s) —
F,(s)|, for each seV.

Therefore,

%stﬂTD(s) = Ta(8)| + [Cp(s) = C4(8)| + 1Gp(s) — Ga(S)| + [Up(s) — Us(s)| + |Fp(s) — Fa(s)])
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< iZSe‘P(lTB(s) —Ta(S)| + [Cp(s) — C4(8)| + |G (S) — G4(S)| + [Up(s) — Us(s)| + |Fp(s) — F4(s)])

Now, we have
N-Ha(D, A)

ﬁZSe‘P(lTD(s) —Ta(S)| + [Cp(s) — Ca()| + |Gp(s) — G4(s)| + |Up(s) — Ua(s)| + [Fp(s) — Fa(s)])

%Zse‘l’(lTB(s) — T4 +1Cp(s) = Ca()| + |G (s) = Ga()| + [Up(s) = Ua(s)| + [Fp(s) = Fals)])

= N-Ha(B, A).
Hence, N-Hu(D, A) < N-Hu (B, A).

4. SVPNS-MADM strategy based on GRA:

Choosing an alternative from a set of possible alternatives based on some attributes is a challenging
task for a Decision Maker (DM). For that the DM should have to plan an MADM strategy to take the
decision. Assume that L= {L1, Ly, ..., Ly} is the collection of some possible alternatives and S=(S, S, ...,
Sq} is the family of attributes. The DM provides their evaluation information for every alternative L:
(=1, 2,.., p) based on the attribute S; (=1, 2, ..., q) in terms of Single Valued Pentapartitioned
Neutrosophic Numbers (SVPNNSs). So the whole evaluation information of all alternatives can be

expressed by a decision matrix.

The steps of the proposed SVPNS-MADM strategy are presented as follows:
Step-1: Construct the decision matrix using SVPNS
The whole evaluation assessment of every alternative Li (i =1, 2,..., p) over the attributes S; (j=1, 2, ...,
q) is presented in terms of SVPNNs E, = {(S;T;;(Li, S),Cij(Li, S)),Gyj(Li, S),Uy;(Li, Si),Fij(Li, Sp): Si€S},
where (T;;(Li, S)),Ci(Li, S5),Gij(Li, S),U;(Li, Sj),Fi;(Li, S))) = (T35,Cij,Gi5,U;,Fi;) (in short) is the evaluation
assessment of alternative Li (i=1, 2,..., n) over the attribute S; (j=1, 2, ..., m).

Then the decision matrix (D) is given by:

D S1 S2 Sm

L1 | < Ty1(La, $1),C14 (L1, S1), < Tya(La, S2),C15(La, S2), < Tym (L1, Sm),Cim(L1, Sm),
Gy1(L1, 51),Uq4 (L1, S1), Gy5(L1, $2),Uq, (L1, S2), Gym (L1, Sm), Ui (L1, Sm),
Fi4(Ly, S1) > Fi, (L, S2) > Fym(L1, Sm) >

Lo | < Tyy(L2, S1),Cyq (L2, S1), < Tyy(L2, 52),C55(L2, S2), < Tom(L2, Sm),Com(L2, Sm),
Gy1(L2, 51),U,1(L2, S1), G,y (L2, 52),U,5 (L2, S2), Gym(L2, Sm), Uz (L2, Sm),
Fy1(L2, S1) > F,, (L2, S2) > Fym(L2, Sm) >
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L < Tnl(Ln, Sl),CnI(Ln, Sl), < T‘n.2 (Ln, SZ),an(Ln, 52), < Tnm(Ln, Sm),Cnm(Ln, Sm),
Gnl(Ln, Sl),Unl(Ln, Sl), an(Ln, SZ),UnZ(Ln, SZ), Gnm(Ln, Sm),Unm(Ln, Sm),
Fnl(Ln, Sl) > Fnz(Ln, SZ) > an(Ln, Sm) >

Step-2: Determine the weights for the attributes.

In every MADM strategy, the weights of the attributes play an important role in making decision. If
the weights of the information of all attributes are completely unknown to the decision makers, then
by using the following compromise function, the decision maker can find the weights of the
attributes.

Compromise Function: The compromise function of L is defined as follows:

§;=Xiz1 (B +Ty(Li, S)) +Cyi(Li, S)) -Gy(Li, S)) -Uy;(Li, Sj) -Fy(Li, Si))/5 3)
Then the weights of the jth attribute is defined by wj= anj : 4)
j=15j

Here 72, w;=1.
Step-3: Construct the Ideal Pentapartitioned Neutrosophic Estimates Reliability Solution (IPNERS)
and Ideal Pentapartitioned Neutrosophic Estimates Un-Reliability Solution (IPNEURS) for the
decision matrix:

The IPNERS for the decision matrix is presented as:
R* =[<T{,Cf, G, UF Ff>, <T#,CS, GF U B>, oo L <TE Ch G UL Er>], (5)
where T;"= max {T;;(L; S)): i=1, 2, 3, ...., n}, C;*=max {C;;(L;, Sj): =1, 2,3, ....., n}, Gi'=min {G;;(Li, S)):

i=1,2,3, ...., n}, Uf=min {U;;(L; Sj):i=1,2,3, ...., n},and U*=min {U;;(L; S)):i=1,2,3, ....., n}.

The IPNEURS for the decision matrix is presented as:
R~ =[<T],C{,G,Ur,F>, <Ty,C;,G5, Uy, F5>, ..........  <Trm, Co» Gy Uiy >, (6)
where T;=min {T};(L;, S)): i=1, 2, 3, ..., n}, C;"=min {C;;(L;, Sj): i=1, 2, 3, ..., n}, G;"= max {G;(Li, Sj):
i=1,2,3, ..., n}, Uf=max {U;(L Sj):i=1,2,3, ..., n},and Uj'=max {U;;(L; Sj): =1, 2,3, ....., n}.

j
Step-4: Determination of Pentapartitioned Neutrosophic Grey Relational Coefficient (PNGRC) of
each alternative from IPNERS & IPNEURS.

The PNGRC of each alternative from IPNERS is presented as:

mjn min Al-+]- + k.max maxA?}-
Gt = L J i J
ij

+_ + ot oot ot gt _
A;:'}-+k.rinaxm]aXA3}- , where Aij_ Ha (< T} ,C} ,G} ,U} ,F}' > < Tij’Cij'Gij!Uij'Fij >), 1—1,2,...,7’1

and j=1,2,...,m, and k €[0,1].
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The PNGRC of each alternative from IPNEURS is given below:

minminA;; + kmax maxA;;
j Uy i Ji U

Gy = , where A= Ha (< Tyj, Cij, Gij, Uy, Fi; >,< T7, G, G, U7 F >), i=1, 2, ...,

Ai_-+k.maxmaXA-_- Ly =i T Eijs e R
J i j )

n,and j=1, 2, ..., m, and k €[0,1].

Here G;; and G;; are the identification coefficient used to adjust the range of the comparison
environment, and to control level of differences of the relation coefficients. The comparison
environment remains unchanged when k =1 and the comparison environment disappears when k =
0. If the identification coefficient is smaller, then the range of grey relational coefficient will become

so large. Generally, k = 0.5 is considered for decision making situation.

Step-5: Determine the PNGRC
The PNGRC of each alternative from IPNERS and IPNEURS are defined as follows:

G =X, wG; )
wherei=1,2,...,n,
and G;= Z}l:l w;Gi; (8)

wherei=1,?2, ..., m.

Step-6: Determine the pentapartitioned neutrosophic relative relational degree.

The pentapartitioned neutrosophic relative relational degree of each alternatives is can be defined as

follows:
G
s ©)

Step-7: Rank the alternatives.
The ranking order of all alternatives can be determined according to the ascending order of the
pentapartitioned relative relational degree. The alternative with highest value of i indicates the best

alternative.

Step-8: End.
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Construct the decision matrix using
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Figure 1: Flow chart of the proposed SVPNS-MADM strategy.
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5. Validation of Proposed Model:
In this section, we present a numerical example namely “Selection of supplier to buy electronic goods

for an institution” to validate the proposed strategy.

5.1. Selection of supplier to buy electronic goods for an institution:

In every government/private institutions, lots of electronic goods namely Computer, Printer,
Scanner, Projector, AC, etc. are required for the purpose of official uses. To buy a particular or all
electronic goods, the institutions must select a suitable private company for giving the tender against
some attributes. So, the selection of best private company by the institution for purchasing the
necessary electronic goods can be considered as an MADM problem. For the selection of suitable
private company, the decision maker selects four major attributes namely S;: Cost of the products;

S,: Quality of the products; S;: Service of the Company; S,: Reliability.

Then, the developed MADM strategy is presented using the following steps.
Step-1: Determine the decision matrix in single valued pentapartitioned neutrosophic environment.
The decision maker provides the evaluation information for all the alternatives over the attributes as

shown in Table-1

Table-1:
S, S, S3 Sa
L, | (0.9,0.3,0.1,0.50.2) | (0.8,0.2,0.2,0.1,0.4) | (0.9,0.1,0.3,0.1,0.3) | (0.9,0.1,0.2,0.3,0.4)
L, | (0.8,0.1,0.3,0.3,0.2) | (0.9,0.2,0.3,04,0.2) | (0.6,0.1,0.2,0.3,0.2) | (0.9,0.2,0.1,0.2,0.2)
Ly | (0.9,0.4,0.2,0.3,0.1) | (0.8,0.3,0.4,0.1,0.1) | (0.50.1,0.1,0.2,0.1) | (0.8,0.3,0.1,0.3,0.1)

Step-2: Determine the weights of attributes

By using the eq. (3) and (4), we get the weight vector as follows:
(w1, w2, ws, ws) = (0.261728, 0.249383, 0.234568, 0.254321).

Step-3: Determine the IPNERS & IPNEURS
The IPNERS (R*) and IPNEURS (R’) for the decision matrix are presented in the Table-3.

Table-3:
S; S, S3 Ss
L, | (0.9,0.3,0.1,0.5,0.2) | (0.8,0.2,0.2,0.1,0.4) | (0.9,0.1,0.3,0.1,0.3) | (0.9,0.1,0.2,0.3,0.4)
L, | (0.8,0.1,0.3,0.3,0.2) | (0.9,0.2,0.3,0.4,0.2) | (0.6,0.1,0.2,0.3,0.2) | (0.9,0.2,0.1,0.2,0.2)
Ls; | (0.9,0.4,0.2,0.3,0.1) | (0.8,0.3,0.4,0.1,0.1) | (0.5,0.1,0.1,0.2,0.1) | (0.8,0.3,0.1,0.3,0.1)
R* | (0.9,04,0.1,0.3,0.1) | (0.9,0.3,0.2,0.1,0.1) | (0.9,0.1,0.1,0.1,0.1) | (0.9,0.3,0.1,0.2,0.1)
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R~ | (0.80.1,0.3,0502) | (0.80.2,0.4,04,04) | (0.50.1,03,0.303) | (0.80.1,0.2,0.3,0.4)

Step-4: Determine the PNGRCfor each of the alternative from IPNERS & IPNEURS.
The PNGRC of each alternative from IPNERS and IPNEURS is presented in the Table-4 ,Table-
5, Table-6, and Table-7, respectively.

Table-4:
S, S, S; S, min; Af; max; Af;
A 0.4 0.5 0.4 0.7 0.4 0.7
A7 0.7 0.6 0.7 0.2 0.2 0.7
A3; 0.1 0.3 0.5 0.2 0.1 0.5
min; min; Af; 0.1
max; max; A 0.7
Table-5:
S S, S3 S, min; Ay max; A
Agj 0.5 0.5 0.6 0.1 0.1 0.6
A3; 0.2 0.4 0.3 0.6 0.2 0.6
A3; 0.8 0.7 0.5 0.6 0.5 0.8
min; min; Ay 0.2
max;max; A 0.8
Table-6:
G Si 52 Ss 54
Ly 0.6 0.5294 0.6 0.4286
L, 0.4286 0.4737 0.4286 0.8182
Ly 1 0.6923 0.5294 0.8182
Table-7:
Gij S1 S, S3 S4
Ly 0.5556 0.5556 0.5 1
L, 0.8333 0.625 0.7143 0.5
Ly 0.4167 0.4546 0.5556 0.5

Step-5: Determine the PNGRC.
The PNGRCs G;" and G; of each alternative (S, i =1, 2, 3, 4) from IPNERS and IPNEURS are

presented in Table-8.

Table-8:
I T
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Ly 0.538803 | 0.655578
L, 0.538931 | 0.668675
L 0.766642 | 0.479918

Step-6: Determine the pentapartitioned neutrosophic relative relational degree.
The pentapartitioned neutrosophic relative relational degree (R:) of each alternative (A;, i=1,

2, 3, 4) is presented in the following Table 9.
Table-9:

R
G;
Ri=

T -
G+ G;

Ly | 04511148
L, | 0.4462805
Lz | 0.6150061

Step-7: Rank the alternatives.

From Table-9, it is clear that Rz < R1 < Rs . Therefore, L; is the best suitable alternative to choose.

5. Conclusions

In the study, we have proposed Hamming distance and proves its basic properties for PNSs. We have
further developed a GRA based SVPNS-MADM strategy in PNS environment. We also validate the
proposed SVPNS-MADM strategy by solving an illustrative decision-making problem.

The proposed SVPNS-MADM strategy can also be used to deal with the other decision-making
problems such as brick selection [19], stock trending analysis [14], logistic center location selection
[29], teacher selection [34], etc.

We further hope that the proposed MADM strategy will open up a new avenue of research in

pentapartitioned neutrosophic set environments.
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