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Abstract. This paper presents a simplified form of dual simplex algorithm for solving linear 

programming problems with fuzzy and neutrosophic numbers which supplies some great benefits 

over phase 1 of traditional dual simplex algorithm. For instance, it could start with any infeasible basis 

of linear programming problems; it doesn't need any kind of artificial variables or artificial constraints, 

so the number of variables of the proposed method is less than the number of variables in the 

traditional dual simplex algorithm, therefore;  the run time for the proposed algorithm is also faster 

than the phase 1 of traditional dual simplex algorithm, and the proposed method  overcomes the 

traditional dual simplex algorithm for both the fuzzy approach and the neutrosophic approach 

according to the iterations number. We also use numerical examples to compare between the fuzzy 

and the neutrosophic approaches, the results show that the neutrosophic approach is more accurate 

than the fuzzy approach. Furthermore, the proposed algorithm overcomes the phase 1 of traditional 

dual simplex algorithm for both the fuzzy and neutrosophic approach. 

Keywords: Fuzzy Number; Neutrosophic Number; Rank Function; Dual Artificial Variable Free 

version of Simplex Method. 

 

1. Introduction 

         Linear programming is the most frequently applied operations research technique. A linear 

programming model represents real world situations with some sets of parameters determined by 

experts and decision makers while in real world applications certainty, reliability and precision are 

often illusory concepts, therefore experts and decision makers cannot determine the exact value of 

parameters, or they may not be in a position to specify the objective functions or constraints precisely. 

By implying fuzzy and neutrosophic set theory to linear programming, which leads to fuzzy and 

neutrosophic linear programming, the so-called problems are being overcome. All of this causes us to
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resort to fuzzy and neutrosophic numbers that deal with uncertain information. Neutrosophic Set (NS) [62] is a 

generalization of the fuzzy set [27] and intuitionistic fuzzy set [3]; each element of set had a truth, 

indeterminacy and falsity membership functions. So, neutrosophic set can assimilate inaccurate, vague and 

maladjusted information efficiently and effectively. 

     After the pioneering work on fuzzy linear programming by Tanaka et al. [77,71] and Zimmermann [19], 

several kinds of fuzzy linear programming problems have appeared in the literatures and different methods have 

been proposed to solve such problems [16,23,29]. One important class of these methods that has been high-lighted 

by many researches is based on comparing of fuzzy numbers using ranking functions. Based on this idea, Maleki 

et al. [23] proposed a simple method for solving fuzzy number linear programming (FNLP) problems. After that, 

many various approaches appeared that deal with the vague and imprecise information such as intuitionistic 

fuzzy set and neutrosophic set.  

      Arsham [5] introduced the simplex method without using artificial variables. First, the basic feasible variable 

set (BVS) is determined to be the empty set. Then, the non-basic variable is chosen to be the basic variable one by 

one until the BVS is full. After the problem has the complete BVS, the simplex method is performed. However, 

this method has the mistake as shown by Enge and Huhn [21] in 1998.  

     Pan [24] presented the simplex algorithm by avoiding artificial variables. The algorithm starts when the 

initial basis gives primal and dual infeasible solutions by adjusting negative reduced costs to a single positive 

value. Then, the dual solution is feasible and the dual simplex method is performed. After the optimal solution 

is found in this step, the original reduced costs are restored and the simplex method is performed. 

     Abdel-Basset et.al [1] proposed the neutrosophic simplex algorithm that solves the neutrosophic linear 

programming (NLP). They introduced a comparison between fuzzy approach and neutrosophic approach by 

using numerical examples. On the other hand, their manuscript has some incorrect assumptions. 

     Akanksha Singh et.al [25] spotted some incorrect assumptions in Abdel-Basset's manuscript [1]. They 

suggested the required modifications in Abdel-Basset’s method. On the other hand, [21] used different rank 

functions to compare between fuzzy approach and neutrosophic approach, which makes this comparison  not 

fair. Therefore, in this essay, the authors emphasis use the same rank function. 

     Elsayed Badr et.al [2] proposed a novel method that deal with initial non basic solution. This method is 

called neutrosophic two-phase method and it solves the linear programming problems with neutrosophic 

numbers. They used the same rank function when they compared between fuzzy approach and neutrosophic 

approach, which makes the comparison is fair.  

For more details about the linear programming, the reader can refer to [6,7,11-13,15]. On the other hand, for 

more details about the fuzzy linear programming, the reader is referred to [2,9,10,20]. Finally, for more details 

about the neutrosophic linear programming, the reader may refer to [8]. 

     In this paper, we apply dual artificial variable-free simplex algorithm for solving linear programming 

problems with fuzzy and neutrosophic numbers, which has several advantages, for instance, it could start 

with any infeasible basis of linear programming problem. This algorithm follows the same pivoting sequence 

as of dual simplex phase 1 without showing any explicit description of artificial variables which also makes it 

space efficient. The proposed algorithm reduces the size of the problem and reduces the execution time to 

solve the problem. Then the CPU time for the proposed method is also faster than the phase 1 of traditional 

dual simplex method. So, the proposed method can reduce the computational time. We also compare between 

the neutrosophic approach and the fuzzy approach using numerical examples.  
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 The remaining parts of this work are organized as follows: In sec. 2,  the fundament concepts of fuzzy and 

neutrosophic sets have been presented, and a new technique which converts the fuzzy representation to the 

neutrosophic representation has been proposed. Akanksha Singh et al.'s modifications [25] and a new 

neutrosophic dual artificial variable-free simplex algorithm (NDAVFSA) are proposed in Sec. 3. In Sec. 4, a 

numerical example that shows the importance of the proposed modification for primal neutrosophic simplex 

method has been introduced, and the superiority of the proposed algorithm (NDAVFSA) on the primal 

neutrosophic simplex algorithm has been shown. Finally, we introduce conclusions and the future work in Sec. 

5. 

 

2. Preliminaries 

In this section, three subsections have been introduced. First one is representation of the fuzzy numbers. 

Second, the representation of the neutrosophic numbers. Finally, we show that how do to convert the fuzzy 

numbers and neutrosophic numbers to crisp number. 

 

2.1. Fuzzy Representation 

We review the fundamental notions of fuzzy set theory, initiated by Bellman and Zadeh [22]. 

2.1.1. Definition 

 A convex fuzzy set 𝐴̃ on ℝ is a fuzzy number if the following conditions hold: 

(a) Its membership function is piecewise continuous. 

(b) There exist three intervals [a, b], [b, c], [c, d] such that 𝜇𝑎̃ is increasing on [a, b], equal to 1 on 

[𝑏, 𝑐], decreasing on [𝑐, 𝑑] and equal to 0 elsewhere. 

2.1.2. Definition 

 Let ã = (aL, aU, α, β)  denote the trapezoidal fuzzy number, where 

(aL − α, aU + β) is the support of 𝑎̃and [aL, aU] its core. 

Remark 1: We denote the set of all trapezoidal fuzzy numbers by F (ℝ) as shown as in figure 1. 

 

Figure 1: Truth membership function of trapezoidal fuzzy number   ã 
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2.1.3. Definition 

 Let  ã = (aL, aU, α, β) and 𝑏̃ = (bL, bU, γ, θ) be two trapezoidal fuzzy numbers, the arithmetic operation on the 

trapezoidal fuzzy number are defined as: 

xã = (xaL, xaU, xα, xβ);  x > 0, x ∈ ℝ.  

xã = (xaU, xaL, −xβ, −xα);  x < 0, x ∈ ℝ. 

ã+b̃=(aL, aU, α, β)+ (bL, bU, γ, θ)= [aL + bL, aU + bU, α + γ, β + θ] 

2.2. Neutrosophic Representation 

In this subsection, some basic definitions in the neutrosophic set theory are introduced: 

2.2.1. Definition [1] 

the trapezoidal neutrosophic number Ã is a neutrosophic set in ℝ with the following truth (T), 

indeterminacy (I) and falsity (F) membership functions as shown in figure 2: 

TÃ(x) =   

{
 
 

 
 

αÃ(x−a1)

a2−a1
: a1 ≤ x ≤ a2

αÃ    : a2 ≤ x ≤ a3

αÃ(
x−a3

a4−a3
) : a3 ≤ x ≤ a4

0    otherwise

                IÃ(x) =

{
 
 

 
 

(a2−x+θÃ(x−a1
′ )

a2−a1
′ : a1

′ ≤ x ≤ a2 

θÃ          : a2 ≤ x ≤ a3
(x−a3+θÃ(a4

′−x)

a4
′−a3

: a3 ≤ x ≤ a4
′

1         otherwise

 

FÃ(x) =

{
  
 

  
 
(a2 − x + βÃ(x − a1

" ))

a2 − a1
"

: a1
" ≤ x ≤ a2 

βÃ         : a2 ≤ x ≤ a3
(x − a3 + βÃ(a4

" − x))

a4
" − a3

 : a3 ≤ x ≤ a4
"

1         otherwise

 

where αÃ, θÃ and βÃ represent the maximum degree of truthiness, minimum degree of indeterminacy and 

minimum degree of falsity, respectively, αÃ, θÃ andβÃ ∈ [0,1] 

 

Figure 2: Truth, indeterminacy and falsity membership functions of trapezoidal neutrosophic number Ã 



Neutrosophic Sets and Systems, Vol. 46, 2021         40  

 

 
Aya Rabie, Essam el Seidy, Amani Elrayes  and Elsayed Badr, Dual Artificial Variable-Free Simplex Algorithm for 
Solving Neutrosophic Linear Programming Problems 

 
 

2.2.2. Definition [1] 

 the mathematical operations on two trapezoidal neutrosophic numbers. Ã =< a1, a2, a3, a4; αÃ, θÃ, βÃ >  

and  𝐵̃ =   < b1, b2, b3, b4; αB̃, θB̃, βB̃ > are as follows: 

 

Ã + B̃ =   < (a1 + b1, a2 + b2, a3 + b3, a4 + b4); αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ > 

 

Ã − B̃ =   < (a1 − b4, a2 − b3, a3 − b2, a4 − b1); αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ > 

 

Ã−1 =   < (
1

a4
,
1

a3
,
1

a2
,
1

a1
); αÃ, θÃ, βÃ > where Ã ≠ 0) 

 

λÃ = {
< λa1, λa2, λa3, λa4; αÃ, θÃ, βÃ > : λ > 0

< λa4, λa3, λa2, λa1; αÃ, θÃ, βÃ > : λ < 0
 

 

𝐴̃𝐵 =̃

{
  
 

  
 
< (a1b1, a2b2, a3b3, a4b4); αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ >

if (a4 > 0, b4 > 0) 

< (a1b4, a2b3, a3b2, a4b1); αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ >

if (a4 < 0, b4 > 0) 

< (a4b4, a3b3, a2b2, a1b1); αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ >

if (a4 < 0, b4 < 0)

 

Ã

B̃

{
 
 
 
 
 

 
 
 
 
 < (

a1
b4
,
a2
b3
,
a3
b2
,
a4
b1
) ; αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ >  

if (a4 > 0, b4 > 0)

< (
a4
b4
,
a3
b3
,
a2
b2
,
a1
b1
) ; αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ >  

if (a4 < 0, b4 > 0)
 

< (
a4
b1
,
a3
b2
,
a2
b3
,
a1
b4
) ; αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ >

if (a4 < 0, b4 < 0)

 

 

2.3. Transfer from Fuzzy Representation to Neutrosophic Representation [25] 

        The goal of this section is to explain how to convert fuzzy numbers representation into neutrosophic 

numbers representation. This transformation is used for simplicity and to make the comparison fair. There are 

many types of techniques to transfer from fuzzy to neutrosophic representation such as, ranking functions 

and ∝-cut technique. 

2.3.1. Definition. 

 Ranking function is a viable approach for ordering fuzzy numbers and neutrosophic numbers. It is known 

that there are many ranking functions for ordering the fuzzy numbers and neutrosophic numbers.  

         In this subsection, we explain how to apply technique to convert from fuzzy number to neutrosophic 

number:  

From Figure 1 and Figure 2 we can illustrate the following relations between the two representations: 

                  𝑎1 = 𝑎2 − 𝛼, 𝑎2 =  𝑎
𝐿, 𝑎3 = 𝑎𝑈 𝑎𝑛𝑑 𝑎4 = 𝑎3 + 𝛽                                                         (1) 
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Assuming that the ranking function is used for ordering the fuzzy numbers as follows: 

                                   𝑅(𝑎̃) =
𝑎𝐿+𝑎𝑈

2
+

𝛽−𝛼

4
                                                                                          (2) 

𝛽 − 𝛼= 𝑎4 − 𝑎3 − (𝑎2 − 𝑎1) = 𝑎4 − 𝑎3−𝑎2 + 𝑎1 

𝑅(𝑎̃) =
𝑎2+𝑎3

2
+

𝑎4−𝑎3−𝑎2+𝑎1

4
 = 

𝑎2+𝑎3+𝑎4+𝑎1

4
 

From the relations (1) & (2) we can express the rank function is used for ordering the neutrosophic numbers as 

follows: 

                                    𝑅(𝑎̃) =
1

4
∑ 𝑎̃𝑖
4
𝑖=1 + (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃)                                                                 (3) 

From (1), we can convert fuzzy numbers representation into neutrosophic numbers representation. On the 

other hand from (2) and (3), we can use the same function for both fuzzy numbers and neutrosophic numbers 

to obtain a fair comparison between them. 

(i) Assuming    that        𝑇𝐴 = 1,         𝐼𝐴 = 0 ,        𝐹̃𝐴 = 0 ,    then   the  TrNN  𝑎̃ =< 𝑎1, 𝑎2, 𝑎3, 𝑎4; 𝑇𝐴, 𝐼𝐴, 𝐹𝐴 >          

equal to number 𝑎̃ =< 𝑎1, 𝑎2, 𝑎3, 𝑎4; 1,0,0 > and hence, in this case, 

 

           The expression 𝑅(𝑎̃) =
1

4
∑ 𝑎𝑖
4
𝑖=1 + (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃)  is equivalent to the expression  

                                                  𝑅(𝑎̃) =
1

4
∑ 𝑎̃𝑖
4
𝑖=1 +  1  

(ii) Furthermore, it is well known the fact that if 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 then the trapezoidal neutrosophic 

number 𝐴̃ =< 𝑎1, 𝑎2, 𝑎3, 𝑎4; 1,0,0 > will be transformed into a real number A = (a, a, a, a; 1, 0, 0) and 

hence, in this case, the expression 𝑅(𝑎̃) =
1

4
∑ 𝑎𝑖
4
𝑖=1 + (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃)  is equivalent to the expression  

𝑅(𝐴) = 𝑎 + 1 ≠ 𝑎 

 

        The following table represents the fuzzy ranking function, and the corresponding neutrosophic  

ranking function and the corresponding real ranking function. 

 

Table 1: fuzzy ranking function into it’s corresponding neutrosophic ranking function 

Fuzzy Rank Function 
Corresponding Neutrosophic 

Rank Function 

Corresponding Real Rank 

function of constraints 

𝑅(𝑎̃) = (
𝑎𝑙 + 𝑎𝑢

2
+
𝛽 − 𝛼

4
) 𝑅(𝑎̃) =

1

4
∑𝑎𝑖

4

𝑗=1

+ (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃) 
 

𝑅(𝑎) = 𝑎 + 1 

 

3.  Algorithms 

 

           In this section; firstly, we present Akanksha Singh et al.'s modifications [25] and the proposed 

modification about the mathematical incorrect assumptions, considered by Abdel-Basset et al. [1] in their 

proposed method to convert from neutrosophic numbers into real numbers.  Secondly, we propose a new 

fuzzy dual artificial variable free simplex algorithm. Finally, we develop this algorithm in order to solve linear 

programming with neutrosophic numbers (neutrosophic dual artificial variable free simplex algorithm). 
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3.1. Akanksha Singh et al.'s modifications [25] 

 

The following table presents Akanksha Singh et al.'s modifications to convert from neutrosophic number to 

crisp number. 

Table 2: Akanksha Singh et al.'s modifications. 

No NLPP- (Type) NLPP- (Form) Exact Crisp LPP 

1 

The coefficients of the 

objective function are 

represented by 

trapezoidal 

neutrosophic numbers 

𝑀𝑎𝑥\Min  [∑ = 𝑐̃𝑗𝑥𝑗
𝑛
𝑗=1 ]    

s. t       
∑ 𝑎𝑖𝑗𝑥𝑗  ≤ , ≥ , 𝑏𝑗   ,
𝑛
𝑗=1   𝑖 =

 1,2, …… ,𝑚; 𝑥𝑗 ≥ 0 ,  

j = 1,2, …… , 𝑛. 

𝑀𝑎𝑥 /𝑀𝑖𝑛 [∑ 𝑅(𝑐̃𝑗𝑥𝑗)
𝑛
𝑗=1 −∑ 𝑇𝑐𝑗̃𝑥𝑗

𝑛
𝑗=1 + ∑ 𝐼𝑐𝑗̃𝑥𝑗

𝑛
𝑗=1 +

∑ 𝐹𝑐̃𝑗𝑥𝑗 +
𝑛
𝑗=1 min

1≤𝑗≤𝑛
{𝑇𝑐𝑗̃𝑥𝑗} −  max1≤𝑗≤𝑛

{𝐼𝑐𝑗̃𝑥𝑗} −

max
1≤𝑗≤𝑛

{𝐹𝑐𝑗̃𝑥𝑗}]  

    𝑠. 𝑡.   ∑ 𝑎𝑖𝑗𝑥𝑗  ≤ , ≥ , = 𝑏𝑗   ,   𝑖 = 1,2, …… ,𝑚;
𝑛
𝑗=1  

    𝑥𝑗 ≥ 0 , 𝑗 = 1,2, …… , 𝑛. 

2 

The coefficients of 

constraints variables 

and right hand side 

are represented by 

trapezoidal 

neutrosophic 

numbers 

 

𝑀𝑎𝑥\Min  [∑ = cjxj
n
j=1 ] 

s. t. 
∑ 𝑎̃𝑖𝑗𝑥𝑗  ≤ , ≥ , = 𝑏̃𝑗   ,     
𝑛
𝑗=1        

𝑖 =  1,2, …… ,𝑚;    𝑥𝑗 ≥ 0 ,  

j = 1,2, …… , 𝑛. 

 

Max / Min ∑ cjxj
n
j=1  

s. 𝑡.     [∑ R(ãijxj)
n
j=1 − ∑ Tãijxj

n
j=1 + ∑ Iãijxj

n
j=1 +

∑ Fãijxj +
n
j=1 min

1≤j≤n
{Tãijxj} − max

1≤j≤n
{Iãijxj} −

max
1≤j≤n

{Fãijxj}] ≤,≥,= R(b̃i) 

𝑥𝑗 ≥ 0 , 𝑗 = 1,2, …… , 𝑛. 

3 

 

All parameters are 

represented by 

trapezoidal 

neutrosophic 

numbers, except 

variables are 

exemplified only by 

real values 

𝑀𝑎𝑥\Min [∑ = 𝑐̃𝑗𝑥𝑗
𝑛
𝑗=1 ] 

s. t. 
∑ ãijxj  ≤ , ≥ , = b̃j  ,   
n
j=1   

𝑖 =  1,2, …… ,𝑚; 𝑥𝑗 ≥ 0 ,  

j = 1,2, …… , 𝑛. 

 
𝑀𝑎𝑥 /𝑀𝑖𝑛 [∑ 𝑅(𝑐̃𝑗𝑥𝑗)

𝑛
𝑗=1 −∑ 𝑇𝑐𝑗̃𝑥𝑗

𝑛
𝑗=1 + ∑ 𝐼𝑐𝑗̃𝑥𝑗

𝑛
𝑗=1 +

∑ 𝐹𝑐̃𝑗𝑥𝑗 +
𝑛
𝑗=1 min

1≤𝑗≤𝑛
{𝑇𝑐𝑗̃𝑥𝑗} −  max1≤𝑗≤𝑛

{𝐼𝑐𝑗̃𝑥𝑗} −

max
1≤𝑗≤𝑛

{𝐹𝑐𝑗̃𝑥𝑗}]  

  s. t. 
  (∑ 𝑅(ãij)xj) + 1 ≤ , ≥ , = R(b̃j)  ,   i = 1,2, …… ,m;

n
j=1  

   xj ≥ 0 , j = 1,2, …… , n. 

4 

The coefficients of 

objective function 

and constraints 

variables are 

represented by real 

numbers and right 

hand side are 

represented by 

trapezoidal 

neutrosophic 

numbers 

 

𝑀𝑎𝑥\Min   [∑ = cjxj
n
j=1 ] 

                          s. t.               
∑ aijxj  ≤ , ≥ , = b̃j  ,   
n
j=1   

𝑖 =  1,2, …… ,𝑚; 𝑥𝑗 ≥ 0 ,  

j = 1,2, …… , 𝑛. 

Max / Min ∑ cjxj
n
j=1  

s. 𝑡.   

 

  R[∑ (aijxj)
n
j=1 ] ≤,≥,= R(b̃i) 

𝑥𝑗 ≥ 0 , 𝑗 = 1,2,…… , 𝑛. 
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Remark 2:  

- If 𝑅(𝑎) = 𝑎 + 1 and the coefficients of the objective function & constraints variables are real, then the 

fuzzy   linear programming problem is equivalent to the neutrosophic linear programming problem. 

- ~ : represents the presence of neutrosophic numbers within the matrices or vectors. 

- NLPP: neutrosophic linear programming problem. 

 

3.2. A novel Neutrosophic Dual Artificial Variable Free Simplex Algorithm. 

Nayatullah et al [22] proposed a streamlined artificial variable free version of simplex algorithm 

(AVFSA) for solving the linear programming problems with real numbers. In this section, we propose a new 

algorithm which solves linear programming with neutrosophic numbers (Neutrosophic Dual Artificial 

Variable-Free Simplex Algorithm NDAVFSA). The proposed algorithm overcame traditional neutrosophic 

dual simplex algorithms. 

 

Algorithm 1: Neutrosophic Dual Artificial variable -Free Simplex Algorithm  (NDAVFSA) 

Step 0: (Initialization) 

 Converting fuzzy numbers into neutrosophic numbers according to Section 2.3.1 [25] 

 Apply Akanksha Singh et al.'s modifications according to Section 3.1 

Step 1: Let 𝐾  be a maximal subset of 𝐵̃ such that  𝐵̃  =  { 𝑗 ∶  𝑑0𝑗  <  0 , 𝑗 𝜖 𝑁}. If 𝐾  = φ then 𝐷(𝐵̃) is dual feasible. 

Exit. 

Step 2: Denote the basic variables 𝑦𝑘  by −𝑦𝑘
−and compute dual infeasibility objective vector    𝑊′(𝐵̃) 𝜖 𝑅𝐵̃ such 

that  𝑤′
𝑖 = ∑ 𝑑𝑖𝑗𝑗∈𝑘 ,  𝑖 ∈  𝐵̃ . Place 𝑤′ to the right of the dictionary 𝐷(𝐵̃). 

Step 3: Let 𝐿̃  ⊆  𝐵̃ such that 𝐿̃  =  { 𝑖: 𝑤𝑖
′ <  0, 𝑖 ∈  𝐵̃ }. If 𝐿̃  =  𝜑 then 𝐷(𝐵̃) is dual inconsistent. Exit. 

Step 4: (Choice of entering variable)  

             Choose r ∈ 𝐿̃ such that 𝑤𝑟 
′ ≤ 𝑤𝑖  

′ ∀ 𝑖 ∈   𝐿̃ (Ties are broken arbitrarily) 

Step 5: (Choice of leaving variable) 

             Choose 𝑘1 ∈  𝐾 and  𝑘2 ∈  𝑁 \ 𝐾 such that: 

 𝑘1= arg max {{ 
𝑑0𝑗

𝑑𝑟𝑗
⎸(𝑑0𝑗 ≤ 0, 𝑑𝑟𝑗 > 0)}, 𝑗 ∈ 𝐾 } 

𝑘2= arg max {{ 
𝑑0𝑗

𝑑𝑟𝑗
⎸(𝑑0𝑗 ≥ 0, 𝑑𝑟𝑗 < 0)}, 𝑗 ∈ 𝑁 \ 𝐾 }                         Set  𝐾̃: = arg max {

𝑑0𝑘1

𝑑̃𝑟𝑘1
 ,
𝑑0𝑘2

𝑑𝑟𝑘2
 } 

Step 6: Make a pivot on (𝑟, 𝑘) (⇒ Set 𝐵̃ ∶=  (𝐵̃  ∪  {𝑘})\{𝑟}, 𝑁 ∶=  (𝑁  ∪   {𝑟})\{𝑘} and update 𝐷(𝐵̃)        

             along with the appended 𝑤′(𝐵̃)). 

Step 7: If 𝑘 ∈ 𝐾, set 𝐾: = 𝐾\ {𝑘} and 𝑤𝑘
′ : = 𝑤𝑘

′+ 1, replace notation of −𝑦𝑘
− by 𝑦𝑘  

Step 8: Pivot operation 

For 𝑟 ∈  𝐵̃, 𝑘 ∈  𝑁 and (𝑟, 𝑘) being the position of the pivot element 𝑑𝑟𝑘 (≠ 0) of 𝐷, then one can obtain 

an updated equivalent short table 𝐷(𝐵̃’) with a new basis 𝐵̃’ ∶ =  (𝐵̃  ∪ {𝑘})\{𝑟} and the new non-basis 

𝑁′ ∶=  (𝑁  ∪  {𝑟})\{𝑘} by performing the following operations on 𝐷(𝐵̃). 

𝑑′𝑟𝑘 ≔
1

𝑑𝑟𝑘
 

𝑑′𝑟𝑗 ≔
𝑑𝑟𝑗

𝑑𝑟𝑘
, 𝑗 ∈ 𝑁\{𝑘} 

𝑑′𝑖𝑘 ≔ −
𝑑𝑖𝑘
𝑑𝑟𝑘

, 𝑖 ∈ 𝐵̃\{𝑟} 

𝑑′𝑖𝑗 ≔ 𝑑𝑖𝑗 − 𝑑𝑟𝑗 ×
𝑑𝑖𝑘
𝑑𝑟𝑘

, 𝑖 ∈ 𝐵̃\{𝑟}, 𝑗 ∈ 𝑁\{𝑘} 



Neutrosophic Sets and Systems, Vol. 46, 2021         44  

 

 
Aya Rabie, Essam el Seidy, Amani Elrayes  and Elsayed Badr, Dual Artificial Variable-Free Simplex Algorithm for 
Solving Neutrosophic Linear Programming Problems 

 
 

The above replacement is known as a pivot operation on (𝑟, 𝑘). 

Step 9: If  𝐾 = 𝜑, then 𝐷(𝐵̃) is dual feasible. Exit. 

             Otherwise, go to step 3. 

Step 10: If phase 1 ends with an objective value equal to zero, it implies that all artificial variables have  

               attained a value zero (means all infeasibilities have been removed) and our current basis is feasible to 

the original problem, then we return to the original objective and proceed with simplex phase 2. 

Otherwise, we conclude that the problem has no solution. 

 

4. Numerical Examples and Results Analysis 

    

   In this study, we solve well-known fuzzy and neutrosophic linear programming problem that 

presented in [28] with the traditional and proposed method.  

 

 

 

 

P1 

𝑀𝑎𝑥 𝑧̃ = (1,5,2,4)𝑥1 + (10,12,2,6)𝑥2 
   𝑠. 𝑡. 

    3𝑥1 + 10𝑥2 ≤ 10 
     𝑥1 − 𝑥2 ≥ 2 
        𝑥1, 𝑥2 ≥ 0 

 

 

        

In the upcoming two subsections, problem P1 will be solved using fuzzy & neutrosophic dual artificial 

variable-free simplex method respectively, uses the same rank function and compare between the results. 

 

4.1. Solving (𝑷𝟏)  using Fuzzy Dual Artificial Variable-Free Simplex Method 

      Putting 𝑷𝟏 in the standard dual form, we have: 

 

 

 

 

 
𝑀𝑖𝑛 𝑧̃ = (−5,−1,4,2)𝑥1 + (−12,−10,6,2)𝑥2 
   𝑠. 𝑡. 
    3𝑥1 + 10𝑥2 + 𝑥3 = 10 
       −𝑥1 + 𝑥2              + 𝑥4 = −2 
        𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 

 

 

 

 

       

D1 

By adding non-negative slack variables𝑥3, 𝑥4, the associated short table of D1 can be constructed as shown 

below. The dual variables 𝑦3, 𝑦4 have been demonstrated explicitly as it is required to observe dual variables 

too. 

        Here y is the dual objective variable. Objective coefficients (z) of primal non basic variables are the values 

of dual basic variables, and values of primal basic variables are coefficients of dual non-basic variables in dual 

objective. 

 

 

 
  𝐛                   𝐱𝟏                          𝐱𝟐        
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𝐳

𝐱𝟑

𝐱𝟒
 

[
 
 
 
 
 
 0    (−5,−1,4,2)   (−12,−10,6,2)   

10       3 10

−2      −1 1

       −y1
′ −y2

′ ]
 
 
 
 
 
𝐲𝟑

𝐲𝟒
 

Here k = {1, 2}, replace −𝑦𝑘
−→ 𝑦𝑘  

 

 
  𝐛                   𝐱𝟏                          𝐱𝟐                           𝐰′ 

𝐳

𝐱𝟑

𝐱𝟒
 

[
 
 
 
 
 

       

0    (−5, −1,4,2)   (−12,−10,6,2)   (11,17,4,10)

10       3 ∗ 10 −13

−2      −1 1 0

       −y1
′ −y2

′

  

]
 
 
 
 
 
𝐲𝟑

𝐲𝟒
 

 

Initial table: 

Here B = {3, 4} and N = {1, 2}, according to most negative dual coefficient rule k = 1, so leaving dual basic 

variable is  𝑦1  and according to artificial variable free dual minimum ratio test r = 3, the entering dual basic 

variable is ‘𝑦3‘. Perform the pivot operation on (3, 1). 

Replace −𝑦1
−→y1, k = {1, 2}\ {1} = {2},  𝑤′

1 := 𝑤′
1 + 1. 

 
                           𝐛                                 𝐱𝟑                              𝐱𝟐                                   𝐰′ 

𝐳

𝐱𝟏

𝐱𝟒
 

[
 
 
 
 
 
(5,4,6,104/3)    (−3,−5,6,80/3)   (−1, −3,4,32/3)   (−1, −3,4,32/3)

10/3       1/3 10/3 −10/3

4/3      1/3 13/3 ∗ −13/3

       y3 −y2
′

  

]
 
 
 
 
 
𝐲𝟏

𝐲𝟒
 

Iteration 2: 

Here, k = 2 and r = 4perform pivot operation on (4, 2). 

Since k 𝜖 k, replace−𝑦2
−→𝑦2; k = {2}\ {2} = {},  𝑤′

2 := 𝑤′
2 + 1.  

 
                                       𝐛                                           𝐱𝟑                                 𝐱𝟒                                   𝐰′ 

𝐳

𝐱𝟏

𝐱𝟐
 

[
 
 
 
 
 
(4,16, −3,53/13)    (7,9,20, −94/13)   (1/5,1/3, −1/3, −71/65)   0

30/13       1/13 −10/13 0

4/13      1/13 3/13 0

       y3     y4 −

  

]
 
 
 
 
 
𝐲𝟏

𝐲𝟐
 

 

Dual feasibility is achieved; the complementary dual feasible solution is  

(𝑥1, 𝑥2) = (30/13, 4/13). 

 

Resolve (𝑃1) using neutrosophic dual artificial variable-free simplex method uses the same rank function and 

we will compare between them. 

 

4.2.  Solving (𝑷𝟏) using Neutrosophic Dual Artificial Variable-Free Simplex method 
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First: We will convert the fuzzy numbers into neutrosophic numbers. Then, using the following rank function: 

𝑅(𝑎̌) =
1

4
∑𝑎̃𝑖

4

𝑖=1

+ (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃) 

𝑀𝑖𝑛 𝑧̃ = 𝑅[(−1,1,5,9)]𝑥1 + 𝑅[8,10,12,18]𝑥2 
𝑠. 𝑡. 
      3𝑥1 + 10𝑥2 ≤ 10 
      𝑥1 − 𝑥2 ≥ 2 
         𝑥1, 𝑥2 ≥ 0 

 

 

 

D1 

𝑀𝑖𝑛 𝑧 = 9/2𝑥1 + 13𝑥2 − 1 
𝑠. 𝑡. 
      3𝑥1 + 10𝑥2 ≤ 10 
      𝑥1 − 𝑥2 ≥ 2 
         𝑥1, 𝑥2 ≥ 0 

 

 

 

D2 

Putting (D2) in the standard form: 
𝑀𝑖𝑛 𝑧 = 9/2𝑥1 + 13𝑥2 − 1 
𝑠. 𝑡. 
      3𝑥1 + 10𝑥2 + 𝑥3 = 10 
      −𝑥1 + 𝑥2             +𝑥4 = −2 
                   𝑥1, 𝑥2 ≥ 0 

  𝐛           𝐱𝟏         𝐱𝟐 
𝐳

𝐱𝟑

𝐱𝟒
 

[
 
 
 
 
 
 0   −9/2   −13  

10       3 10

−2      −1 1

         −y1
′ −y2

′ ]
 
 
 
 
 
𝐲𝟑

𝐲𝟒
 

Here k = {1, 2}, replace −𝑦𝑘
−→ 𝑦𝑘  

 𝐛            𝐱𝟏          𝐱𝟐       𝐰′ 
𝐳

𝐱𝟑

𝐱𝟒
 

[
 
 
 
 
 

  

0     −9/2   −13  35/2

10     3 10 ∗ −13

−2     −1 1 0

      −y1
′ −y2

′ ]
 
 
 
 
 
𝐲𝟑

𝐲𝟒
 

Initial table: 

Here B = {3, 4} and N = {1, 2}, according to most negative dual coefficient rule k = 2, so leaving dual basic 

variable is  𝑦2  and according to artificial variable-free dual minimum ratio test r = 3, the entering dual basic 

variable is ‘𝑦3‘. Perform the pivot operation on (3, 1). 

Replace −𝑦2
−→𝒚𝟐, k = {1, 2}\ {2} = {1},  𝑤′

2 := 𝑤′
2 + 1. 

 
                                                            𝐛          𝐱𝟏              𝐱𝟑            𝐰′ 

𝐳

𝐱𝟐

𝐱𝟒
 

[
 
 
 
 
 
13  −3/5   13/10     3/5

1     3/10 ∗ 1/10 −3/10

−3     −13/10 −1/10 13/10

       −y1
′ y3 ]

 
 
 
 
 
𝐲𝟐

𝐲𝟒
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Iteration 2: 

Here, k = 1 and r = 2 perform pivot operation on (2, 1). Since k 𝜖 k, replace−𝑥1
−→x1; k = {1}\ {1} = {}𝑤′

1 := 𝑤′
1 + 

1. 

  
𝐛         𝐱𝟏       𝐱𝟑    𝐰′ 

𝐳

𝐱𝟏

𝐱𝟒
 

[
 
 
 
 
 
15  2   3/2    0

10/3     10/3 1/3     0

4/3     13/3 1/3     0

       y1 y3 ]
 
 
 
 
 
𝐲𝟏

𝐲𝟒
 

 

Dual feasibility is achieved; the complementary dual feasible solution is 

(𝑥1,𝑥2)= (10/3, 0). 

  

𝑀𝑎𝑥 𝑧 = 9/2 𝑥1 + 13 𝑥2 − 1 =  15 −1= 14 

 

                        Table 3: A comparison between two-phase algorithm, Fuzzy and Neutrosophic DAVFSA 

 
Two-Phase Simplex 

Algorithm 

Fuzzy Dual Art 

Simplex Algorithm 

Neutrosophic Dual Art 

Simplex Algorithm 

no 

(iteration) 
5 3 3 

𝐙 11.8 11.8 14 

𝐱𝟏 30/13 30/13 10/3 

𝐱𝟐 4/13 4/13 0 

 

 In table 3, a good comparisons have been made between two-phase simplex algorithm, fuzzy dual 

artificial variable-free simplex algorithm and neutrosophic dual artificial variable-free simplex 

algorithm; we noticed that the neutrosophic approach is more accurate than the fuzzy approach. On the 

other hand, the proposed algorithm overcomes the traditional two phase simplex algorithm for both 

the fuzzy approach and the neutrosophic approach according to the iterations number. 

 

 

Conclusion 

In this work, a new algorithm (Dual Artificial Variable-Free Simplex Algorithm) has been proposed, 

which solves linear programming problems with fuzzy and neutrosophic numbers. In this algorithm, the 

artificial variables are virtually present but their presence is not revealed to the user in the form of extra 

columns in the simplex table.  It also follows the same pivoting sequence as of simplex phase 1 without 

showing any explicit description of artificial variables or artificial constraints but it could be easily seen that 

numbers of computations are noticeably reduced and the proposed algorithm overcame the traditional 

simplex algorithm for both the neutrosophic approach and the fuzzy approach according to the iterations 

number.  We also compared between the neutrosophic approach and the fuzzy approach using numerical 

examples. Finally, the numerical examples show that the neutrosophic approach is more accurate than the 
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fuzzy approach. In future work, we propose new hybrid methods such as using the cosine simplex method for 

phase 2 or using a traditional simplex algorithm for phase 2 while phase 1 uses the proposed method was 

proposed in this paper. We expect that these hybrid methods may overcome the traditional method.   
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