

University of New Mexico

Two-warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand pattern

C. Sugapriya¹, V.Lakshmi², D. Nagarajan³, S. Broumi⁴

 Departmenteof Mathematics, Queen Mary's College University of Madras, Chennai, Tamil Nadu, India Email. : drcsp80@gmail.com
 Departmenteof Mathematics, PERI Institute6of technology, Chennai, / Tamil Nadu,India Email. : laksuria@gmail.com
 Department of Mathematics, Rajalakshmi Institute of Technology, Chennai, Tamil Nadu, India Email. : dnrmsu2002@yahoo.com
 4Laboratory of Information Processing, Faculty of Science Ben M'Sik, University Hassan II, B.P 7955, Sidi Othman, Casablanca, Morocco; E-mail: broumisaid78@gmail.com, Author for correspondence: D.Nagarajan, dnrmsu2002@yahoo.com,

Abstract: This paper is to introduce a two-warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand pattern is dealt. Inventory worsens in the both storehouses disparate fixed amount. Demand is considered three different models (a) increasing demand (b) decreasing demand (c) linear demand. The model effectiveness in identifying the optimal order time that minimized overall costs is improved by the trapezoidal bipolar Neutrosophic number representation of the parameters. The Worsen in self-warehouse at earliest but in other scenario rented warehouse mostly we have more provision and potentiality provides for better growth in inventory. Finally, the model is executed using the trapezoidal bipolar neutrosophic number with numerical examples. Affectability analysis of the minimize solution of a total cost is effective to various types of the model is provide the output are furnished in detail.

Keywords: Inventory, Tropezoidal Bipolar Neutrosophic number, Two Ware-House, Power demand, Shortages, worsen, shortage, logarithmic demand.

1. INTRODUCTION

In inventory models of EOQ is consequence considered request of product is linear regrettably. This may not be attainable in a few circumstances. It'll be best to considered that the demand changes with time. Knowledge on stock demonstrate with power demand pattern is vital since it permit to germane uncover with the behaviours and evolution of the stock.

Consumers want just-finished food items, so demand for baked or ready-made goods such as cakes, cookies, candy and streamed food is increased level at the start of the scheduling period (m > 1). Fresh meat, fish, fruits, vegetables, yoghurts, and other foods may all experience this form of demand. Since deals are decreased when the arrange of rot approaches. Request for unused things with a solid specialized parameter is expanded at the begin of the cycle than at the end. Mobile phones, smart phones, and computers, for example, are in higher demand as they first come out on the market because of the creativity and new implementation they provide.

Other items, on other hand, have higher demand during end of the inventory period (m<1). Condition arises when a commodity becomes unavailable, such as gasoline or diesel oil. Flour, coffee, gasoline, milk, water, and sugar are examples of essential household products that fall into this category. Increases in demand happen when the amount of inventory on sale starts to deplete due to daily needs. Other sources request for theatres tickets, cinemas, musical events, sporting events, and other events, it's often positive by closing accounting year, or when it's time to revel it.

Adaraniwon et al. [1] discussed the EOQ model was researched for deferred corruption and missed deals. Request rate, reliable pace of rot, and fractional overabundance pace of request amount, just as absolute stock expense per unit time, are completely expressed. A. K. Bhunia et al.[2] manages a solitary declining thing stock model with two separate stockrooms with various conservation offices. D. Nagarajan et al.[13] developed Dombi Interval Valued Neutrosophic Graph and its Role in Traffic Control Management. J. Kavikumar & D. Nagarajan [16] deal with Neutrosophic General Finite Automata. S. Broumi et al. [21] Analyzing Age Group and Time of the Day Using Interval Valued Neutrosophic Sets. Abdel-Basset et al. [18] manages a Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection.

S. Agrawal et al. talked about slope type interest, with the capacity to go about as a solitary stockroom stock framework or two distribution center stock frameworks relying upon the model boundaries. Chakraborty & Sankar [7] by allowing The Pentagonal Fuzzy Number: Its Different Representations, Properties, Ranking, Defuzzification and Application in Game Problems. Chakraborty & Broumi [8] introduced Some properties of Pentagonal Neutrosophic Numbers and its Applications in Transportation Problem Environment. Ganesan et al.[15] developed by An integrated new threshold FCMs Markov chain based forecasting model for analyzing the power of stock trading trend. J. Sicilia, et al. [17] examined Stock is deterministic, differs as per time in each solicitation period, and follows a force request design. Chakraborty & Mondal by including Different linear and non-linear form of Trapezoidal Neutrosophic Numbers, De-Neutrosophication Techniques and its Application in time cost optimization technique, sequencing problem. Chakraborty Mondal, S. Broumi deal with De-Neutrosophication technique of pentagonal neutrosophic number and application in minimal spanning tree. S. Broumi & D. Nagarajan introduced by Implementation of Neutrosophic Function Memberships Using MATLAB Program.D.Nagarajan et al[31] explained the nutrosophic multiple regression. S.Broumi et al [32] presented A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroid.

R. B. Krishnaraj et al. [20] introduced the two-boundary Weibull circulation decay deterministic stock model for power request designs without deficiencies. S. Te Jung, et al. [26] determined an EOQ model for things Weibull dispersed corruption, deficiencies and force request design.

S. Pradhan, , et al.[25] presented the impact of swelling on the force request design was explored, with two boundaries of the Weibull appropriation for crumbling being thought of, just as a confined pay approach with dynamic trade credit. S.Gomathy et al.[27] by introducing Plithogenic sets and their application in decision making. Muhammad Saqlain & Smarandache [28] show that with Octagonal Neutrosophic Number: Its Different Representations, Properties, Graphs and De-Neutrosophication. Saqlain et al. consider Linear and Non-Linear Octagonal Neutrosophic Numbers: Its Representation, α -Cut and Applications. N. Rajeswari, et al. solved the overabundance pace of neglected interest is thought to be a diminishing outstanding capacity of holding up time in the investigation. Evaluated mean portrayal, marked distance, and centroid strategies are utilized to defuzzify the all-out cost.

2. ASSUMPTIONS AND NOTATIONS

 $D(t) = \frac{\varepsilon t \overline{m}^{-1}}{1}$ where ε is positive constant, 0 < m < 1, T is the planning horizon. (i)

- (ii) Shortages are permitted.
- The lead time is negligible. (iii)
- Worsen rate of RW (θ) disparate than the decay rate of OW (\emptyset) (iv)
- The inventory system deals with single item only. (v)
- The cost of holding at RW is less than the holding cost at OW ($IC_{H_0} > IC_{H_r}$). (vi)
- (vii) The OW is restricted number W units, while the RW is infinite number. For business purposes, RW products are consumed first, followed by OW items.

The accompanying documentations are utilized all through the paper:

- : Stock volume in RW at time t , $t \ge 0$. $\mathfrak{I}_r(t)$
- $\mathfrak{I}_0(t)$: Stock volume in OW at time t, $t \ge 0$.
- S(t) : Scarcity Stock volume at time t, t≥0
- А : Ordering cost per order per year.
- Т : Cycle of length.
- : Time of the Stock level it vanish in RW t_1
- : Time of the Stock level it vanish in OW t_2
- : Holding cost per unit for OW IC_{H_0} $IC_{H_0} > IC_{H_r}$
- IC_{H_r} : Holding cost per unit for RW
- \mathcal{H}_r : Inventory holding cost per unit of RW
- \mathcal{H}_0 : Inventory holding cost per unit of OW
- S : Inventory Shortage cost per cycle.
- IC_{S} :Shortagecost per unit.
- : Worsen cost per unit. IC_d
- : Demand index during the constant cycle time T ε
- : Demand index m
- : Stock level Higher at the beginning of the cycle. Ζ
- W : Warehouse capacity of OW.
- Q : Total order Quantity per cycle.

TC (t_1, T) : Optimum total cost per unit.

3. MATHEMATICAL FORMULATION

Definition :3.1

Fuzzy set: A set s \hat{S} , defined as $\hat{S} = \{(A, \phi_{\hat{S}}) : A \in S \ \phi_{\hat{S}}(A) \in [0,1]\}$ and usually denoted by the pair as $(A, \phi_{\hat{S}}(A))$, $A \in S$ and $\phi_{\hat{S}}(A) \in [0,1]$ then \hat{S} is said to be a fuzzy set.

Definition 3.2 Neutrosophic set: [5] A set \hat{T} is identified as a neutrosophic set if $\hat{T} =$ $\{\langle p; \alpha_{\hat{T}}(p), \beta_{\hat{T}}(p), \gamma_{\hat{T}}(p) \} : x \in P, P = universal set\}$, where $\alpha_{\hat{T}}(p) : P \to [0, 1]$ signifes the scale of confidence $\beta_{n \in u B i T}(p)(p) : P \to [0, 1]$ signifies the scale of hesitation and $\gamma_{\hat{T}}(p) : P \to [0, 1]$ signifes the scale of falseness. Where, $\alpha_{\hat{T}}(p)$, $\beta_{\hat{T}}(p)$, and $\gamma_{\hat{T}}(p)$ satisfies the relation: $0 \leq$

$$\leq \alpha_{\hat{T}}(p) + \beta_{\hat{T}}(p), + \gamma_{\hat{T}}(p) \leq 0$$

Definition :3.3 Single-Valued Neutrosophic..Set: \$Chakraborty\$ [4]

A set of Neutrosphic is \widetilde{Ns} in the?definition 3.1. is claimed to be a single-Valued neutrosophic set (SVTrNs) if x may be single-valued independent variable. $SVTrNs = \{x;$ $[\rho_{SVTrNs}(x), \sigma_{SVTrNs}(x), \tau_{SVTrNs}(x)]$: $x \in X$ }, where $\rho_{SVTrNs}(x), \sigma_{SVTrNs}(x), \tau_{SVTrNs}(x)$ provided the method of accuracy, dubiety and falsehood-memberships function0respectively.

C.Sugapriya, V.Lakshmi , D. Nagarajan S. Broumi , Two-warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand pattern

Definition :3.4 (.Tropezoidal&Single Valued Neutrosophic Number&)

Neutrosophic number with tropezoidal Single Valued ($\widetilde{\Omega}$) is defined a $\widetilde{\Omega} = \langle (r_1, r_2, r_3, r_4; \Upsilon), (u_1, u_2, u_3, u_4; \lambda), (q_1, q_2, q_3, q_4; \eta) \rangle$, where μ , ϑ , $\zeta \in [0,1]$. The real/membership function $\rho_{\widetilde{\Omega}}$: $\mathbb{R} \to [0, \Upsilon]$, the dubiety/membership function $\sigma_{\widetilde{\Omega}}$: $\mathbb{R} \to [\lambda, 1]$ and the falsehood/membership function $\tau_{\widetilde{\Omega}}$: $: \mathbb{R} + \gamma/[\eta, 1]$ are characterized as follows:

$$\pi_{\tilde{\Omega}} = \begin{cases} \vartheta_{\tilde{\Omega}l}(x), & r_{1} \leq x < r_{2} \\ \Upsilon, & r_{2} \leq x < r_{3} \\ \vartheta_{\tilde{\Omega}r}(x), & r_{3} < x \leq r_{4} \\ 0, & otherwise >. \end{cases}$$

$$\theta_{\tilde{\Omega}} = \begin{cases} \varepsilon_{\tilde{\Omega}l}(x), & u_{1} \leq x < u_{2} \\ \lambda, & u_{2} \leq x < u_{3} \\ \varepsilon_{\tilde{\Omega}r}(x), & u_{3} < x \leq u_{4} \\ 1, & otherwise >. \end{cases}$$

$$\eta_{\tilde{\Omega}} = \begin{cases} \ell_{\tilde{\Omega}l}(x), & q_{1} \leq x < q_{2} \\ \eta, & q_{2} \leq x < q_{3} \\ \ell_{\tilde{\Omega}r}(x), & q_{3} < x \leq q_{4} \\ 1, & otherwise >. \end{cases}$$

Definition :3.5 Bipolar neutrosophic set: A set \hat{T} is identified as a neutrosophic set if $T_{neuBl} = \{\langle p; \alpha_{T_{neuBl}}(p), \beta_{T_{neuBl}}(p), \gamma_{T_{neuBl}}(p) \} : x \in P, P = universal set \}$, where $\alpha_{T_{neuBl}}^+(p) : P \rightarrow [0, 1], \alpha_{T_{neuBl}}^-(p) : P \rightarrow [-1, 0]$, signifies the scale of confidence $\beta_{T_{neuBl}}^+(p) : P \rightarrow [0, 1], \beta_{T_{neuBl}}^-(p) : P \rightarrow [-1, 0]$ signifies the scale of hesitation $\gamma_{T_{neuBl}}^+(p) : P \rightarrow [0, 1], \gamma_{T_{neuBl}}^-(p) : P \rightarrow [-1, 0]$, signifies the scale of falseness. Where, $\alpha_{T_{neuBl}}(p), \beta_{T_{neuBl}}(p), and \gamma_{T_{neuBl}}(p)$ satisfies the relation: $-0 \le \alpha_{T_{neuBl}}(p), \beta_{T_{neuBl}}(p), and \gamma_{T_{neuBl}}(p) \le 3 +$

Definition :3.6 De- Bipolar neutrosophication of Tropezoidal. Neutrosophic0 number:

This..system, the expulsion region procedure executed to assess the de-neutrosophication worth of tropezoidal single esteemed neutrosophic number is

 $\widehat{T_{neuB_l}} = < (r_1, r_2, r_3, r_4; \Upsilon), (u_1, u_2, u_3, u_4; \lambda), (q_1, q_2, q_3, q_4; \eta) >, \text{ de-neutrosophic form } \tilde{S} \text{ is provided as } \\ \widehat{T_{DneuB_l}} = \left(\frac{r_1 + r_2 + r_3 + r_4 + u_1 + u_2 + u_3 + u_4 + q_1 + q_2 + q_3 + q_4}{6}\right)$

The inventory model is created in the following manner: At the start of each period, Z units of goods arrived in the stock system. The W units are kept in OW, while the rest are kept in RW. The items in OW are devoured solely after the products in RW have been burned-through. The stock level is diminishing in the RW during the time span $[o, t_1]$, because of the request rate and disintegration.

The stock model is advanced as follows: Z units of object arrived inventory model at the start of each period. W units are kept in OW and the rest is put absent in RW. The things of OW are eaten up exclusively after burning-through the items kept in RW. In the RW, during the time span $[o, t_1]$, stock level is diminishing because of the interest rate and disintegration and the stock level is lessening to zero at t_1 . The stock W diminishes during $[o, t_1]$, because of decay just, while during $[t_1, t_2]$, the stock is exhausted because of both interest and crumbling. The Stock level is dropping to zero at t_2 . Worsen rate of RW (θ) is disparate than the worsen rate of OW (\emptyset). The holding cost at RW is less than the holding cost at OW ($IC_{H_0} > IC_{H_T}$). Finally, a shortfall happens due to demand during the time span $[t_1, T]$.

Case (i) System with increasing demand 0 < m < 1

The total request during the span is ε units. When 0 < m < 1, a larger portion of request at end of inventory cycle.

Here the Stock level at RW reduce due to increasing demand rate and constant worsen rate in the interval $(0, t_1)$ and reaches zero at t_1 .

C.Sugapriya, V.Lakshmi , D. Nagarajan S. Broumi , Two-warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand pattern

Hence, the Stock level in RW for $t \in (0, t_1)$ fulfil the differential equations

$$\frac{d\mathfrak{I}_r(t)}{dt} = -\frac{\varepsilon t \overline{m}^{-1}}{mT \overline{m}} - \theta \,\mathfrak{I}_r(t) \qquad 0 \le t \le t_1 \tag{1}$$

Stock level at OW diminishes, because of weakening over the span $(0, t_1)$, and because of expanding request rate and consistent decay rate over the stretch (t_1, t_2) and arrives at zero at t_2 . In this manner it fulfils the differential conditions

$$\frac{d\mathfrak{I}_{0}(t)}{dt} = -\phi\mathfrak{I}_{0}(t) \qquad 0 \le t \le t_{1}$$

$$\frac{d\mathfrak{I}_{0}(t)}{dt} = -\frac{\varepsilon t^{\frac{1}{m-1}}}{m^{\frac{1}{m}}} - \phi\mathfrak{I}_{0}(t) \qquad t_{1} \le t \le t_{2}$$
(3)

The range of pending shortages over (t_2 , T) satisfies the derivative

$$\frac{dS(t)}{dt} = -\frac{\varepsilon t \overline{m}^{-1}}{mT \overline{m}} \qquad \qquad t_2 \le t \le T$$
(4)

The actions of the stock system during the entire span [0, T] is shown in Figures 1

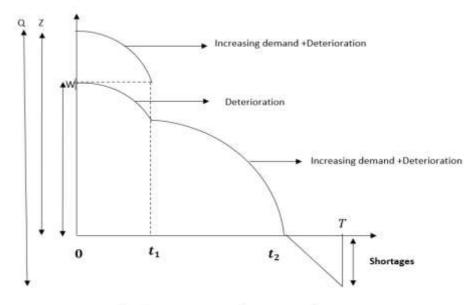


Figure 1. Graphical representation of a two-warehouse inventory system with Increasing Demand

Solving the above differential equations with the boundary conditions

$$\begin{aligned} \Im_{r}(t_{1}) &= 0, & 0 \le t \le t_{1} \\ \Im_{o}(0) &= W, & 0 \le t \le t_{1} \\ \Im_{0}(t_{2}) &= 0, & t_{1} \le t \le t_{2} \\ S(t_{2}) &= 0, & t_{2} \le t \le T \\ \text{The solutions to Equations (1)-(4) are} \\ \Im_{r}(t) &= \frac{\varepsilon}{r^{\frac{1}{m}}} \left\{ \left\{ t_{1}^{\frac{1}{m}} - t^{\frac{1}{m}} \right\} - \frac{m\theta}{m+1} \left\{ t_{1}^{\frac{1}{m}+1} - t^{\frac{1}{m}+1} \right\} \right\} \quad 0 \le t \le t_{1} \end{aligned}$$
(5)

$$\Im_{0}(t) = \frac{\varepsilon}{\frac{1}{T^{\frac{1}{m}}}} \left\{ \left\{ t_{2}^{\frac{1}{m}} - t^{\frac{1}{m}} \right\} - \frac{m\emptyset}{m+1} \left\{ t_{2}^{\frac{1}{m}+1} - t^{\frac{1}{m}+1} \right\} \right\} \qquad t_{1} \le t \le t_{2}$$
(7)

$$S(t) = \frac{\varepsilon}{\frac{1}{T^{\frac{1}{m}}}} \left\{ t_2^{\frac{1}{m}} - t^{\frac{1}{m}} \right\} \qquad \qquad t_2 \le t \le T$$
(8)

Applying the boundary condition $\Im_r(0) = Z - W$ the value of Z is $Z = W + \frac{\varepsilon}{T\frac{1}{m}} \left\{ 1 - \frac{m \theta t_1}{m+1} \right\} \left\{ t_1 \frac{1}{m} \right\}$ The maximum shortage inventory S(T) is obtained from equation (8)

The maximum shortage inventory, S(T) is obtained from equation (8) Q=Z-S(T)

(9)

C.Sugapriya, V.Lakshmi , D. Nagarajan S. Broumi , Two-warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand pattern

Finally, from equation (9) we have

$$Q = W + \frac{\varepsilon}{T^{\frac{1}{m}}} \left\{ 1 - \frac{m \, \emptyset \, t_1}{m+1} \right\} \left\{ t_1^{\frac{1}{m}} \right\} - \frac{\varepsilon}{T^{\frac{1}{m}}} \left\{ t_2^{\frac{1}{m}} - T^{\frac{1}{m}} \right\}$$
(10)

Total similar inventory cost per span consists of the following cost parameters:

- 1. The invoice cost is A
- 2. The holding cost of inventory in RW is resulting

$$\mathcal{H}_{r} = IC_{H_{r}} \{ \int_{0}^{t_{1}} \Im_{r}(t) dt \}$$

$$\mathcal{H}_{r} = \frac{IC_{H_{r}} \varepsilon}{\frac{1}{m}} \left\{ \left\{ \left(\frac{1}{m+1} \right) t_{1}^{\frac{1}{m}+1} \right\} - \left\{ \left(\frac{\theta m}{(2m+1)} \right) t_{1}^{\frac{1}{m}+2} \right\} \right\}$$
(11)

3. The holding cost of inventory in OW is resulting

$$\mathcal{H}_{0} = IC_{H_{0}} \{ \int_{0}^{t_{2}} \mathfrak{I}_{0}(t) dt \}$$

$$\mathcal{H}_{0} = IC_{H_{0}} \{ W t_{1} - \emptyset \frac{t_{1}^{2}}{2} \} + \frac{IC_{H_{0}}\varepsilon}{T\frac{1}{m}} \{ \left\{ \left(\frac{1}{m+1} \right) t_{2}^{\frac{1}{m}+1} \right\} - \left\{ \left(\frac{\emptyset m}{(2m+1)} \right) t_{2}^{\frac{1}{m}+2} \right\} \} - \frac{IC_{H_{0}}\varepsilon}{T\frac{1}{m}} \{ \left\{ t_{1} t_{2}^{\frac{1}{m}} - \left(\frac{m}{(2m+1)} \right) t_{1}^{\frac{1}{m}+2} \} \} \}$$

$$\left(\frac{m}{m+1} t_{1}^{\frac{1}{m}+1} \right\} = -\left(\frac{\emptyset m}{(m+1)} \right) \left\{ t_{1} t_{2}^{\frac{1}{m}+1} - \left\{ \left(\frac{m}{(2m+1)} \right) t_{1}^{\frac{1}{m}+2} \right\} \right\}$$

$$(12)$$

4. The shortage cost per cycle is

ł

{

$$S = IC_{s} \left\{ \int_{t_{2}}^{T} \frac{\varepsilon}{T_{m}^{\frac{1}{m}}} \left\{ t_{2}^{\frac{1}{m}} - t^{\frac{1}{m}} \right\} dt \right\}$$

$$S = IC_{s} \frac{IC}{T_{m}^{\frac{1}{m}}} \left\{ t_{2}^{\frac{1}{m}} T - \left(\frac{m}{m+1}\right) T^{\frac{1}{m}+1} - \left(\frac{1}{m+1}\right) t_{2}^{\frac{1}{m}+1} \right\}$$
(13)

5. The cost of worsen products in RW and OW during $(0, t_2)$ are

$$D = IC_{d} \{\theta \int_{0}^{t_{1}} \Im_{r}(t) dt + \emptyset \int_{0}^{t_{2}} \Im_{0}(t) dt \}$$

$$D = \frac{IC_{d} \varepsilon \theta}{\frac{1}{rm}} \left\{ \left\{ \left(\frac{1}{m+1} \right) t_{1}^{\frac{1}{m}+1} \right\} - \left\{ \left(\frac{\theta m}{(2m+1)} \right) t_{1}^{\frac{1}{m}+2} \right\} \right\} + IC_{d} \emptyset \left\{ W t_{1} - \emptyset \frac{t_{1}^{2}}{2} \right\} + \frac{IC_{d} \varepsilon \theta}{\frac{1}{rm}} \left\{ \left\{ \left(\frac{1}{m+1} \right) t_{2}^{\frac{1}{m}+1} \right\} - \left\{ \left(\frac{\theta m}{(2m+1)} \right) t_{2}^{\frac{1}{m}+2} \right\} \right\} - \frac{IC_{d} \varepsilon}{rm} \left\{ \left\{ t_{1} t_{2}^{\frac{1}{m}} - \left\{ \left(\frac{m}{m+1} \right) t_{1}^{\frac{1}{m}+1} \right\} \right\} - \left(\frac{\theta m}{(m+1)} \right) \left\{ t_{1} t_{2}^{\frac{1}{m}+1} - \left(\frac{m}{(2m+1)} \right) t_{1}^{\frac{1}{m}+2} \right\} \right\} \right\}$$

$$(14)$$

Finally, the Total inventory cost per unit time is resulting

TC (t_2) = $\frac{1}{T}$ (Invoice cost + Holding cost + Shortage cost + Worsen cost)

$$\text{TC}(\mathbf{t}_{2}) = \frac{1}{T} \Biggl\{ (A) + \frac{(IC_{H_{T}} + IC_{d} \theta) \varepsilon}{T^{\frac{1}{m}}} \Biggl\{ \Biggl\{ \Biggl\{ \frac{1}{(m+1)} t_{1}^{\frac{1}{m}+1} \Biggr\} - \Biggl\{ \Biggl(\frac{\theta m}{(2m+1)} \Biggr) t_{1}^{\frac{1}{m}+2} \Biggr\} \Biggr\}$$

$$+ (IC_{H_{0}} + IC_{d} \ \emptyset) \Biggl\{ W \ t_{1} - \emptyset \frac{t_{1}^{2}}{2} \Biggr\}$$

$$+ \frac{(IC_{H_{0}} + IC_{d} \ \emptyset) \varepsilon}{T^{\frac{1}{m}}} \Biggl\{ \Biggl\{ \Biggl\{ \Biggl(\frac{1}{m+1} \Biggr) \ t_{2}^{\frac{1}{m}+1} \Biggr\} - \Biggl\{ \Biggl(\frac{\theta m}{(2m+1)} \Biggr) \ t_{2}^{\frac{1}{m}+2} \Biggr\} \Biggr\}$$

$$- \frac{(IC_{H_{0}} + IC_{d} \ \emptyset) \varepsilon}{T^{\frac{1}{m}}} \Biggl\{ \Biggl\{ t_{1} \ t_{2}^{\frac{1}{m}} - \Biggl\{ \Biggl(\frac{m}{(m+1)} \Biggr) \ t_{1}^{\frac{1}{m}+1} \Biggr\} \Biggr\}$$

$$- \Biggl\{ \Biggl(\frac{\theta m}{(m+1)} \Biggr) \Biggl\{ t_{1} \ t_{2}^{\frac{1}{m}+1} - \Biggl\{ \Biggl(\frac{m}{(2m+1)} \Biggr) \ t_{1}^{\frac{1}{m}+2} \Biggr\} \Biggr\} \Biggr\}$$

$$+ \frac{IC_{s}}{T^{\frac{1}{m}}} \Biggl\{ t_{2}^{\frac{1}{m}} - \Biggl\{ \Biggl(\frac{m}{m+1} \Biggr) \ T^{\frac{1}{m}+1} - \Biggl\{ \Biggl(\frac{1}{m+1} \Biggr) \ t_{2}^{\frac{1}{m}+1} \Biggr\} \Biggr\}$$

$$(15)$$

C.Sugapriya, V.Lakshmi, D. Nagarajan S. Broumi, Two-warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand pattern

Numerical examples

We represent the proposed model for certain mathematical models as given below.

Example 1 [Case(i) increasing demand 0<m<1]

W=100, A=50, ε =100, θ = 0.02 , ϕ = 0.03, $IC_{H_r} = \frac{3}{unit}$ year, $IC_{H_0} = 5$, $IC_s = 12$, $IC_d = 12$

10, m=0.5 , t_1 = 0.8, T=1 in appropriate units. The result is obtained as follows t_2 = 1.15337,

 $TC(t_2^*) = 618.872$ Q = 130.462 units.

Example 2 [Case(ii) decreasing demand m>1]

As like the same Example 1 with m=1,

 $t_2 = 1.1487$, TC(t_2^*) = 593.214 Q = 164.147 units

Example 3 [Case(iii) Linear demand m=1]

As like the same Example 1 with m=2,

The result obtained is as follows like $t_1 = 0.8$ months, T = 1 years,

 $t_2 = 1.14419$, TC(t_2^*) = 572.59 Q = 175.254 unit

Solution procedure

We came to know that the nonlinear equations. Here, we use MATHEMATICA 9.0 tool find the optimum solution of t_1^* and T^* using equation (15)

 $D(t_1^*, T^*) = \frac{\partial^2 TC(t_1, T)}{\partial t_1^2} \frac{\partial^2 TC(t_1, T)}{\partial T^2} - \left[\frac{\partial^2 TC(t_1, T)}{\partial t_1 \partial T}\right]^2 > 0 \quad \text{we recommended "D-test" for optimizing functions of two variables } t_1 \text{ and } T \text{ such that}$

$$\frac{\partial \text{TC}(t_{1},\text{T})}{\partial \text{T}} = \left\{ \left(-\frac{\text{A}}{\text{T}^{2}} \right) - \left\{ 1 + \frac{1}{\text{m}} \right\} \frac{(\text{IC}_{\text{H}_{\text{F}}} + \theta \text{IC}_{\text{d}}) \text{IC}}{\text{T}\frac{1}{\text{m}^{+2}}} \left\{ \left\{ \left(\frac{1}{\text{m}+1} \right) t_{1}^{\frac{1}{\text{m}}+1} \right\} + \left\{ \left(\frac{2\theta \text{m}}{(\text{m}+1)(\text{m}+2)} \right) t_{1}^{\frac{1}{\text{m}}+2} \right\} \right\} + \left(\text{IC}_{\text{H}_{0}} + \theta \text{ IC}_{\text{d}} \right) \text{W} \left\{ t_{1} - \theta \frac{t_{1}^{2}}{2} \right\} \left(-\frac{1}{\text{T}^{2}} \right) - \left\{ 1 + \frac{1}{\text{m}} \right\} \frac{(\text{IC}_{\text{H}_{0}} + \theta \text{ IC}_{\text{d}}) \text{IC}}{\text{T}\frac{1}{\text{m}^{+2}}} \left\{ \left\{ \left(\frac{1}{\text{m}+1} \right) t_{2}^{\frac{1}{\text{m}}+1} \right\} + \left\{ \left(\frac{2\theta \text{m}}{(\text{m}+1)(\text{m}+2)} \right) t_{2}^{\frac{1}{\text{m}}+2} \right\} \right\} + \text{IC}_{\text{s}} \frac{\text{IC}}{\text{T}\frac{1}{\text{m}^{+1}}} \left\{ -\frac{1}{\text{m}} t_{2}^{\frac{1}{\text{m}}} \right\} - \left\{ \frac{1}{\text{m}} \frac{\text{IC}_{\text{s}} \text{ IC}}{\text{T}\frac{1}{\text{m}^{+2}}} t_{2}^{\frac{1}{\text{m}}+1} \right\} \right\}$$

$$(16)$$

$$\frac{\partial \text{TC}(t_1,T)}{\partial t_1} = = \frac{(\text{IC}_{\text{H}_{\text{r}}} + \theta\text{IC}_{\text{d}}) \text{IC}}{\frac{1}{\text{T}_{\text{m}}^{\text{t}+1}}} \left\{ \begin{array}{c} \left\{ \left(\frac{1}{\text{m}}\right) t_1^{\frac{1}{\text{m}}} \right\} + \\ \left\{ \left(\frac{2\theta(2m+1)}{(m+1)(m+2)}\right) t_1^{\frac{1}{\text{m}}+1} \right\} \right\} + \left(\frac{1}{\text{T}}\right) (\text{IC}_{\text{H}_0} + \emptyset \text{ IC}_{\text{d}}) W\{1 - \emptyset t_1\} \\ 0 = 0 \quad \text{(17)} \\ \frac{\partial \text{TC}(t_1,T)}{\partial t_1} = 0 \quad \text{and} \quad \frac{\partial \text{TC}(t_1,T)}{\partial \text{T}} = 0$$

If $\frac{\partial^2 \text{TC}(t_1^*, T^*)}{\partial t_1^2} > 0$ then TC (t_1^*, T^*) is minimum Value

Case (ii) Model with decreasing demand (m > 1)

The total requires during the time period is IC units. At the point when m > 1, a larger part of request happens at the start of the time span.

C.Sugapriya, V.Lakshmi, D. Nagarajan S. Broumi, Two-warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand pattern

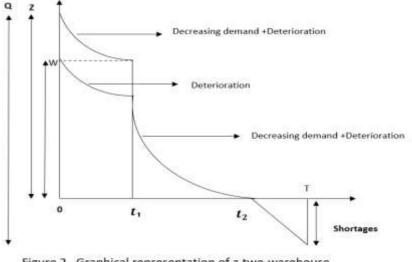


Figure 2 . Graphical representation of a two-warehouse inventory system with Decreasing Demand

Case (iii) Model with Linear demand m = 1

The total requires during the time span is IC units. When m = 1, the request follows a uniform system.

Figure 3 . Graphical representation of a two-warehouse inventory system with Linear Demand

$$\begin{aligned} \widehat{\mathrm{TC}}_{T_{neuB1}}\left(\mathbf{t}_{2}\right) &= \frac{1}{T} \left\{ \left(A\right) + \frac{\left(\widehat{lC}_{H_{T}} + \widehat{lC}_{d}\theta\right)\varepsilon}{T^{\frac{1}{m}}} \left\{ \left\{\left(\frac{1}{m+1}\right)t_{1}^{\frac{1}{m}+1}\right\} - \left\{\left(\frac{\theta m}{(2m+1)}\right)t_{1}^{\frac{1}{m}+2}\right\} \right\} + \left(\widehat{lC}_{H_{0}} + \widehat{lC}_{d} \ \emptyset\right) \left\{W \ t_{1} - \left(\frac{\theta m}{T^{\frac{1}{m}}}\right) + \left(\frac{1}{T^{\frac{1}{m}}}\right)\varepsilon}{T^{\frac{1}{m}}} \left\{ \left\{\left(\frac{1}{m+1}\right)t_{2}^{\frac{1}{m}+1}\right\} - \left\{\left(\frac{\theta m}{(2m+1)}\right)t_{2}^{\frac{1}{m}+2}\right\} \right\} - \left(\frac{1}{T^{\frac{1}{m}}}\right)\varepsilon}{T^{\frac{1}{m}}} \left\{ \left\{t_{1} \ t_{2}^{\frac{1}{m}} - \left\{\left(\frac{m}{m+1}\right)t_{1}^{\frac{1}{m}+1}\right\} \right\} - \left(\frac{\theta m}{(2m+1)}\right)t_{2}^{\frac{1}{m}+2}\right\} \right\} - \left(\frac{\theta m}{T^{\frac{1}{m}}}\right)\varepsilon}{T^{\frac{1}{m}}} \left\{t_{1} \ t_{2}^{\frac{1}{m}} - \left\{\left(\frac{m}{m+1}\right)t_{1}^{\frac{1}{m}+1}\right\} \right\} - \left(\frac{\theta m}{(2m+1)}\right)\varepsilon}{T^{\frac{1}{m}}} \left\{t_{1} \ t_{2}^{\frac{1}{m}+1} - \left\{\left(\frac{m}{(2m+1)}\right)t_{1}^{\frac{1}{m}+2}\right\} \right\} + \frac{1}{T^{\frac{1}{m}}}\left\{t_{2}^{\frac{1}{m}}T - \left(\frac{m}{m+1}\right)T^{\frac{1}{m}+1} - \left(\frac{1}{m+1}\right)t_{2}^{\frac{1}{m}+1}\right\} \right\}$$

$$\tag{15}$$

C.Sugapriya, V.Lakshmi, D. Nagarajan S. Broumi, Two-warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand pattern

The effects of trapezoidal bipolar neutrosophic numbers:

Here, deteriotion cost \widehat{IC}_d , holding cost in owned warehouse $\widehat{IC}_{H_{o'}}$ holding cost in rented warehouse \widehat{IC}_{H_r} have been considered as trapezoidal bipolar neutrosophic fuzzy set. Thus, the parameters of bipolar neutrosophic numbers are:

$$\begin{split} &\widehat{IC_d} < (2.25, 2.72, 3.26, 4.82); (1.76, 2.88, 3.14, 4.37), (1.44, 2.76, 3.38, 4.02) > \\ &\widehat{IC_{H_o}} = < (2.29, 3.26, 5.02, 6.82); (2.06, 3.39, 4.92, 5.65), (3.85, 4.48, 6.34, 8.10) > \\ &\widehat{IC_{H_r}} = < (3.11, 4.15, 5.81, 6.80); (1.57, 2.73, 3.42, 4.04), (0.04, 1.26, 2.35, 3.22) > \end{split}$$

We can generate outcomes into neutrosophic numbers based on the result of trapezoidal bipolar neutrosophic number and its membership functions as the De-neutrosophication technology develops.

$$\widehat{T_{DneuBi}} = \left(\frac{r_1 + r_2 + r_3 + r_4 + u_1 + u_2 + u_3 + u_4 + q_1 + q_2 + q_3 + q_4}{6}\right)$$

Numerical examples

We represent the proposed model for certain mathematical models as given below.

Example 1 [Case(i) increasing demand 0<m<1]

W=100, A=50, ε =100, θ = 0.02 , ϕ = 0.03, \widehat{IC}_{H_r} = \$6.75/unit/year, \widehat{IC}_{H_0} = 9.36, \widehat{IC}_d = 6.13, IC_s = 12, m=0.5, t_1 = 0.7, T=1 year in right units. The results extracted as follows t_2 = 1.078, TC(t_2 *) = 510.572 Q = 163.90 units.

Example 2 [Case(ii) decreasing demand m>1]

As like the same Example 1 with m=2, The results were obtained as follows $t_1 = 0.8 \text{ months}, T = 1 \text{ years}, t_2 = 1.624,$ $TC(t_2^*) = 564.854 \quad Q = 148.152 \text{ units}$

Example 3 [Case(iii) Linear demand m=1]

As like the same Example 1 with m=1,

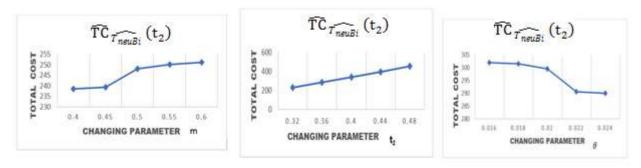
The results were obtained as follows
$$t_1 = 0.8$$
 years, $T = 1$ years, $t_2 = 1.14419$,

$$TC(t_2^*) = 546.21$$
 $Q = 150.724$ units

C.Sugapriya, V.Lakshmi, D. Nagarajan S. Broumi, Two-warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand pattern

Table 1
Impacts of changes within the different sort of the show.

₩ ε Α Μ t ₂	$\begin{array}{c} 120\\ 110\\ 100\\ 90\\ 80\\ 120\\ 110\\ 100\\ 90\\ 80\\ 60\\ 55\\ 50\\ 45\\ 40\\ 0.6\\ 0.55\\ 0.5\\ 0.5\\ 0.45\\ 0.45\\ 0.4\\ 0.48\\ \end{array}$	$\begin{array}{r} +20 \\ +10 \\ 0 \\ -10 \\ -20 \\ +20 \\ +10 \\ 0 \\ -10 \\ -20 \\ +10 \\ 0 \\ -10 \\ -20 \\ +20 \\ +110 \\ 0 \\ -10 \\ -10 \\ -10 \\ -10 \end{array}$	0.3476 0.3758 0.3758 0.3951 0.3987 0.3976 0.394 0.3926 0.3728 0.3416 0.3939 0.3726 0.3349 0.3726 0.3349 0.3726 0.3349 0.3108 0.3024 0.394 0.3905	0.5034 0.515 0.5326 0.5464 0.5558 0.4798 0.4743 0.4696 0.4687 0.4642 0.6308 0.6203 0.6146 0.6041 0.5968 0.652	$\frac{\hat{\Gamma}C_{T_{neuB1}}(t_2)}{474.505}$ 454.438 417.787 388.933 322.461 532.097 515.487 501.177 408.982 398.818 271.028 267.199 255.416 251.385 247.617	167.569 163.114 151.178 142.149 126.996 183.68 175.707 169.712 156.797 148.627 138.891 135.992 129.626 126.415	219.89 209.867 199.87 189.862 179.872 219.776 209.801 199.817 189.858 189.789 199.898 199.91 199.934 199.945
A	$ \begin{array}{r} 100 \\ 90 \\ 80 \\ 120 \\ 110 \\ 100 \\ 90 \\ 80 \\ 60 \\ 55 \\ 50 \\ 45 \\ 40 \\ 0.6 \\ 0.55 \\ 0.5 \\ 0.5 \\ 0.45 \\ 0.4 \\ 0.48 \\ \end{array} $	$\begin{array}{c} 0 \\ -10 \\ -20 \\ +20 \\ +10 \\ 0 \\ -10 \\ -20 \\ +20 \\ +10 \\ 0 \\ -10 \\ -20 \\ +20 \\ +10 \\ 0 \\ +10 \\ 0 \\ 0 \\ \end{array}$	0.3815 0.3951 0.3987 0.3976 0.394 0.3926 0.3728 0.3728 0.3416 0.3939 0.3726 0.3349 0.3108 0.3024 0.394 0.3905	0.5326 0.5464 0.5558 0.4798 0.4743 0.4696 0.4687 0.4687 0.4642 0.6308 0.6203 0.6146 0.6041 0.5968	417.787 388.933 322.461 532.097 515.487 501.177 408.982 398.818 271.028 267.199 255.416 251.385	151.178 142.149 126.996 183.68 175.707 169.712 156.797 148.627 138.891 135.992 129.626 126.415	199.87 189.862 179.872 219.776 209.801 199.817 189.858 189.789 199.898 199.91 199.934 199.945
A	$ \begin{array}{r} 100 \\ 90 \\ 80 \\ 120 \\ 110 \\ 100 \\ 90 \\ 80 \\ 60 \\ 55 \\ 50 \\ 45 \\ 40 \\ 0.6 \\ 0.55 \\ 0.5 \\ 0.5 \\ 0.45 \\ 0.4 \\ 0.48 \\ \end{array} $	$\begin{array}{c} 0 \\ -10 \\ -20 \\ +20 \\ +10 \\ 0 \\ -10 \\ -20 \\ +20 \\ +10 \\ 0 \\ -10 \\ -20 \\ +20 \\ +10 \\ 0 \\ +10 \\ 0 \\ 0 \\ \end{array}$	0.3815 0.3951 0.3987 0.3976 0.394 0.3926 0.3728 0.3728 0.3416 0.3939 0.3726 0.3349 0.3108 0.3024 0.394 0.3905	0.5326 0.5464 0.5558 0.4798 0.4743 0.4696 0.4687 0.4687 0.4642 0.6308 0.6203 0.6146 0.6041 0.5968	388.933 322.461 532.097 515.487 501.177 408.982 398.818 271.028 267.199 255.416 251.385	151.178 142.149 126.996 183.68 175.707 169.712 156.797 148.627 138.891 135.992 129.626 126.415	189.862 179.872 219.776 209.801 199.817 189.858 189.789 199.898 199.91 199.934 199.945
A	80 120 110 90 80 60 55 50 45 40 0.6 0.55 0.5 0.45 0.4 0.48	$\begin{array}{c} -20 \\ +20 \\ +10 \\ 0 \\ -10 \\ -20 \\ +20 \\ +10 \\ 0 \\ -10 \\ -20 \\ +20 \\ +10 \\ 0 \\ 0 \\ \end{array}$	0.3951 0.3987 0.3976 0.394 0.3926 0.3728 0.3416 0.3939 0.3726 0.3349 0.3108 0.3024 0.394 0.3905	0.5558 0.4798 0.4743 0.4696 0.4687 0.4642 0.6308 0.6203 0.6146 0.6041 0.5968	322.461 532.097 515.487 501.177 408.982 398.818 271.028 267.199 255.416 251.385	126.996 183.68 175.707 169.712 156.797 148.627 138.891 135.992 129.626 126.415	179.872 219.776 209.801 199.817 189.858 189.789 199.898 199.91 199.934 199.945
A	$ \begin{array}{c} 120\\ 110\\ 90\\ 80\\ 60\\ 55\\ 50\\ 45\\ 40\\ 0.6\\ 0.55\\ 0.5\\ 0.45\\ 0.45\\ 0.4\\ 0.48\\ \end{array} $	$ \begin{array}{r} +20 \\ +10 \\ 0 \\ -10 \\ -20 \\ +20 \\ +10 \\ 0 \\ -10 \\ -20 \\ +20 \\ +10 \\ 0 \\ 0 \\ \end{array} $	0.3987 0.3976 0.394 0.3926 0.3728 0.3416 0.3939 0.3726 0.3349 0.3108 0.3024 0.394 0.3905	0.5558 0.4798 0.4743 0.4696 0.4687 0.4642 0.6308 0.6203 0.6146 0.6041 0.5968	322.461 532.097 515.487 501.177 408.982 398.818 271.028 267.199 255.416 251.385	126.996 183.68 175.707 169.712 156.797 148.627 138.891 135.992 129.626 126.415	219.776 209.801 199.817 189.858 189.789 199.898 199.91 199.934 199.945
A	$ \begin{array}{c} 110\\ 100\\ 90\\ 80\\ 60\\ 55\\ 50\\ 45\\ 40\\ 0.6\\ 0.55\\ 0.5\\ 0.45\\ 0.45\\ 0.4\\ 0.48\\ \end{array} $	+10 0 -10 -20 +20 +10 0 -10 -20 +20 +10 0	0.3976 0.394 0.3926 0.3728 0.3416 0.3939 0.3726 0.3349 0.3726 0.3349 0.3108 0.3024 0.394 0.3905	$\begin{array}{c} 0.4798\\ 0.4743\\ 0.4696\\ 0.4687\\ 0.4687\\ 0.4642\\ 0.6308\\ 0.6203\\ 0.6146\\ 0.6041\\ 0.5968\\ \end{array}$	515.487 501.177 408.982 398.818 271.028 267.199 255.416 251.385	183.68 175.707 169.712 156.797 148.627 138.891 135.992 129.626 126.415	219.776 209.801 199.817 189.858 189.789 199.898 199.91 199.934 199.945
A	$ \begin{array}{c} 110\\ 100\\ 90\\ 80\\ 60\\ 55\\ 50\\ 45\\ 40\\ 0.6\\ 0.55\\ 0.5\\ 0.45\\ 0.45\\ 0.4\\ 0.48\\ \end{array} $	+10 0 -10 -20 +20 +10 0 -10 -20 +20 +10 0	0.394 0.3926 0.3728 0.3416 0.3939 0.3726 0.3349 0.3108 0.3024 0.394 0.3905	0.4743 0.4696 0.4687 0.4642 0.6308 0.6203 0.6146 0.6041 0.5968	515.487 501.177 408.982 398.818 271.028 267.199 255.416 251.385	175.707 169.712 156.797 148.627 138.891 135.992 129.626 126.415	209.801 199.817 189.858 189.789 199.898 199.91 199.934 199.945
М	$ \begin{array}{r} 100\\ 90\\ 80\\ 60\\ 55\\ 50\\ 45\\ 40\\ 0.6\\ 0.55\\ 0.5\\ 0.45\\ 0.45\\ 0.4\\ 0.48\\ \end{array} $	0 -10 -20 +20 +10 0 -10 -20 +20 +10 0	0.3926 0.3728 0.3416 0.3939 0.3726 0.3349 0.3108 0.3024 0.3024 0.394 0.3905	0.4696 0.4687 0.4642 0.6308 0.6203 0.6146 0.6041 0.5968	501.177 408.982 398.818 271.028 267.199 255.416 251.385	169.712 156.797 148.627 138.891 135.992 129.626 126.415	199.817 189.858 189.789 199.898 199.91 199.934 199.945
М	90 80 60 55 50 45 40 0.6 0.55 0.5 0.45 0.4 0.48	-10 -20 +20 +10 0 -10 -20 +20 +10 0	0.3728 0.3416 0.3939 0.3726 0.3349 0.3108 0.3024 0.394 0.3905	0.4687 0.4642 0.6308 0.6203 0.6146 0.6041 0.5968	408.982 398.818 271.028 267.199 255.416 251.385	156.797 148.627 138.891 135.992 129.626 126.415	189.858 189.789 199.898 199.91 199.934 199.945
М	80 60 55 50 45 40 0.6 0.55 0.5 0.45 0.4 0.48	-20 +20 +10 0 -10 -20 +20 +10 0	0.3416 0.3939 0.3726 0.3349 0.3108 0.3024 0.394 0.3905	0.4642 0.6308 0.6203 0.6146 0.6041 0.5968	398.818 271.028 267.199 255.416 251.385	148.627 138.891 135.992 129.626 126.415	189.789 199.898 199.91 199.934 199.945
М	60 55 50 45 40 0.6 0.55 0.5 0.45 0.4 0.48	+20 +10 0 -10 -20 +20 +10 0	0.3939 0.3726 0.3349 0.3108 0.3024 0.394 0.3905	0.6308 0.6203 0.6146 0.6041 0.5968	271.028 267.199 255.416 251.385	138.891 135.992 129.626 126.415	199.898 199.91 199.934 199.945
М	55 50 45 40 0.6 0.55 0.5 0.45 0.4 0.48	+10 0 -10 -20 +20 +10 0	0.3726 0.3349 0.3108 0.3024 0.394 0.3905	0.6203 0.6146 0.6041 0.5968	267.199 255.416 251.385	135.992 129.626 126.415	199.91 199.934 199.945
	50 45 40 0.6 0.55 0.5 0.45 0.4 0.48	0 -10 -20 +20 +10 0	0.3349 0.3108 0.3024 0.394 0.3905	0.6146 0.6041 0.5968	255.416 251.385	129.626 126.415	199.934 199.945
	45 40 0.6 0.55 0.5 0.45 0.4 0.48	-10 -20 +20 +10 0	0.3108 0.3024 0.394 0.3905	0.6041 0.5968	251.385	126.415	199.945
	40 0.6 0.55 0.5 0.45 0.4 0.48	-20 +20 +10 0	0.3024 0.394 0.3905	0.5968			
	0.6 0.55 0.5 0.45 0.4 0.48	+20 +10 0	0.394 0.3905		247.017	175 672	199.948
	0.55 0.5 0.45 0.4 0.48	+10 0	0.3905	0.652	051 104	125.623	
<i>t</i> ₂	0.5 0.45 0.4 0.48	0		0 4 4 40	251.134	143.065	199.872
t ₂	0.45 0.4 0.48			0.6442	250.102	140.135	199.888
<i>t</i> ₂	0.4 0.48	-10	0.3666	0.6311	248.016	133.661	199.918
t ₂	0.48		0.3448	0.6254	239.399	126.572	199.943
t_2		-20	0.3321	0.5901	238.567	121.624	199.959
		+20	0.3684	0.5295	456.028	148.288	199.881
	0.44	+10	0.3726	0.5353	397.648	148.329	199.88
	0.4	0	0.3805	0.5396	341.843	149.568	199.874
	0.36	-10	0.3847	0.5451	283.619	149.679	199.872
	0.32	-20	0.3872	0.5516	228.066	149.686	199.871
<i>ÎC_{Hr}</i>	2.4	+20	0.348	0.5651	310.475	137.835	199.912
	2.2	+10	0.3549	0.5754	299.415	137.953	199.91
	2	0	0.3682	0.5911	285.082	138.706	199.905
	1.8	-10	0.3839	0.6142	264.511	138.968	199.9
	1.6	-20	0.3917	0.622	256.041	139.554	199.896
\widehat{IC}_{H_0}	4.8	+20	0.3965	0.5866	340.075	145.567	199.871
0	4.4	+10	0.3924	0.5696	335.495	147.335	199.872
	4	0	0.384	0.5442	333.16	149.663	199.873
	3.6	-10	0.3757	0.5313	327.115	149.873	199.875
	3.2	-20	0.3628	0.5126	319.867	149.972	199.879
ICs	14.4	+20	0.3784	0.5359	338.189	149.732	199.874
IC_S	13.2	+10	0.3734	0.52	357.968	151.435	199.872
						153.11	199.869
	12 10.8	0 -10	0.3687 0.3624	0.5053 0.4913	375.68 391.145	154.279	199.868
	9.6	-10	0.3568	0.4913	415.109	157.494	199.863
<i>•</i>							
\widehat{IC}_d	12	+20	0.2886	0.4986	348.947	133.439	199.936
	11	+10	0.3024	0.5108	346.59	134.977	199.929
	10	0	0.3176	0.5281	331.785	136.092	199.923
	9	-10	0.3262	0.5308	329.747	137.684	199.918
	8	-20	0.3428	0.5381	325.654	140.491	199.907
θ	0.024	+20	0.3985	0.6005	289.962	143.898	199.86
	0.022	+10	0.3956	0.5984	290.647	143.578	199.873
	0.02	0	0.3867	0.5953	299.51	142.494	199.903
	0.018	-10	0.3756	0.58	301.548	141.842	199.905
	0.016	-20	0.3734	0.5684	302.033	141.594	199.917
Ø	0.036	+20	0.3213	0.5659	291.871	130.792	199.934
	0.033	+10	0.327	0.5765	293.236	132.103	199.93
	0.03	0	0.3327	0.5796	296.559	133.685	199.925
	0.027	-10	0.3789	0.5826	298.656	142.19	199.893
	0.024	-20	0.3998	0.5859	300.648	146.439	199.876


Note: $\alpha^*=$ Parameters, $\beta^*=$ Values, $\gamma^*=$ % Changes

To understand the impact of different parameters, on the optimal cost given by the considered strategy. Affectability result is executed by changing (increasing and decreasing) 10 % in every parameter. The effect of the parameters is detailed below.

As the result of the above table,

- (i) Increases in the value of the parameter W then t_1 , *T* is decreased and $\widehat{\text{TC}}_{T_{neuB_1}}(t_2)$, *Z*, *Q* is increased.
- (ii) Increases in the value of the parameter δ then t_1 , T, $\widehat{\text{TC}}_{T_{neuBl}}(t_2)$, Z, Q is increased.
- (iii) Increases in the values of either of the parameters A, m then t_1 , T, $\widehat{\text{TC}}_{T_{neuB1}}(t_2)$, Z is increased and Q is decreased.
- (iv) Increases in the values of either of the parameters IC_{H_T} , \widehat{IC}_d , t_2 then t_1 , T, Z is decreased and Q, $\widehat{TC}_{T_{neuB_1}}(t_2)$ is increased.
- (v) Increases in the values of the parameter \widehat{IC}_{H_0} then t_1 , T, $\widehat{TC}_{T_{neuB_1}}(t_2)$ is increased and Q, Z is decreased.
- (vi) Increases in the values of the parameter IC_s then t_1 , T, Q is decreased and $\widehat{TC}_{T_{neuB1}}(t_2)$, Z is increased.
- (vii) Increases in the values of the parameter θ then t_1 , T, Z is increased and $\widehat{\text{TC}}_{T_{neuBl}}(t_2)$, Q is decreased
- (viii) Increases in the values of the parameter \emptyset then t_1 , T, $\widehat{\text{TC}}_{T_{neuBl}}(t_2)$, Z is decreased and Q is increased.

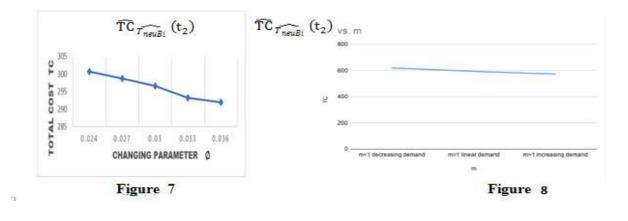

Changing the parameter values and different total cost of power demand pattern

Figure 4

Figure 5

CONCLUSON

In this article, two-warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand pattern. Because of the various preservation conditions, OW and RW have trapezoidal bipolar neutrosophic parameters holding costs and exacerbate costs. The impact of demand pattern index optimal policy is dependent on whether the request sample index is lower than, equal to, or more than 1.0, according to our findings. Furthermore, when the request sample index is $0 \le m \le 1$, a similar structure emerges. However, when m = 1, a different structure emerges. However, when m > 1, The proposed demonstrate joins some practical highlights that are probably going to be associated for certain sorts of stock. Likewise, this model can be embraced in the stock control of retail business like food ventures, convenient garments household goods, car accessories, electronic items etc. increases quantity and decreases the cost of total amount. In future this paper can be extended in the Nero fuzzy environment and can be elongate the EPQ model is considering variable worsen with index of power demand and shortages not allow.

References

- O. Adaraniwon and M. Bin Omar, "An inventory model for delayed deteriorating items with power demand considering shortages and lost sales," *J. Intell. Fuzzy Syst.*, vol. 36, no. 6, pp. 5397–5408, 2019.
- [2] K. Bhunia, C. K. Jaggi, A. Sharma, and R. Sharma, "A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging," *Appl. Math. Comput.*, vol. 232, pp. 1125–1137, 2014.
- [3] B. Sarkar, S.Saren, and H. M. Wee, "An inventory model with variable demand, component cost and selling price for deteriorating items," *Econ. Model.*, vol. 30, no. 1, pp. 306–310, Jan. 2013, doi: 10.1016/j.econmod.2012.09.002.
- [4] Chakraborty.A Said Broumi Prem Kumar Singh, Broumi.S, Kumar Singh.P, and Chakraborty.A, "Some properties of Pentagonal Neutrosophic Numbers and its Applications in Transportation Problem Environment," 2019.
- [5] Chakraborty, A.; Mondal, S. P.; Ahmadian, A.; Senu, N.; Alam, S.; and Salahshour, S.; Different Forms of Triangular Neutrosophic Numbers, De-Neutrosophication Techniques, and their Applications, Symmetry, vol 10, 327, 2018.; doi:10.3390/sym10080327.
- [6] Chakraborty, A.; Mondal, S. P.;Mahata, A.; Alam, S.; Different linear and non-linear form of Trapezoidal Neutrosophic Numbers, De-Neutrosophication Techniques and its Application in time cost optimization technique, sequencing problem; RAIRO Operation Research, vol 11, 327, 2018. doi:10.1051/ro/2019090.
- [7] Chakraborty. A., Sankar P. Mondal, Shariful A. Ali A., Norazak S., Debashis De. and Soheil S., The Pentagonal Fuzzy Number: Its Different Representations, Properties, Ranking, Defuzzification and Application in Game Problems, Symmetry, vol 10, pp 248, 2018.
- [8] Chakraborty, S. Broumi, P.K Singh,"Some properties of Pentagonal Neutrosophic Numbers and its Applications in Transportation Problem Environment," Neutrosophic Sets and Systems, vol.28, pp.200-215,2019.
- [9] Chakraborty, S. Mondal, S. Broumi, "De-Neutrosophication technique of pentagonal neutrosophic number and application in minimal spanning tree," Neutrosophic Sets and Systems, vol. 29, pp. 1-18,2019.doi: 10.5281/zenodo.3514383.
- [10] Chakraborty, A. "A New Score Function of Pentagonal Neutrosophic Number and its Application in Networking Problem," International Journal of Neutrosophic Science, Volume 1, Issue 1, pp. 40-51, 2020.
- [11] K. Jaggi, A. Khanna, and P. Verma, "Two-warehouse partial backlogging inventory model for deteriorating items with linear trend in demand under inflationary conditions," *Int. J. Syst. Sci.*, vol. 42, no. 7, pp. 1185–1196, 2011.

C.Sugapriya, V.Lakshmi, D. Nagarajan S. Broumi, Two-warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand pattern

- [12] K. Jaggi, L. E. Cárdenas-Barrón, S. Tiwari, and A. A. Shafi, "Two-warehouse inventory model for deteriorating items with imperfect quality under the conditions of permissible delay in payments," *Sci. Iran.*, vol. 24, no. 1, pp. 390–412, 2017.
- [13] Nagarajan, M.Lathamaheswari, S. Broumi, J. Kavikumar: Dombi Interval Valued Neutrosophic Graph and its Role in Traffic Control Management, Neutrosophic Sets and Systems, vol. 24, 2019, pp. 114-133. DOI: 10.5281/zenodo.2593948, Link
- [14] F.A. Smarandache, F. A unifying field in logics neutrosophy: neutrosophic probability, set and logic. American Research Press, Rehoboth. 1998.
- [15] Ganesan, K., Annamalai, U. & Deivanayagampillai, N. An integrated new threshold FCMs Markov chain based forecasting model for analyzing the power of stock trading trend. *Financ Innov* 5, 35 (2019). https://doi.org/10.1186/s40854-019-0150-4.
- [16] J. Kavikumar, D. Nagarajan, Said Broumi, F. Smarandache, M. Lathamaheswari, Nur Ain Ebas: Neutrosophic General Finite Automata, Neutrosophic Sets and Systems, vol. 27, 2019, pp. 17-36. DOI: 10.5281/zenodo.3275184.
- [17] J. Sicilia, J. Febles-Acosta, and M. GonzÁlez-De La Rosa, "Deterministic inventory systems with power demand pattern," *Asia-Pacific J. Oper. Res.*, vol. 29, no. 5, pp. 1–28, 2012.
- [18] M. Abdel-Basset, A.Gamal, L.H. Son, A.Smarandache, A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Applied Sciences 10(4), (2020), 1202.
- [19] M. Lathamaheswari, D.Nagarajan ,A.udayakumar ,J.kavikumar ,A Review on Type-2 in biomedicine, Indian journal of public health & development, 2018vol 9,(12) PP 341-345.
- [20] R. B. Krishnaraj and K. Ramasamy, "An Inventory Model with Power Demand Pattern, Weibull Distribution Worsen and without Shortages," *Bull. Soc. Math. Serv. Stand.*, vol. 2, pp. 33–37, 2012.
- [21] S. Broumi, D. Nagarajan, A. Bakali, M. Talea, F. Smarandache, M.Lathamaheswari, J. Kavikumar: Implementation of Neutrosophic Function Memberships Using MATLAB Program, Neutrosophic Sets and Systems, vol. 27, 2019, pp. 44-52. DOI: 10.5281/zenodo.3275355.
- [22] S. Broumi, M. Lathamaheswari, A. Bakali, M. Talea, F. Smarandache, D. Nagarajan, Kavikumarand Guennoun Asmae, Analyzing Age Group and Time of the Day Using Interval Valued Neutrosophic Sets vol. 32, 2020, pp. 361-371. DOI: 10.5281/zenodo.3723182
- [23] S. Kar, A. K. Bhunia, and M. Maiti, "Deterministic inventory model with two levels of storage, a linear trend in demand and a fixed time horizon," *Comput. Oper. Res.*, vol. 28, no. 13, pp. 1315–1331, 2001.
- [24] S. Mishra, L. K. Raju, U. K. Misra, and G. Misra, "462 A Study of EOQ Model with Power Demand of Deteriorating Items under the Influence of Inflation," *Gen. Math. Notes*, vol. 10, no. 1, pp. 41–50, 2012.
- [25] S. Pradhan, R. Shial, and P. K. Tripathy, "An inventory model with power demand pattern under inflation," *Investig. Operacional*, vol. 37, no. 3, pp. 281–291, 2016.
- [26] S. Te Jung, J. S. J. Lin, and J. P. C. Chuang, "A note on 'an EOQ model for items with Weibull distributed Worsen, shortages and power demand pattern," Int. J. Inf. Manag. Sci., vol. 19, no. 4, pp. 667–672, 2008.
- [27] S.Gomathy, D. Nagarajan, S. Broumi, M.Lathamaheswari, Plithogenic sets and their application in decision making, Neutrosophic Sets and Systems, vol. 38, 2020, pp. 453-469. DOI: 10.5281/zenodo.4300565
- [28] Saqlain, A. Hamza, and S. Farooq, "Linear and Non-Linear Octagonal Neutrosophic Numbers: Its Representation, α-Cut and Applications," *International Journal of Neutrosophic Science*, vol. 3, no. 1, pp. 29–43, 2020.
- [29] U.P.Wen, and Y.H.Chen, "Dynamic pricing model on the internet market", *International Journal of Operations Research*, 2(2) (2005) 72-80.
- [30] W. A. Mandal and S. Islam, "A Fuzzy Two-Warehouse Inventory Model for Power Demand Pattern, Shortages with Partially Backlogged," Int. J. Adv. Eng. Nano Technol., no. 8, pp. 2347– 6389, 2015.

- [31] D. Nagarajan, S. Broumi, F. Smarandache, J. Kavikumar, Analysis of Neutrosophic Multiple Regression, Neutrosophic Sets and Systems, vol. 43, 2021, pp. 44-53. DOI: 10.5281/zenodo.4914804.
- [32] Said Broumi, Malayalan Lathamahewari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohammed, Florentin Smarandache and Assia Bakali, A new distance measure for trapezoidal fuzzy neutrosophi numbers based on centroid, Neutrosophic Sets and Systems, vol. 35, 2020, pp. 478-502. DOI: 10.5281/zenodo.3951706.

Received: Nov 20, 2021. Accepted: Feb 6, 2022