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Abstract. In this paper, the concept of neutrosophic µ−topological spaces is introduced. We define and study

the properties of neutrosophic µ−open sets, µ−closed sets, µ−interior and µ−closure. The set of all generalize

neutrosophic pre-closed sets GNPC(τ) and the set of all neutrosophic α-open sets in a neutrosophic topological

space (X, τ) can be considered as examples of generalized neutrosophic µ−topological spaces. The concept

of neutrosophic µ − continuity is defined and we studied their properties. We define and study the proper-

ties of neutrosophic µ − compact, µ-Lindelöf and µ-countably compact spaces. We prove that for a countable

neutrosophic µ-space X: µ-countably compactness and µ-compactness are equivalent. We give an example of

a neutrosophic µ-space X which has a neutrosophic countable µ-base but it is not neutrosophic µ-countably

compact .
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trosophic pre-closed sets; neutrosophic α-open sets; neutrosophic µ − continuity; neutrosophic

µ− compact; neutrosophic µ-Lindelöf; neutrosophic µ-countably compact space.

—————————————————————————————————————————-

1. Introduction

The fuzzy set was introduced by Zadeh [24] in 1965, where each element had a degree

of membership. The intuitionstic fuzzy set (Ifs for short) on a universe X was introduced

by K. Atanassov [10–12] in 1983 as a generalization of fuzzy set, where besides the degree

of membership we have the degree of non- membership of each element. The concept of

neutrosophic sets first introduced by Smarandache [19,22] as a generalization of intuitionistic

fuzzy sets, where we have the degree of membership, the degree of indeterminacy and the degree

of non-membership of each element in X. After the introduction of the neutrosophic sets,

neutrosophic set operations have been investigated. Many researchers have studied topology

on neutrosophic sets, such as Smarandache [22], Lupianez [15, 16] and Salama [17]. The

neutrosophic interior, neutrosophic closure, neutrosophic exterior, neutrosophic boundary and

neutrosophic subspace can be found in [20]. Neutrosophy has many applications specially
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in decision making, for more details about new trends of neutrosophic applications one can

consult [1], [2], [3] and [4].

Definition 1.1. [19]: A neutrosophic set A on the universe of discourse X is defined as

A = {〈x, µA(x), σA(x), νA(x)〉;x ∈ X} where µ, σ, ν : X →]−0, 1+[ and −0 ≤ µ(x) + σ(x) +

ν(x) ≤ 3+.

The class of all neutrosophic set on X will be denoted by N (X). We will exhibit the

basic neutrosophic operations definitions (union, intersection and complement. Since there

are different definitions of neutrosophic operations, we will organize the existing definitions

into two types, in each type these operation will be consistent and functional.

Definition 1.2. [18][Neutrosophic sets operations of Type.I ] Let A,Aα, B ∈ N (X) such that

α ∈ ∆. Then we define the neutrsophic:

(1) (Inclusion): A v B If µA(x) ≤ µB(x), σA(x) ≥ σB(x) and νA(x) ≥ νB(x).

(2) (Equality): A = B if and only if A v B and B v A.

(3) (Intersection) u
α∈∆

Aα(x) = {〈x, ∧
α∈∆

µAα(x), ∨
α∈∆

σA(x), ∨
α∈∆

νA(x)〉;x ∈ X}.
(4) (Union) t

α∈∆
Aα(x) = {〈x, ∨

α∈∆
µAα(x), ∧

α∈∆
σA(x), ∧

α∈∆
νA(x)〉;x ∈ X}.

(5) (Complement) Ac = {〈x, νA(x), 1− σA(x), µA(x)〉;x ∈ X}
(6) (Universal set) 1X = {〈x, 1, 0, 0〉;x ∈ X}; will be called the neutrosophic universal set.

(7) (Empty set) 0X = {〈x, 0, 1, 1〉;x ∈ X}; will be called the neutrosophic empty set.

Definition 1.3. [18][Neutrosophic sets operations of Type.II ] Let A,Aα, B ∈ N (X) for every

α ∈ ∆. Then we define the neutrsophic:

(1) (Inclusion): A v B If µA(x) ≤ µB(x), σA(x) ≤ σB(x) and νA(x) ≥ νB(x).

(2) (Equality): A = B if and only if A v B and B v A.

(3) (Intersection) u
α∈∆

Aα(x) = {〈x, ∧
α∈∆

µAα(x), ∧
α∈∆

σA(x), ∨
α∈∆

νA(x)〉;x ∈ X}.
(4) (Union) t

α∈∆
Aα(x) = {〈x, ∨

α∈∆
µAα(x), ∨

α∈∆
σA(x), ∧

α∈∆
νA(x)〉;x ∈ X}.

(5) (Complement) Ac = {〈x, νA(x), 1− σA(x), µA(x)〉;x ∈ X}
(6) (Universal set) 1X = {〈x, 1, 1, 0〉;x ∈ X}; will be called the neutrosophic universal set.

(7) (Empty set) 0X = {〈x, 0, 0, 1〉;x ∈ X}; will be called the neutrosophic empty set.

Proposition 1.4. [18] For any A,B,C ∈ N (X) we have:

(1) A uA = A, A tA = A, A u 0X = 0X , A t 0X = A, A u 1X = A, A t 1X = 1X .

(2) A u (B u C) = (A uB) u C and A t (B t C) = (A tB) t C.

(3) A u ( t
α∈∆

Aα) = t
α∈∆

(A uAα).

(4) A t ( u
α∈∆

Aα) = u
α∈∆

(A tAα).

(5) (Ac)c = A.
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(6) De Morgan’s law:

(a) ( u
α∈∆

Aα)c = t
α∈∆

Acα.

(b) ( t
α∈∆

Aα)c = u
α∈∆

Acα.

.

Definition 1.5. [18] [Neutrosophic Topology ] Let τ ⊆ N (X). Then τ is called a neutrosophic

topology on X if

(1) 0X , 1X ∈ τ .

(2) The union of any number of neutrosophic sets in τ belongs to τ ,

(3) The intersection of two neutrosophic sets in τ belongs to τ .

The pair (X, τ) is called a neutrosophic topological space over X. Moreover, the members

of τ are said to be neutrosophic open sets in X. For any A ∈ N (X), If Ac ∈ τ , then A is said

to be neutrosophic closed set in X.

Definition 1.6. [20][Neutrosophic interior ] Let (X, τ) be a neutrosophic topological space

over X and A ∈ N (X). Then, the neutrosophic interior of A, denoted by int(A) is the union

of all neutrosophic open subsets of A.

Clearly that int(A) is the biggest neutrosophic open set over X which containing A.

Theorem 1.7. [20] Let (X, τ) be a neutrosophic topological space over X and A,B ∈ N (X).

Then

(1) int(1X) = 1X , int(0X) = 0X and int(A) v A.

(2) int(int(A)) = int(A).

(3) A v B implies int(A) v int(B).

(4) int(A uB) = int(A) u int(B).

Definition 1.8. [20][Neutrosophic closure] Let (X, τ) be a neutrosophic topological space over

X and A ∈ N (X). Then, the neutrosophic closure of A, denoted by cl(A) is the intersection

of all neutrosophic closed super sets of A.

Clearly, cl(A) is the smallest neutrosophic closed set over X which contains A.

Theorem 1.9. [20] Let (X, τ) be a neutrosophic topological space over X and A,B ∈ N (X).

Then,

(1) cl(1X) = 1X , cl(0X) = 0X and A v cl(A).

(2) cl(cl(A)) = cl(A).

(3) A v B implies cl(A) v cl(B).

(4) cl(A tB) = cl(A) t cl(B).
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Definition 1.10. [5][Neutrosophic pre-open and pre-closed ] Let (X, τ) be a neutrosophic topo-

logical space over X and A ∈ N (X). Then A is said to be neutrosophic pre-open set (NPOS),

if A ⊆ Int(Cl(A)). The complement of a neutrosophic pre-open set is called neutrosophi

pre-closed set (NPCS).

Definition 1.11. [6][Neutrosophic α-open] Let (X, τ) be a neutrosophic topological space

over X and A ∈ N (X). A is said to be an α-open set, if A ⊆ Int(Cl(Int(A)). The set of all

neutrosophic α-open sets in (X, τ) will be denoted by Nα−O(τ).

Definition 1.12. [5][Neutrosophic pre-closure] Let (X, τ) be a neutrosophic topological space

over X and A ∈ N (X). The neutrosophic pre-closure of A, denoted by pNCL(A) is the

intersection of all neutrosophic pre-closed super sets of A.

Definition 1.13. [5][Generalized Neutrosophic pre-closed sets] Let (X, τ) be a neutrosophic

topological space over X and A ∈ N (X). A is said to be a neutrosophic generalized pre-closed

set (GNPCS) in (X, τ) if pNCL(A) ⊆ B whenever A ⊆ B and B is neutrosophic open. The

set of all generalized neutrosophic pre-closed sets in (X, τ) will be denoted by GNPC(τ).

Theorem 1.14. [5, 6] Let (X, τ) be a neutrosophic topological space over X. Then

(1) The union of any collection of α-open sets is an α-open set.

(2) The union of any collection of GNPCs is GNPC.

The following is an improvement of a definition in [14] makes it suitable for type.I and

type.II neutrosophic sets.

Definition 1.15. Let X and Y be two nonempty sets and Ω : X → Y be any function. Then

for any netrosophic sets A ∈ N (X) and B ∈ N (Y ) we have:

(1) The Type.I(Type.II) pre-image of B under Ω, denoted by Ω−1(B), is the Neutrosophic

set in X defined by

Ω−1(B) = {〈x, µB(Ω(x)), σB(Ω(x)), νB(Ω(x))〉;x ∈ X}

(2) The Type.I (Type.II) image of A under Ω, denoted by Ω(A), is the Neutrosophic set

in Y defined by

Ω(A) = {〈y,Ω(µA)(y),Ω(σA)(y), (1− Ω(1− νA))(y)〉; y ∈ Y } where

(µA)(y) =


sup

x∈Ω−1(y)

µA(x) if Ω−1(y) 6= ∅

0 if Ω−1(y) = ∅

(σA)(y) =


inf

x∈Ω−1(y)
σA(x) if Ω−1(y) 6= ∅

1 if Ω−1(y) = ∅
(Type.I)
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(σA)(y) =


sup

x∈Ω−1(y)

σA(x) if Ω−1(y) 6= ∅

0 if Ω−1(y) = ∅
(Type.II)

(1− Ω(1− νA))(y) =


inf

x∈Ω−1(y)
νA(x) if Ω−1(y) 6= ∅

1 if Ω−1(y) = ∅

For the sake of simplicity we write Ω− (νA instead of (1− Ω(1− νA)).

Note that the only difference between Type.I and Type.II images lies in the definition of the

image of σ and this is important to make sure both Type.I and Type.II neutrosophic functions

satisfy the following proposition.

Proposition 1.16. [14] Let X and Y be two nonempty sets and Ω : X → Y be any function.

Let A,Aα ∈ N (X) and B,Bα ∈ N (Y ). Then we have:

(1) A1 v A2 ⇒ Ω(A1) v Ω(A2).

(2) B1 v B2 ⇒ Ω−1(B1) v Ω−1(B2).

(3) A v Ω−1(Ω(A)) and equality holds if Ω is injective.

(4) Ω(Ω−1(A)) v A and equality holds if Ω is surjective.

(5) Ω( t
α∈∆

Aα) = t
α∈∆

Ω(Aα).

(6) Ω( u
α∈∆

Aα) v u
α∈∆

Ω(Aα) and equality holds when Ω is injective.

(7) Ω−1( t
α∈∆

Bα) = t
α∈∆

Ω−1(Bα).

(8) Ω−1( u
α∈∆

Bα) = u
α∈∆

Ω−1(Bα).

(9) Ω−1(1N ) = 1N , Ω−1(0N ) = 0N .

(10) Ω(1N ) = 1N and Ω(0N ) = 0N , whenever Ω is surjective.

Definition 1.17. Let X be a nonempty set and 0 < α, β, γ < 1. Then a neutrosophic set

A ∈ N (X) is called:

(1) A neutrosophic point of Type.I if and only if there exists x ∈ X such that A =

{〈x, α, β, γ〉} ∪ {〈x́, 0, 1, 1〉; x́ 6= x}.
(2) A neutrosophic point of Type.II if A = {〈x, α, β, γ〉}∪{〈x́, 0, 0, 1〉; x́ 6= x}. Neutrosophic

points will be denoted by xα,β,γ .

Now, we will exhibit some definitions and properties of µ-topological spaces. Á. Császár [13]

introduced the notion of Generalized Topological Space (GTS). He also introduced the notion of
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(µ1;µ2)-continuous function on GTS’s. µ-compactness introduced in [23] and [21]. Countbaly

µ−paracompact introduced and studied in [8]. Strongly Generalized neighborhood systems

introduced and studies in [9].

Let X be a nonempty set. A collection µ of subsets of X is called a generalized topology on

X and the pair (X,µ) is called a generalized topological space, if µ satisfies the following two

conditions:

(1) ∅ ∈ µ.

(2) Any union of elements of µ belongs to µ.

Let β ⊆ exp(X) and ∅ ∈ β. Then β is called a µ − base for µ if µ = {
⋃
β′;β′ ⊂ β},We also

say µ is generated by β. If β is countable, then it said a countable µ − base. A generalized

topological space (X,µ) is said to be strong if X ∈ µ. A subset B of X is called µ-open (resp.

µ-closed) if B ∈ µ (resp. if X − B ∈ µ). The set of all µ-open sets containing a point x ∈ X
will be denoted by µx (i.e. µx = {U ∈ µ;x ∈ U}).

Definition 1.18. Let (X,µ1) and (X,µ2) be two µ-topological space. A function f : (X,µ1)→
(X,µ2) is said to be (µ1, µ2)− continuous if and only if f−1(V ) ∈ µ1 whenever V ∈ µ2.

Definition 1.19. Let X be a generalized topological space and let F be a collection of subsets

of X. Then F is said to be:

(1) A µ-cover of X if X =
⋃
{U ;U ∈ F}.

(2) A µ-open cover of X if F is a µ-cover of X and U ∈ µ for every U ∈ F.

Definition 1.20. Let X be a generalized topological space and let F and C be µ-covers of X.

Then C is said to be a µ-subcover of F, if C ⊆ F.

Definition 1.21. A generalized topological space X is said to be µ-compact (resp. µ-Lindelöf)

if and only if every µ-open cover of X has a finite (resp. countable) µ-subcover.

The following theorem shows some differences between topological spaces and µ−topological

spaces.

Theorem 1.22.

(1) In µ−topological spaces Intµ(A∩B) = Intµ(A)∩Intµ(B) is not satisfied where Intµ(A)

stands for interior of A.

(2) In µ−topological spaces Clµ(A ∪ B) = Clµ(A) ∪ Clµ(B) is not satisfied where Clµ(A)

stands for the closure of A in µ.
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(3) [7] There exists a µ-normal space with a countable µ-base which has a µ-open cover

with no µ-open point-finite refinement.

2. Neutrosophic µ-Topological Spaces

In the literature of generlaized topological spaces the symbol µ is used to refer the

µ−topology and in neutrosophic sets it is used to refer the membership function µ, so, to

avoid ambiguity, we will use the underlined µ to refer the µ-topology and keep µ for the

membership function in neutrosophic sets.

Definition 2.1 (Neutrosophic µ-Topology). Let µ ⊆ N (X). Then µ is called a neutrosophic

µ-topology on X if

(1) 0X ∈ µ.

(2) The union of any number of neutrosophic sets in µ belongs to µ.

The pair (X,µ) is called a neutrosophic µ-topological space over X. The members of µ are

said to be neutrosophic µ-open sets in X. If 1X ∈ µ, then (X,µ) is called a strong neutrosophic

µ-topological space. For any A ∈ N (X), if Ac ∈ µ, then A is said to be neutrosophic µ-closed

set in X. Since their are two types of neutrosophic sets, a neutrosophic µ-topology is said

to be Type.I(Type.II) neutrosophic topology if its elements are treated as Type.I(Type.II)

neutrosophic sets.

Example 2.2. Let X = {a, b, c} and A,B,C, Ć ∈ N (X) with:

A = {〈a, 0.3, 0.5, 0.7〉, 〈b, 0.3, 0.4, 1〉}, B = {〈a, 0.4, 0.7, 0.1〉, 〈b, 0.2, 0.6, 0.9〉}, C =

{〈a, 0.4, 0.5, 0.1〉, 〈b, 0.3, 0.4, 0.9〉}, Ć = {〈a, 0.4, 0.7, 0.1〉, 〈b, 0.3, 0.6, 0.9〉}. Then µ =

{0X , A,B,C} is a Type.I neutrosophic µ − topology and µ́ = {1X , 0X , A,B, Ć} is a Type.II

strong neutrosophic mu − topology. Neither µ nor µ́ is neutrosophic topology. Note that ,in

(X,µ), A u B = {〈a, 0.3, 0.7, 0.7〉, 〈b, 0.2, 0.6, 1〉} is not neutrosophic mu-open (here we apply

type.I intersection). And in (X, µ́) we have A u B = {〈a, 0.3, 0.5, 0.7〉, 〈b, 0.2, 0.4, 1〉} is not

neutrosophic mu-open (here we apply type.II intersection).

Most examples and theorems will be considered for Type.I neutrosophic sets, since the two

types of neutrosophic sets have the same properties.

Definition 2.3 (Neutrosophic µ-interior). Let (X,µ) be a neutrosophic topological space over

X and A ∈ N (X). Then, the neutrosophic µ-interior of A, denoted by intµ(A) is the union

of all neutrosophic µ-open subsets of A. Clearly intµ(A) is the biggest neutrosophic µ-open

set over X contained in A.

Theorem 2.4. Let (X,µ) be a neutrosophic µ-topological space over X and A,B ∈ N (X).

Then,
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(1) intµ(0X) = 0X and intµ(A) v A.

(2) intµ(1X) = 1X whenever µ is a strong µ−topology.

(3) intµ(intµ(A)) = intµ(A).

(4) A v B implies intµ(A) v intµ(B).

(5) intµ(A) = A if and only if A ∈ µ.

(6) If A v B, then intµ(A) v intµ(B).

(7) intµ(A uB) v intµ(A) u intµ(B). Equality does not hold, see Example2.5.

Proof. We will establish a proof for (4) and (7).

(4) Since A v B, {U ∈ µ;U v A} ⊆ {U ∈ µ;U v B}. So that µintµ(A)(x) = sup{µU (x);U ∈
µ,U v A} ≤ sup{µU (x);U ∈ µ,U v B} = µintµ(B)(x), σintµ(A)(x) = inf{σU (x);U ∈ µ,U v
A} ≥ inf{σU (x);U ∈ µ,U v B} = σintµ(B)(x), and νintµ(A)(x) = inf{νU (x);U ∈ µ,U v A} ≥
inf{νU (x);U ∈ µ,U v B} = νintµ(B)(x). Which means intµ(A) v intµ(B).

(7) Since A u B v A and B, intµ(A u B) v intµ(A) and intµ(A u B) v intµ(B) (by (4)), so

we have intµ(A uB) v intµ(A) u intµ(B).

Example 2.5. Consider (X,µ) as in Example2.2. Note that:

(1) intµ(1X) = 0X tA tB t C = C 6= 1X .

(2) Since A u B = {〈a, 0.3, 0.7, 0.7〉, 〈b, 0.2, 0.6, 1〉} and there is no neutrosophic µ − open
set in µ contained in AuB except 0X , we have intµ(AuB) = 0X , and since A,B ∈ µ,

intµ(A) u intµ(B) = A uB 6= intµ(A uB) = 0X .

Definition 2.6 (Neutrosophic µ-closure). Let (X,µ) be a neutrosophic µ-topological space

over X and A ∈ N (X). Then, the neutrosophic µ-closure of A, denoted by clµ(A), is the

intersection of all neutrosophic µ-closed super sets of A.

Clearly clµ(A) is the smallest neutrosophic µ-closed set over X which containing A.

Theorem 2.7. Let (X,µ) be a neutrosophic µ-topological space over X and A,B ∈ N (X).

Then,

(1) clµ(1X) = 1X and A v clµ(A).

(2) clµ(0X) = 0X whenever µ is a strong µ−topology.

(3) clµ(clµ(A)) = clµ(A).

(4) A v B implies clµ(A) v clµ(B).

(5) A is µ-closed if and only if clµ(A) = A.

(6) cl(A) t cl(B) v cl(A tB). The equality does not hold.

Example 2.8. Consider (X,µ) as in Example2.2. The only µ-closed sets in (X,µ) are:

(1) 0cX = 1X .
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(2) Ac = {〈a, 0.7, 0.5, 0.3〉, 〈b, 1, 0.6, 0.3〉}.
(3) Bc = {〈a, 0.1, 0.3, 0.4〉, 〈b, 0.9, 0.4, 0.2〉}.
(4) Cc = {〈a, 0.1, 0.5, 0.4〉, 〈b, 0.9, 0.6, 0.3〉}

It is clear that clµ(0X) = 0cXuAcuBcuCc = {〈a, 0.1, 0.5, 0.4〉, 〈b, 0.9, 0.6, 0.3〉} 6= 0X . Let H =

Ac and K = Bc. Then clµ(H)tclµ(K) = {〈a, 0.7, 0.3, 0.3〉, 〈b, 1, 0.4, 0.2〉} and clµ(HtK) = 1X ,

since the only neutrosophic µ-closed set containing H tK = clµ(H) t clµ(K) is 1X .

The following theorem shows the importance of generalized neutrosophic µ-topological

spaces.

Theorem 2.9. Let (X, τ) be a neutrosophic topological space over X. Then:

(1) The set Nα−O(τ) of all neutrosophic α-open sets over (X, τ) is a strong neutrosophic

µ-topology over X.

(2) The set GNPC(τ) of all neutrosophic pre-closed sets in (X, τ) is a strong neutrosophic

µ-topology over X.

Proof. Easy! we just call Theorem1.14.

Definition 2.10. Let (X,µ) and (Y, µ́) be two neutrosophic µ-topological spaces and let

Ω : X → Y be any function. Then Ω is said to be neutrosophic (µ, µ́)-continuous if for any

neutrosofpic point xα,β,γ and for any neutrosophic µ́-open set V ∈ τ́ such that f(xα,β,γ) ∈ V
there exists U ∈ τ such that xα,β,γ ∈ U and Ω(U) v V .

Theorem 2.11. Let X and Y be two nonempty sets and Ω : X → Y be any function. Let

xα,β,γ be a neutrosophic point in X. Then Ω(xα,β,γ) = Ω(x)α,β,γ; that is the image of a

neutrosophic point is a neutrosophic point.

Proof. We will prove it for Type.I and Type.II neutrosophic sets. Let A = xα,β,γ and Ω(x) = ý.

Then the Type.I (Type.II) image of A under Ω, denoted by Ω(A), is the Neutrosophic set:

Ω(A) = {〈y,Ω(µA)(y),Ω(σA)(y), (1− Ω(1− νA))(y)〉; y ∈ Y }, where

(µA)(y) =


sup

x∈Ω−1(y)

µA(x) if Ω−1(y) 6= ∅

0 if Ω−1(y) 6= ∅
=

α if y = ý

0 if y 6= ý

(σA)(y) =


inf

x∈Ω−1(y)
σA(x) if Ω−1(y) 6= ∅

1 if Ω−1(y) 6= ∅
=

β if y = ý

1 if y 6= ý
(Type.I)
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(σA)(y) =


sup

x∈Ω−1(y)

σA(x) if Ω−1(y) 6= ∅

0 if Ω−1(y) 6= ∅
=

β if y = ý

0 if y 6= ý
(Type.II)

(1− Ω(1− νA))(y) =


inf

x∈Ω−1(y)
νA(x) if Ω−1(y) 6= ∅

1 if Ω−1(y) 6= ∅
=

γ if y = ý

1 if y 6= ý

That is -in Type.I and Type.II neutrosophic sets- Ω(xα,β,γ) = ýα,β,γ where ý = Ω(x) .

Definition 2.12. A neutrosophic point of type.I (type.II) xα,β,γ is said to be in the neutro-

sophic set A -in symbols xα,β,γ ∈ A)- if and only if α < µA(x), β > σA(x) and γ > νA(x)

(α < µA(x), β < σA(x) and γ > νA(x)).

Lemma 2.13. Let A ∈ N (X) and suppose that for every xα,β,γ ∈ A there exists a neutrosophic

set B(xα,β,γ) ∈ N (X) such that xα,β,γ ∈ B(xα,β,γ) v A. Then A = t{B(xα,β,γ);xα,β,γ ∈ A}.

Proof. The proof will be established for Type.I. Set H = t{B(xα,β,γ);xα,β,γ ∈ A}. It suffices to

show that A v H and H v A. First note that for every B(xα,β,γ) v A we have µB(xα,β,γ)(x) ≤
µA(x), σB(xα,β,γ)(x) ≥ σA(x) and νB(xα,β,γ)(x) ≥ νA(x) for every x ∈ X. Let x ∈ X. Then

µH(x) = sup{µB(xα,β,γ);xα,β,γ ∈ A} ≤ µA(x), σH(x) = inf{σB(xα,β,γ);xα,β,γ ∈ A} ≥ σA(x),

and νH(x) = inf{νB(xα,β,γ);xα,β,γ ∈ A} ≥ σA(x), this means H v A. To prove the converse,

let x ∈ X and let α1 = µA(x), β1 = σA(x), and γ1 = νA(x). Consider the neutrosophic points

xα,β,γ such that α < α1, β > β1 and γ > γ1. Then xα,β,γ ∈ A. Let Ax = ∪{B(xα,β,γ);α <

α1, β > β1andγ > γ1}. It is clear that Ax v H so that µAx(x) ≤ µH(x), σAx(x) ≥ σH(x)

and νAx(x) ≥ νH(x). But µAx(x) = sup{µAxα,β,γ (x);α < α1, β > β1, γ > γ1} = α1 =

µA(x), σAx(x) = inf{σAxα,β,γ (x);α < α1, β > β1, γ > γ1} = β1 = σA(x) and νAx(x) =

sup{νAxα,β,γ (x);α < α1, β > β1, γ > γ1} = γ1 = νA(x), which implies µA(x) ≤ µH(x),

σA ≥ σH(x) and νA ≥ νH(x) or, equivalently, A v H.

Corollary 2.14. Let (X,µ) be a neutrosophic topological space over X and let A ∈ N (X).

Then A is neutrosophic µ-open in (X,µ) if and only if for every xα,β,γ ∈ A there exists a

neutrosophic µ-open set B(xα,β,γ) ∈ µ such that xα,β,γ ∈ B(xα,β,γ) v A.

Definition 2.15. Let (X,µ) be a neutrosophic topological space over X. A sub-collection

B ⊆ µ is called a neutrosophic µ− base for µ if and only if for any U ∈ µ there exists B́ ⊆ B
such that U = t{B;B ∈ B́}.
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Corollary 2.16. Let (X,µ) be a neutrosophic topological space over X. Then a subcollection

B of µ is a neutrosophic µ − base for µ if and only if for every U ∈ µ and every xα,β,γ ∈ U
there exists B ∈ B such that xα,β,γ ∈ B v U .

Theorem 2.17. Let (X,µ) and (Y, µ́) be two neutrosophic µ-topological spaces and let Ω :

X → Y be any function. Then Ω is neutrosophic (µ, µ́)-continuous if and only if Ω−1(V ) is a

neutrosophic µ-open set whenever V is a neutrosophc µ́-open set.

Proof. Suppose that Ω is neutrosophic (µ, µ́)-continuous, V be a neutrosophc µ́-open set,

and xα,β,γ ∈ Ω−1(V ). Then Ω(xα,β,γ) = Ω(x)α,β,γ ∈ Ω(Ω−1(V )) v V (we used theo-

rem1.16(4)). Since Ω is (µ, µ́)-continuous, there exists a neutrosophic µ−open set V (xα,β,γ)

such that xα,β,γ ∈ V (xα,β,γ) and Ω(V (xα,β,γ)) v V , which implies, by theorem1.16(3),

V (xα,β,γ) v Ω−1(Ω(V (xα,β,γ))) v Ω−1(V ), that is, by corollary2.14, Ω−1(V ) is µ − open.

Conversely, suppose the condition of the theorem is true. To show that Ω is (µ, µ́)-continuous

let xα,β,γ be a neutrosophic point in X and V is a neutrosophic µ́ − open set such that

Ω(xα,β,γ) ∈ V . By the condition of the theorem, Ω−1(V ) is neutrosophic µ−open set, and from

theorem1.16 (3) and (4) we have xα,β,γ ∈ Ω−1(Ω(xα,β,γ)) v Ω−1(V ), and Ω(Ω−1(V )) v V , re-

spectively. So we have Ω−1(V ) is neutrosophic µ−open, xα,β,γ ∈ Ω−1(V ) and Ω(Ω−1(V )) v V
which mean Ω is a neutrosophic (µ, µ́)-continuous function.

Theorem 2.18. Let (X,µ) and (Y, µ́) be two neutrosophic µ-topological spaces, Ω : X → Y be

any function, and B́ is a neutrosophic µ−base for µ́. Then Ω is neutrosophic (µ, µ́)-continuous

if and only if Ω−1(V ) is a neutrosophic µ-open set for every V ∈ B́.

Proof. ⇒) Obvious!

⇐) Suppose that Ω satisfies the condition of the theorem, and let V be any neutrosophic

µ́ − open set. Since B́ is a neutrosophic µ − base for µ́, there exists a sub-collection B∗ from

B́ such that V = t{B;B ∈ B∗}. But Ω−1(V ) = Ω−1(t{B;B ∈ B∗}) = t{Ω−1(B);B ∈ B∗}.
Since Ω−1(B) is neutrosophic µ − open for every B ∈ B∗, Ω−1(V ) is neutrosophic µ − open,

and so Ω is a neutrosophic (µ, µ́)-continuous function.

Definition 2.19. Let (X,µ) be a neutrosophic µ-topological space. A sub-collection U ⊆ µ

is called a type.I (type.II) neutrosophic µ−open cover of X, if 1X = t{U ;U ∈ U}.

Definition 2.20. Let (X,µ) be a neutrosophic µ-topological space, and let U be a neutrosophic

µ−open cover of X. A sub-collection Ú ⊆ N (X) is called a neutrosophic µ−subcover of X

from U , if Ú is a neutrosophic µ−open cover of X and Ú ⊆ U .

Murad Arar and Saeid Jafari , Neutrosophic µ-Topological spaces

Neutrosophic Sets and Systems,Vol.38,2020                                                                                     61



Corollary 2.21. Let (X,µ) be a neutrosophic µ-topological space. A sub-collection U ⊆ µ is a

µ−open cover of X if and only if for every xα,β,γ in X there exists U ∈ U such that xα,β,γ ∈ U .

Definition 2.22. A neutrosophic µ-topological space (X,µ) is called neutrosophic µ-compact

space if every neutrosophic µ−open cover of X from µ has a finite neutrosophic µ-subcover of

X.

Theorem 2.23. Let Ω : (X,µ) → (Y, µ́) be a neutrosophic (µ, µ́)-continuous function. If

(X,µ) is neutrosophic µ−compact, then (Y, µ́) is neutrosophic µ−compact.

Proof. Let V be a neutrosophic µ−open cover of Y . Consider the collection V−1 =

{Ω−1(V );V ∈ V}. Since Ω is neutrosophic (µ, µ́)-continuous, V−1 ⊆ µ. Set A =

t{Ω−1(V );V ∈ V}. To show that A = 1X . But A = t{Ω−1(V );V ∈ V} = Ω−1(t{V ;V ∈
V}) = Ω−1(1Y ) = 1X (we used Proposition 1.16,(9)); i.e. V−1 is a neutrosophic µ−open cover

of X. Since X is neutrosophic µ − compact space, V−1 has a finite neutrosophic µ − open
sub-cover V∗−1. Suppose that V∗−1 = {Ω−1(Vi); i = 1, 2, ..., n}. Set V∗ = {Vi; i = 1, 2, ..., n}.
It is clear that V∗ ⊆ V. Since Ω is surjective, Ω(Ω−1(Vi)) = Vi for every i = 1, 2, ..., n, so we

have t{Vi; i = 1, 2, ..., n} = t{Ω(Ω−1(Vi)); i = 1, 2, ..., n} = Ω(t{Ω−1(Vi); i = 1, 2, ..., n}) =

Ω(1X) = 1Y , that is V∗ is a neutrosophic µ−subcover of X from V.

Theorem 2.24. Let (X,µ) be a neutrosophic µ-topological space, and B be a neutrosophic

µ − base for µ. Then (X,µ) is neutrosophic µ−compact if and only if every neutrosophic

µ− open cover of X from B has a finite neutrosophic µ− subcover.

Proof. ⇒) Obvious!

⇐) Suppose that X satisfies the condition of the theorem. Let U be a neutrosophic µ− open
cover of X. For every U ∈ U there exists BU ⊆ B such that U = tBU . Set B1 = {B;B ∈
BU , U ∈ U}. It is clear that B1 is a neutrosophic µ − open cover of X from B, so it has a

finite neutrosophic µ− subcover B∗1. For every B ∈ B∗1 there exists UB ∈ U such that B v UB.

Let U∗ = {UB;B ∈ B∗1}. Since B∗1 is a finite neutrosophic µ − open cover of X, U∗ is a finite

µ− subcover of X from U , and X is neutrosophic µ− compact.

Definition 2.25. A neutrosophic µ-topological space (X,µ) is called:

(1) neutrosophic µ-Lindelöf space if every neutrosophic µ− open cover of X from µ has a

countable neutrosophic µ-subcover of X.

(2) neutrosophic µ-countably compact space if every neutrosophic µ−open countable cover

of X from µ has a finite neutrosophic µ-subcover of X.
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Theorem 2.26. Every neutrosophic µ-topological space with a countable neutrosophic µ−base
is neutrosophic µ-Lindelöf .

Proof. Let (X,µ) be a neutrosophic µ-topological space with a countable neutrosophic µ−base
B. Let U be a neutrosophic µ− open cover of X. For every U ∈ U , there exists BU ⊆ B such

that U = tBU . Let B∗ = ∪{BU ;U ∈ U}. Since U is a neutrosophic µ − open cover of X, B∗

is a neutrosophic µ − open cover of X. And since B∗ ⊆ B, B∗ is countable. We can write

B∗ = {Bi; i = 1, 2, 3, ...}. For every i = 1, 2, 3, ... pick a unique Ui ∈ U such that Bi v Ui. Let

U∗ = {Ui; i = 1, 2, ...}. Since B∗ is a neutrosophic µ − open cover of X, U∗ is a neutrosophic

µ− open subcover of X from U , and hence X is a neutrosophic µ-Lindelöf space.

Theorem 2.27. Every neutrosophic µ-Lindelöf and µ-countably compact space is µ-compact.

Proof. Let (X,µ) be a neutrosophic µ-Lindelöf and µ − countably compact space, and let U
be a neutrosophic µ− open cover of X. Since X is neutrosophic µ-Lindelöf, U has a countable

neutrosophic µ− subcover (say U1) of X from U . And since X is neutrosophic µ− countably
compact, U1 has a neutrosophic µ − finite subcover, say U2, from U1. It is clear that U2

is a neutrosophic µ − finite subcover of X from U , that means (X,µ) is a neutrosophic

µ− comapact.

Corollary 2.28. Every neutrosophic µ-countably compact space with a neutrosophic countable

µ− base is µ-compact.

Example 2.29. Let X = {a, b} and β = {An;n = 1, 2, 3, ...} where An = {〈x, 1 −
1

2n ,
1

2n ,
1

2n〉;x ∈ X}. Consider the neutrosophic µ-topology τ(β) generated by the neutro-

sophic µ-base β. Since τ(β) has a countable base, τ(β) is neutrosophic µ-Lindelöf. Note that

τ(β) is strong neutrosophic µ-topological space, since β covers X, actually:

tβ = t{An;n = 1, 2, 3, ...} = {〈x,∨∞1 1 − 1
2n ,∧

∞
1

1
2n ,∧

∞
1

1
2n〉;x ∈ X} = {〈x, 1, 0, 0〉;x ∈ X} =

1X . Now, we will show that τ(β) is not neutrosophic µ-countably paracompact (which im-

plies it is not neutrosophic µ-compact). By contrapositive, suppose X is neutrosophic µ-

countably paracompact. Then U = β is a countable neutrosophic µ-open cover of X. Since

we suppose X is neutrosophic µ-countably paracompact, U has a finite µ-subcover , say

U∗ = {An1, An2, ..., Ank}. But An1 t An2 t ... t Ank = At where t = max{n1, n2, ..., nk}, and

At = {〈x, 1− 1
2t ,

1
2t ,

1
2t〉;x ∈ X} 6= 1X , a contradiction. So X is not neutrosophic µ-countably

paracompact and hence is not neutrosophic µ-compact.

The following theorem shows that neutrosophic µ-compact space and neutrusophic µ-

countably compact space are equivalent if X is countable, which is not true in topological

spaces.
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Theorem 2.30. For every countable neutrosophic µ-topological space X, the following two

statements are equivalent:

(1) X is neutrosophic µ-compact.

(2) X is neutrosophic µ-countably compact.

Proof. ⇒) Obvious!

⇐) Suppose that X is a countable neutrosophic µ-countably compact space, and let U be a

neutrosophic µ-open cover of X. For every x ∈ X we define the following three subsets of

[0, 1].

(1) Dx
µ = {µA(x);A ∈ U}.

(2) Dx
σ = {σA(x);A ∈ U}.

(3) Dx
ν = {νA(x);A ∈ U}.

Let Dx
1 , Dx

2 and Dx
3 be three countable dense subsets of Dx

µ, Dx
σ and Dx

ν respectively in the

usual sense (the usual topology on the unit interval). Since U is a neutrosophic µ-open cover

of X, we have supDx
1 = supDx

µ = 1 ,inf Dx
2 = inf Dx

σ = 0 and inf Dx
3 = inf Dx

ν = 0. Let

U(x) = {A ∈ U ;µA(x) ∈ Dx
1 , σA(x) ∈ Dx

2 or νA(x) ∈ Dx
3}. It is clear that U(x) is countable.

Let U∗ = ∪{U(x);x ∈ X}. Since X is countable, U∗ is a countable sub-collection from U . We

will show that U∗ is a neutrosophic µ-cover of X. Set B = tU∗. For every x ∈ X we have:

(1) µB(x) = ∨{µA(x);A ∈ B} ≥ ∨{µA(x);A ∈ Dx
1} = supDx

1 = 1.

(2) σB(x) = ∧{σA(x);A ∈ B} ≥ ∧{σA(x);A ∈ Dx
1} = inf Dx

2 = 0.

(3) νB(x) = ∧{νA(x);A ∈ B} ≥ ∧{∨A(x);A ∈ Dx
1} = inf Dx

3 = 0.

Which implies that B = 1X and U∗ is a neutrosophic countable µ-open cover. Since X is a

neutrosophic µ-countably compact space, U∗ has a finite subcover , that is X is compact.

Question 2.31. Are neutrosophic µ-compactness and neutrosophic µ-countably compactness

equivalent.

3. Applications and further studies

All existing studies are about neutrosophic topological spaces and since Neutrosophic µ-

topological space is a generalization of neutrosophic topological spaces we can get more gen-

eralized results in Neutrosophic µ-topological space that are true for neutrosophic toplogical

spaces, see for example Theorem 2.30, and some previous notations about neutrosophic sets

can be considered as examples of neurosophic µ-topological spaces, see Theorem 2.9 which

shows the relationship between µ-topological space and previous studies. In the future work

we need to answer the question posted in this paper: Are neutrosophic µ-compactness and
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neutrosophic µ-countably compactness equivalent. Furthermore; many notations about neu-

trosophic µ-topological spaces need to be studied for example, first and second countable

spaces, neighborhood systems, the relation between the usual topology defined on the interval

[0,1] (which is the range of µ, σ and ν functions) and the neutrosophic µ-topology defined on

X.
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