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Abstract. In this paper, we introduce and study the concept of Neutrosophic Γ-semiring and study various

properties. Also, we prove that there is a one-to-one correspondence between Neutrosophic Γ-semirings and

sub Γ-semirings of a Γ-semiring. Further, we prove that the set of all neutrosophic Γ-semirings is a De-Morgan

algebra. Moreover, we establish that the homomorphic image and inverse image of a Neutrosophic Γ-semiring

is also a Neutrosophic Γ-semiring.
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1. Introduction

In 1965, Zadeh, L.A. [14] introduced the concept of fuzzy sets. In 1986, Atanassov, K. [4]

proposed intuitionistic fuzzy set theory as an extension of the fuzzy set theory. Next, in

1998, Smarandache F. [13] introduced the notion of neutrosophic sets, which are a common

generalization of fuzzy sets and intuitionistic sets.

Recently, Smarandache F. [11,12] defined the NeutroAlgebraic structures and AntiAlgebraic

structures. Al-Tahan, M. et al. defined the neutrosophic quadruple Hv-rings, neutrosophic

quadruple Hv-subrings, and neutrosophic quadruple homomorphism and studied their various

properties [3]. Muzaffar, A. et al. summarized the previous work carried out in the field of neu-

trosophic logic, set, measure, and also classification techniques in neutrosophy and the relevant

research work has been discussed and they investigated some various of applications in the

field of neutrosophy [7]. Neutrosophic quadruple algebraic structures and hyperstructures are

discussed in [1,2,6]. Further, Rezaei, A. et al. introduced the notions of neutrosemihypergroup

and antisemihypergroup and investigated some of their properties [10].
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In 1996, Rao, M.K. [8] introduced the concept of Γ-semiring as a generalization of semiring

as well as Γ-ring (also see [9]). It is known that, the notion of Γ-semirings is an extension of

the ternary semirings. Then Bhargavi, Y. et al. studied on fuzzy Γ-semirings and investigated

some of their properties [5].

In this paper, we introduce and study the concept of neutrosophic Γ-semiring and study

various properties. Further, we prove that the set of all neutrosophic Γ-semirings is a De-

Morgan algebra. Also, we establish that the homomorphic image and inverse image of a

neutrosophic Γ-semiring is also a neutrosophic Γ-semiring.

2. Preliminaries

We recall the basic notions and definitions regrading Γ-semirings used in the paper.

Definition 2.1. ( [9]) Let E and Γ be two additive commutative semigroups. Then E is called

Γ-semiring if there exists a mapping E×Γ×E → E image to be denoted by eαf if it satisfies

the following conditions: for all e, f, g ∈ E;α, β ∈ Γ.

(ΓSR1) eα(f + g) = eαf + eαg,

(ΓSR2) (e+ f)αg = eαg + fαg,

(ΓSR3) e(α+ β)f = eαf + eβf,

(ΓSR4) eα(fβg) = (eαf)βg.

Definition 2.2. ( [9]) A nonempty subset ϕ of a Γ-semiring E is said to be a sub Γ-semiring

of E if (F,+) is a sub semigroup of (E,+) and eαf ∈ F, for all e, f ∈ F ;α ∈ Γ.

Definition 2.3. ( [9]) Let E and ϕ be two Γ-semirings. Then ϕ : E → F is called a homo-

morphism if

1. ϕ(e+ f) = ϕ(e) + ϕ(f),

2. ϕ(eγf) = ϕ(e)γϕ(f), for all e, f ∈ E; γ ∈ Γ.

Definition 2.4. ( [13]) Let E be a space of points (objects), with a generic element in E

denoted by E. A neutrosophic set ψ in E is characterized by a truth-membership function

ψT (e), an indeterminacy-membership function ψI(e) and a falsity-membership function ψF (e).

Then, a simple valued neutrosophic set A can be denoted by

ψ = {< e, ψT (e), ψI(e), ψF (e) >: e ∈ E},

where ψT (e), ψI(e), ψF (e) ∈ [0, 1] for each point E in E. Therefore, the sum of

ψT (e), ψI(e), ψF (e) satisfies the condition 0 ≤ ψT (e) + ψI(e) + ψF (e) ≤ 3.

For convenience, simple valued neutrosophic set is abbreviated to neutrosophic set later.

Definition 2.5. ( [13]) Let ψ = (ψT , ψI , ψF ) and φ = (φT , φI , φF ) be two neutrosophic sets

of a universe of discourse E.
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The complement of ψ is denoted by ψc or ψ′ and is defined as

ψcT (e) = ψF (e), ψcI(e) = 1− ψI(e), ψcF (e) = ψT (e).

The intersection of ψ and φ is defined as ψ ∩ φ = ((ψ ∩ φ)T , (ψ ∩ φ)I , (ψ ∩ φ)F ), where

(ψ ∩ φ)T (e) = min{ψT (e), φT (e)}, (ψ ∩ φ)I(e) = max{ψI(e), φI(e)} and (ψ ∩ φ)F (e) =

max{ψF (e), φF (e)}.
The union of ψ and φ is defined as ψ∪φ = ((ψ∪φ)T , (ψ∪φ)I , (ψ∪φ)F ), where (ψ∪φ)T (e) =

max{ψT (e), φT (e)}, (ψ ∪ φ)I(e) = min{ψI(e), φI(e)} and (ψ ∪ φ)F (e) = min{ψF (e), φF (e)}.
A neutrosophic set ψ is contained in another neutrosophic set φ, defined as follows:

ψ ⊆ φ if and only if ψT (e) ≤ φT (e), ψI(e) ≥ φI(e) andψF (e) ≥ φF (e), for all e ∈ E.

Definition 2.6. ( [13]) Let ψ = (ψT , ψI , ψF ) be a neutrosophic set of a universe of discourse

E. For α, β, γ ∈ [0, 1] with 0 ≤ α + β + γ ≤ 3, the (α, β, γ)- cut or neutrosophic cut of ψ is

the crisp subset of E is given by

ψ(α,β,γ) = {e ∈ E : ψT (e) ≥ α,ψI(e) ≤ β, ψF (e) ≤ γ}.

Definition 2.7. ( [13]) Let ϕ be a mapping from a set E into a set F . Let ψ be a neutrosophic

set in E. Then the image ϕ(ψ) of ψ is the neutrosophic set in F defined by:

(ϕ(ψT ))(f) =

 sup
z∈ϕ−1(f)

ψT (z) if ϕ−1(f) 6= φ

0 otherwise
,

(ϕ(ψI))(f) =

 inf
z∈ϕ−1(f)

ψI(z) if ϕ−1(f) 6= φ

1 otherwise

and

(ϕ(ψF ))(f) =

 inf
z∈ϕ−1(f)

ψF (z) if ϕ−1(f) 6= φ

1 otherwise
,

for all f ∈ F , where ϕ−1(f) = {e : ϕ(e) = f}.
Let φ be a neutrosophic set in F . Then the inverse image of ϕ−1(φ) of φ is the neutrosophic

set in E by ϕ−1(φ)(e) = φ(ϕ(e)), for all e ∈ E.

Definition 2.8. ( [5]) A fuzzy set µ in a Γ-semiring E is called fuzzy Γ-semiring if it satisfies

the following properties: for all e, f ∈ E; γ ∈ Γ

(FI1) µ(e+ f) ≥ min{µ(e), µ(f)},
(FI2) µ(eγf) ≥ min{µ(e), µ(f)}.
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3. On Neutrosophic Γ-semirings

This section presents some important properties of neutrosophic Γ-semirings and charac-

terize neutrosophic Γ-semirings to the crisp Γ-semirings, and we prove that the set of all

neutrosophic Γ-semirings is a De-Morgan algebra.

Throughout this section E stands for a Γ-semiring unless otherwise mentioned.

Now, we introduce the following.

Definition 3.1. A neutrosophic set A = (ψT , ψI , ψF ) in a Γ-semiring E is called a Neutro-

sophic Γ-semiring if it satisfies the following properties: for all e, f ∈ E; γ ∈ Γ

(NΓSR1) ψT (e+ f) ≥ min{ψT (e), ψT (f)},
(NΓSR2) ψI(e+ f) ≤ max{ψI(e), ψI(f)},
(NΓSR3) ψF (e+ f) ≤ max{ψF (e), ψF (f)},
(NΓSR4) ψT (eγf) ≥ min{ψT (e), ψT (f)},
(NΓSR5) ψI(eγf) ≤ max{ψI(e), ψI(f)},
(NΓSR6) ψF (eγf) ≤ max{ψF (e), ψF (f)}.

Example 3.2: Let E be the set of negative integers and Γ be the set of negative even integers.

Then E, Γ are additive commutative semigroups. Define the mapping E×Γ×E → E by eαf

usual product of e, α, f, for all e, f ∈ E; α ∈ Γ. Then E is a Γ-semiring. Let ψ = (ψT , ψI , ψF ),

where ψT : E → [0, 1], ψI : E → [0, 1] and ψF : E → [0, 1] defined by:

ψT (e) =


0.6 if e = −1

0.7 if e = −2

0.9 if e < −2

,

ψI(e) =


0.5 if e = −1

0.3 if e = −2

0.2 if e < −2

and

ψF (e) =


0.4 if e = −1

0.2 if e = −2

0.1 if e < −2

.

Thus ψ is a Neutrosophic Γ-semiring of E.

Example 3.2. Let E be the set of real numbers and Γ be the set of positive numbers. Then

E, Γ are additive commutative semigroups. Define the mapping E×Γ×E → E by eαf usual

product of e, α, f, for all e, f ∈ E;α ∈ Γ. Then E is a Γ-semiring. Let ψ = (ψT , ψI , ψF ), where
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ψT : E → [0, 1], ψI : E → [0, 1] and ψF : E → [0, 1] defined by:

ψT (e) =


0.9 if e = 0

0.7 if e is positive

0.6 if e is negative

,

ψI(e) =


0.2 if e = 0

0.3 if e is positive

0.5 if e is negative

and

ψF (e) =


0.1 if e = 0

0.2 if e is positive

0.4 if e is negative

.

Thus ψ is a Neutrosophic Γ-semiring of E.

Theorem 3.3. A neutrosophic set ψ = (ψT , ψI , ψF ) is a neutrosophic Γ-semiring of E if and

only if ψT , 1− ψI and 1− ψF are fuzzy Γ-semirings of E.

Proof. Suppose ψ = (ψT , ψI , ψF ) is a neutrosophic Γ-semiring of E. Let e, f ∈ E; γ ∈ Γ.Then

(i) ψT (e+ f) ≥ min{ψT (e), ψT (f)},
(ii) ψI(e+ f) ≤ max{ψI(e), ψI(f)}, i.e., 1− ψI(e+ f) ≥ min{1− ψI(e), 1− ψI(f)},
(iii) ψF (e+ f) ≤ max{ψF (e), ψF (f)}, i.e., 1− ψF (e+ f) ≥ min{1− ψF (e), 1− ψF (f)},
(iv) ψT (eγf) ≥ min{ψT (e), ψT (f)},
(v) ψI(eγf) ≤ max{ψI(e), ψI(f)}, i.e., 1− ψI(eγf) ≥ min{1− ψI(e), 1− ψI(f)},
(vi) ψF (eγf) ≤ max{ψF (e), ψF (f)}, i.e., 1− ψF (eγf) ≥ min{1− ψF (e), 1− ψF (f)}.
Thus, ψT , 1 − ψI and 1 − ψF are fuzzy Γ-semiring of E. The converse part is obvious from

the definition.

Theorem 3.4. A neutrosophic set psi = (ψT , ψI , ψF ) of E is neutrosophic Γ- semiring of E

if and only if for all α, β, γ ∈ [0, 1], the (α, β, γ)-cut ψ(α,β,γ) is a sub Γ-semiring of E.

Proof. Suppose ψ = (ψT , ψI , ψF ) of E is a neutrosophic Γ-semiring. Let e, f ∈ ψ(α,β,γ); η ∈ Γ.

Then ψT (e), ψT (f) ≥ α, ψI(e), ψI(f) ≤ β, ψF (e), ψF (f) ≤ γ. Since A is neutrosophic Γ-

semiring, we have:

(i) ψT (e+ f) ≥ min{ψT (e), ψT (f)} ≥ α,

(ii) ψI(e+ f) ≤ max{ψI(e), ψI(f)} ≤ β,

(iii) ψF (e+ f) ≤ max{ψF (e), ψF (f)} ≤ γ,

which implies e+ f ∈ ψ(α,β,γ).

Also, since

(iv) ψT (eηf) ≥ min{ψT (e), ψT (f)} ≥ α,
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(v) ψI(eηf) ≤ max{ψI(e), ψI(f)} ≤ β,

(vi) ψF (eηf) ≤ max{ψF (e), ψF (f)} ≤ γ,

which implies eηf ∈ ψ(α,β,γ).

Thus, ψ(α,β,γ) is a sub Γ-semiring of E.

Conversely, suppose ψ(α,β,γ) is a sub Γ-semiring of E. Let e, f ∈ E; η ∈ Γ. Let ψT (e) >

α1, ψI(e) < βψ1, ψF (e) < γψ1 and ψT (f) > α2, ψI(f) < βψ2, ψF (f) < γ2.

Put α = min{α1, α2}, β = max{βψ1, βψ2} and γ = max{γψ1, γψ2}. Then e, f ∈ ψ(α,β,γ),

and so e + f ∈ ψ(α,β,γ) and eηf ∈ ψ(α,β,γ). Hence ψT (e + f) ≥ α = min{ψT (e), ψT (f)},
ψI(e+f) ≤ β = max{ψI(e), ψI(f)}, ψF (e+f) ≤ γ = max{ψF (e), ψF (f)} and ψT (eηf) ≥ α =

min{ψT (e), ψT (f)}, ψI(eηf) ≤ β = max{ψI(e), ψI(f)}, ψF (eηf) ≤ γ = max{ψF (e), ψF (f)}.
Thus, ψ is a neutrosophic Γ-semiring of E.

Theorem 3.5. Let ψ = (ψT , ψI , ψF ) be a neutrosophic set of E. The two neutrosophic cuts

ψ(α1,β1,γ1) and ψ(α2,β2,γ2) of E are equal, where α1, α2, α3, β1, β2, β3, γ1, γ2, γ3 ∈ [0, 1] with

α1 < α2, β1 > β2, γ1 > γ2 if and only if there is no e ∈ E such that α1 ≤ ψT (e) < α2, β1 ≥
ψI(e) > β2, γ1 ≥ ψF (e) > γ2.

Proof. Suppose ψ(α1,β1,γ1) and ψ(α2,β2,γ2) of E are equal. Suppose if possible there exists e ∈ E
such that α1 ≤ ψT (e) < α2, β1 ≥ ψI(e) > β2, γ1 ≥ ψF (e) > γ2. Then e ∈ ψ(α1,β1,γ1) =

ψ(α2,β2,γ2), and so ψT (e) ≥ α2, ψI(e) ≤ β2, ≥ ψF (e) ≤ γ2. Which is a contradiction. Hence

there exists no e ∈ E such that α1 ≤ ψT (e) < α2, β1 ≥ ψI(e) > β2, γ1 ≥ ψF (e) > γ2.

Conversely, suppose that there exists no e ∈ E such that α1 ≤ ψT (e) < α2, β1 ≥
ψI(e) > β2, γ1 ≥ ψF (e) > γ2. Suppose if possible ψ(α1,β1,γ1) 6= ψ(α2,β2,γ2). Then there

exists e ∈ ψ(α1,β1,γ1) and e /∈ ψ(α2,β2,γ2), i.e., ψT (e) ≥ α1, ψI(e) ≤ β1, ψF (e) ≤ γ1 and

ψT (e) < α2, ψI(e) > β2, ψF (e) > γ2. So, there exists e ∈ E such that α1 ≤ ψT (e) < α2, β1 ≥
ψI(e) > β2, γ1 ≥ ψF (e) > γ2. Which is a contradiction. Thus, ψ(α1,β1,γ1) = ψ(α2,β2,γ2).

Theorem 3.6. If ψ = (ψT , ψI , ψF ) and φ = (φT , φI , φF ) are two neutrosophic Γ-semirings of

E, then ψ ∩ φ is a neutrosophic Γ-semiring of E.

Proof. Let e, f ∈ E; η ∈ Γ. Then

(ψ ∩ φ)T (e+ f) = min{ψT (e+ f), φT (e+ f)}

≥ min{min{ψT (e), ψT (f)},min{φT (e), φT (f)}}

≥ min{min{ψT (e), φT (e)},min{ψT (f), φT (f)}}

= min{(ψ ∩ φ)T (e), (ψ ∩ φ)T (f)},
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(ψ ∩ φ)I(e+ f) = max{ψI(e+ f), φI(e+ f)}

≤ max{max{ψI(e), ψI(f)},max{φI(e), φI(f)}}

≤ max{max{ψI(e), φI(e)},max{ψI(f), φI(f)}}

= max{(ψ ∩ φ)I(e), (ψ ∩ φ)I(f)}

and

(ψ ∩ φ)F (e+ f) = max{ψF (e+ f), φF (e+ f)}

≤ max{max{ψF (e), ψF (f)},max{φF (e), φF (f)}}

≤ max{max{ψF (e), φF (e)},max{ψF (f), φF (f)}}

= max{(ψ ∩ φ)F (e), (ψ ∩ φ)F (f)}.

Also, we get

(ψ ∩ φ)T (eηf) = min{ψT (eηf), φT (eηf)}

≥ min{min{ψT (e), ψT (f)},min{φT (e), φT (f)}}

≥ min{min{ψT (e), φT (e)},min{ψT (f), φT (f)}}

= min{(ψ ∩ φ)T (e), (ψ ∩ φ)T (f)},

(ψ ∩ φ)I(eηf) = max{ψI(eηf), φI(eηf)}

≤ max{max{ψI(e), ψI(f)},max{φI(e), φI(f)}}

≤ max{max{ψI(e), φI(e)},max{ψI(f), φI(f)}}

= max{(ψ ∩ φ)I(e), (ψ ∩ φ)I(f)}

and

(ψ ∩ φ)F (eηf) = max{ψF (eηf), φF (eηf)}

≤ max{max{ψF (e), ψF (f)},max{φF (e), φF (f)}}

≤ max{max{ψF (e), φF (e)},max{ψF (f), φF (f)}}

= max{(ψ ∩ φ)F (e), (ψ ∩ φ)F (f)}.

Thus, ψ ∩ φ is a neutrosophic Γ-semiring of E.

Corollary 3.7. The intersection of arbitrary family of neutrosophic Γ-semirings is a neutro-

sophic Γ-semiring.

The following example shows that the union of two neutrosophic Γ-semirings may not be a

neutrosophic Γ-semiring, in general.
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Example 3.8. consider the additive abelian group Z4 = {0, 1, 2, 3} and the subgroup Γ =

{0, 2}. Define Z4 × Γ× Z4 → Z4 by eαf usual product of e, α, f, ∀ e, f ∈ Z4; α ∈ Γ.

Then Z4 is a Γ-semiring.

Let ψ = (ψT , ψI , ψF ), where ψT : Z4 → [0, 1], ψI : Z4 → [0, 1] and ψF : Z4 → [0, 1] defined by:

ψT (e) =


0.8 if e = 0;

0.6 if e = 1;

0.4 otherwise

ψI(e) =


0.2 if e = 0;

0.4 if e = 1;

0.5 otherwise

ψF (e) =


0.2 if e = 0;

0.3 if e = 1;

0.5 otherwise

Let φ = (φT , φI , φF ), where φT : Z4 → [0, 1], φI : Z4 → [0, 1] and φF : Z4 → [0, 1] defined by:

φT (e) =


0.6 if e = 0;

0.5 if e = 2;

0.2 otherwise

φF (e) =


0.2 if e = 0;

0.3 if e = 2;

0.4 otherwise

φF (e) =


0.3 if e = 0;

0.4 if e = 2;

0.5 otherwise

Thus, ψ and φ are neutrosophic Γ-semirings of Z4, but ψ ∪φ is not a neutrosophic Γ-semiring

of Z4.

In particular we have the following:

Theorem 3.9. If ψ = (ψT , ψI , ψF ) and φ = (φT , φI , φF ) are two neutrosophic Γ-semirings of

E, then ψ ∪ φ is a neutrosophic Γ-semiring of E only if ψ ⊆ φ or φ ⊆ ψ.
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Proof. Assume that e, f ∈ E; η ∈ Γ. Suppose A ⊆ B. Then

(ψ ∪ φ)T (e+ f) = max{ψT (e+ f), φT (e+ f)}

= φT (e+ f)

≥ min{φT (e), φT (f)}

= min{max{ψT (e), φT (e)},max{ψT (f), φT (f)}}

= min{(ψ ∪ φ)T (e), (ψ ∪ φ)T (f)},

(ψ ∪ φ)I(e+ f) = min{ψI(e+ f), φI(e+ f)}

= φI(e+ f)

≤ max{φI(e), φI(f)}

= max{min{ψI(e), φI(e)},min{ψI(f), φI(f)}}

= max{(ψ ∪ φ)I(e), (ψ ∪ φ)I(f)}

and

(ψ ∪ φ)F (e+ f) = min{ψF (e+ f), φF (e+ f)}

= φF (e+ f)

≤ max{φF (e), φF (f)}

= max{min{ψF (e), φF (e)},min{ψF (f), φF (f)}}

= max{(ψ ∪ φ)F (e), (ψ ∪ φ)F (f)}.

Also, we have

(ψ ∪ φ)T (eηf) = max{ψT (eηf), φT (eηf)}

= φT (eηf)

≥ min{φT (e), φT (f)}

= min{max{ψT (e), φT (e)},max{ψT (f), φT (f)}}

= min{(ψ ∪ φ)T (e), (ψ ∪ φ)T (f)},

(ψ ∪ φ)I(xηy) = min{ψI(xηy), φI(xηy)}

= φI(e+ f)

≤ max{φI(e), φI(f)}

= max{min{ψI(e), φI(e)},min{ψI(f), φI(f)}}

= max{(ψ ∪ φ)I(e), (ψ ∪ φ)I(f)}
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and

(ψ ∪ φ)F (eηf) = min{ψF (eηf), φF (eηf)}

= φF (eηf)

≤ max{φF (e), φF (f)}

≤ max{min{ψF (e), φF (e)},min{ψF (f), φF (f)}}

= max{(ψ ∪ φ)F (e), (ψ ∪ φ)F (f)}.

Similarly, we can prove if φ ⊆ ψ. Thus, ψ ∪ φ is a neutrosophic Γ-semiring of E.

Lemma 3.10. Let A(E) be the set of all neutrosophic Γ-semirings of E. Then (A(E),⊆) is

a poset.

Proof. Let A,B,C ∈ A(E).

1. Always A ⊆ A, for all A ∈ A(E). So, ⊆ is reflexive.

2. Let A ⊆ B and B ⊆ A
⇒ A = B.

So, ⊆ is anti symmetric.

3.Let A ⊆ B and B ⊆ C
⇒ A ⊆ C.

So, ⊆ is transitive.

Thus ⊆ is partial ordering and hence (A(E),⊆) is a poset.

Theorem 3.11. (A(E),∪,∩,′ , 0, 1) is a De-Morgan Algebra.

Proof. We will show that

1. (A(E),∪,∩,′ , 0, 1) is a bounded distributive lattice

2. (ψ′)′ = ψ, (ψ ∪ φ)′ = ψ′ ∩ φ′ and (ψ ∩ φ)′ = ψ′ ∪ ψ′, for all ψ, φ ∈ A(E).

Let ψ = (ψT , ψI , ψF ), φ = (φT , φI , φF ), σ = (σT, σI, σF ) ∈ A(E).

1. Since 0 ≤ ψT (e) ≤ 1, 0 ≤ ψI(e) ≤ 1 and 0 ≤ ψF (e) ≤ 1, for all x ∈ R. So, A(E) is

bounded.

Idempotency:

ψ ∩ ψ = (ψT , ψI , ψF ) ∩ (ψT , ψI , ψF ) = (ψT , ψI , ψF ) = ψ,

ψ ∪ ψ = (ψT , ψI , ψF ) ∪ (ψT , ψI , ψF ) = (ψT , ψI , ψF ) = ψ.
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Commutativity:

ψ ∩ φ = (ψT , ψI , ψF ) ∩ (φT , φI , φF )

= (min{ψT , φT },max{ψI , φI},max{ψF , φF })

= (min{φT , ψT },max{φI , ψI},max{φF , ψF })

= (φT , φI , φF ) ∩ (ψT , ψI , ψF )

= φ ∩ ψ,

ψ ∪ φ = (ψT , ψI , ψF ) ∪ (φT , φI , φF )

= (max{ψT , φT },min{ψI , φI},min{ψF , φF })

= (max{φT , ψT },min{φI , ψI},min{φF , ψF })

= (φT , φI , φF ) ∪ (ψT , ψI , ψF )

= φ ∪ ψ.

Associativity:

ψ ∩ (φ ∩ σ) = (ψT , ψI , ψF ) ∩ ((φT , φI , φF ) ∩ (σT , σI , σF ))

= (min{ψT ,min{φT , σT }},max{ψI ,max{φI , σI}},max{ψF ,max{φF , σF }})

= (min{min{ψT , φT }, σT },max{max{ψI , φI}, σI},max{max{ψF , φF }, σF })

= (ψ ∩ φ) ∩ σ,

ψ ∪ (φ ∪ σ) = (ψT , ψI , ψF ) ∪ ((φT , φI , φF ) ∪ (σT , σI , σF ))

= (max{ψT ,max{φT , σT }},min{ψI ,min{φI , σI}},min{ψF ,min{φF , σF }})

= (max{max{ψT , φT }, σT },min{min{ψI , φI}, σI},min{min{ψF , φF }, σF })

= (ψ ∪ φ) ∪ σ.

Absorption:

ψ ∩ (ψ ∪ φ) = (min{ψT ,max{ψT , φT }},max{ψI ,min{ψI , φI}},max{ψF ,min{ψF , φF }})

= (ψT , ψI , ψF ),

= ψ,

ψ ∪ (ψ ∩ φ) = (max{ψT ,min{ψT , φT }},min{ψI ,max{ψI , φI}},min{ψF ,max{ψF , φF }})

= (ψT , ψI , ψF )

= ψ.
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Distributivity:

ψ ∩ (φ ∪ σ) = (min{ψT ,max{φT , σT }},max{ψI ,min{φI , σI}},max{ψF ,min{φF , σF }})

= (max{min{ψT , φT },min{ψT , σT }},min{max{ψI , φI},max{ψI , σI}},

min{max{ψF , φF },max{ψF , σF }})

= (ψ ∩ φ) ∪ (ψ ∩ σ),

ψ ∪ (φ ∩ σ) = (max{ψT ,min{φT , σT }},min{ψI ,max{φI , σI}},min{ψF ,max{φF , σF }})

= (min{max{ψT , φT },max{ψT , σT }},max{min{ψI , φI},min{ψI , σI}},

max{min{ψF , φF },min{ψF , σF }})

= (ψ ∪ φ) ∩ (ψ ∪ σ).

Thus, (A(E),∪,∩,′ , 0, 1) is a bounded distributive lattice.

2. Now, we show that (ψ′)′ = ψ, (ψ ∪ φ)′ = ψ′ ∩ φ′ and (ψ ∩ φ)′ = ψ′ ∪ φ′.

(ψ ∩ φ)′ = (min{ψT , φT },max{ψI , φI},max{ψF , φF })′

= (max{ψF , φF },min{1− ψI , 1− φI},min{ψT , φT })

= ψ′ ∪ φ′.

Therefore (ψ ∩ φ)′ = ψ′ ∪ φ′. Similarly, we can show that (ψ ∪ φ)′ = ψ′ ∩ φ′. Also, we have

ψ′ = (ψF , 1− ψI , ψT ), and so (ψ′)′ = ψ. Thus, (A(E),∪,∩,′ , 0, 1) is a De-Morgan algebra.

4. Hommorphic image and Pre-image of Neutrosophic Γ-semirings

Theorem 4.1. Let ϕ be a homomorphism from a Γ-semiring E onto a Γ-semiring F and

let φ be a neutrosophic Γ-semiring of F . Then the pre-image ϕ−1(φ) of φ is a neutrosophic

Γ-semiring of E.

Proof. Assume that e, f ∈ E; η ∈ Γ. Then

(ϕ−1(φT ))(e+ f) = φT (ϕ(e+ f))

= φT (ϕ(e) + ϕ(f))

≥ min{φT (ϕ(e)), φT (ϕ(f))}

= min{ϕ−1(φT )(e), ϕ−1(φT )(f)},
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(ϕ−1(φI))(e+ f) = φI(ϕ(e+ f))

= φI(ϕ(e) + ϕ(f))

≤ max{φI(ϕ(e)), φI(ϕ(f))}

= max{ϕ−1(φI)(e), ϕ−1(φI)(f)},

(ϕ−1(φF ))(e+ f) = φF (ϕ(e+ f))

= φF (ϕ(e) + ϕ(f))

≤ max{φF (ϕ(e)), φF (ϕ(f))}

= max{ϕ−1(φF )(e), ϕ−1(φF )(f)}

and

(ϕ−1(φT ))(xηy) = φT (ϕ(eηf))

= φT (ϕ(e)ηϕ(f))

≥ min{φT (f(e)), φT (f(f))}

= min{(ϕ−1φT (e), (ϕ−1(φT )(f)},

(ϕ−1(φI))(eηf) = φI(ϕ(eηf))

= φI(ϕ(e)ηϕ(f))

≤ max{φI(ϕ(e)), φI(ϕ(f))}

= max{ϕ−1(φI)(e), ϕ−1(φI)(f)},

(ϕ−1(φF ))(eηf) = φF (ϕ(eηf))

= φF (ϕ(e)ηϕ(f))

≤ max{φF (ϕ(e)), φF (ϕ(f))}

= max{ϕ−1(φF )(e), ϕ−1(φF )(f)}.

Thus, ϕ−1(φ) is a neutrosophic Γ-semiring of E.

Theorem 4.2. Let ϕ be a homomorphism from a Γ-semiring E onto a Γ-semiring F . Let ψ

be a neutrosophic Γ-semiring of E. Then the homomorphic image ϕ(ψ) of ψ is a neutrosophic

Γ-semiring of F .

Proof. Let p, q ∈ F ; γ ∈ Γ. If either ϕ−1(p) or ϕ−1(q) is empty, then the result is trivially

satisfied.
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Suppose ϕ−1(p) and ϕ−1(q) are non-empty. Since p, q ∈ F , then there exist e, f ∈ E such that

e = f(p), f = f(q). Then

(ϕ(ψT ))(p+ q) = sup
z∈ϕ−1(p+q)

ψT (z)

= sup{ψT (e+ f) : e, f ∈ E, e = ϕ(p), f = ϕ(q)}

≥ sup{min{ψT (e), ψT (f)} : e, f ∈ E, e = ϕ(p), f = ϕ(q)}

= min{sup{ψT (e) : e ∈ E, x = ϕ(p)}, sup{ψT (f) : f ∈ E, f = ϕ(q)}

= min{(ϕ(ψT ))(p), (ϕ(ψT ))(q)},

(ϕ(ψI))(p+ q) = inf
z∈ϕ−1(p+q)

ψI(z)

= inf{ψI(e+ f) : e, f ∈ E, x = ϕ(p), f = ϕ(q)}

≤ inf{max{ψI(e), ψI(f)} : e, f ∈ E, x = ϕ(p), f = ϕ(q)}

= max{inf{ψI(e) : e ∈ E, e = ϕ(p)}, inf{ψI(f) : f ∈ E, f = ϕ(q)}

= max{(ϕ(ψI))(p), (ϕ(ψI))(q)},

(ϕ(ψF ))(p+ q) = inf
z∈ϕ−1(p+q)

ψF (z)

= inf{ψF (e+ f) : e, f ∈ E, e = ϕ(p), f = ϕ(q)}

≤ inf{max{ψF (e), ψF (f)} : e, f ∈ E, e = ϕ(p), f = ϕ(q)}

= max{inf{ψF (e) : e ∈ E, e = ϕ(p)}, inf{ψF (f) : f ∈ E, f = ϕ(q)}

= max{(ϕ(ψF ))(p), (ϕ(ψF ))(q)}

and

(ϕ(ψT ))(pγq) = sup
z∈ϕ−1(pγq)

ψT (z)

= sup{ψT (eγf) : e, f ∈ E, e = ϕ(p), f = ϕ(q)}

≥ sup{min{ψT (e), ψT (f)} : e, f ∈ E, e = ϕ(p), f = ϕ(q)}

= min{sup{ψT (e) : e ∈ E, e = ϕ(p)}, sup{ψT (f) : f ∈ E, f = ϕ(q)}

= min{(ϕ(ψT ))(p), (ϕ(ψT ))(q)},
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(ϕ(ψI))(pγq) = inf
z∈ϕ−1(pγq)

ψI(z)

= inf{ψI(eγf) : e, f ∈ E, e = ϕ(p), f = ϕ(q)}

≤ inf{max{ψI(e), ψI(f)} : e, f ∈ E, e = ϕ(p), f = ϕ(q)}

= max{inf{ψI(e) : e ∈ E, e = ϕ(p)}, inf{ψI(f) : f ∈ E, f = ϕ(q)}

= max{(ϕ(ψI))(p), (ϕ(ψI))(q)},

and

(ϕ(ψF ))(pγq) = inf
z∈ϕ−1(pγq)

ψF (z)

= inf{ψF (eγf) : e, f ∈ E, e = ϕ(p), f = ϕ(q)}

≤ inf{max{ψF (e), ψF (f)} : e, f ∈ E, e = ϕ(p), f = ϕ(q)}

= max{inf{ψF (e) : e ∈ E, e = ϕ(p)}, inf{ψF (f) : f ∈ E, f = ϕ(q)}

= max{(ϕ(ψF ))(p), (ϕ(ψF ))(q)}.

Thus, ϕ(ψ) is neutrosophic Γ-semiring of F .

5. Conclusions and future works

In this paper, we introduce the notion of a neutrosophic Γ-semiring and characterized the

neutrosophic Γ-semiring in terms of crisp Γ-semirings and obtained some properties. In con-

tinuity of this paper, we study neutrosophic ideals, neutrosophic bi-ideals, neutrosophic quasi

ideals, neutrosophic interior ideals of Γ-semiring.
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