

On New Types of Weakly Neutrosophic Crisp Continuity

Qays Hatem Imran^{1*}, Riad K. Al-Hamido² and Ali Hussein Mahmood Al-Obaidi³

¹Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq.
E-mail: qays.imran@mu.edu.iq

²Department of Mathematics, College of Science, Al-Baath University, Homs, Syria.

E-mail: riad-hamido1983@hotmail.com

³Department of Mathematics, College of Education for Pure Science, University of Babylon, Hillah, Iraq.

E-mail: aalobaidi@uobabylon.edu.iq

* Correspondence: qays.imran@mu.edu.iq

Abstract: The article processes the conceptualizations of neutrosophic crisp α -open and neutrosophic crisp semi- α -open sets to define some new types of weakly "neutrosophic crisp continuity" essentially, neutrosophic crisp α^* -continuous, neutrosophic crisp semi- α -continuous, neutrosophic crisp semi- α -continuous and neutrosophic crisp semi- α^* -continuous functions. Also, we shall explain the relationships between these types of weakly neutrosophic crisp continuity and the concepts of neutrosophic crisp continuity.

Keywords: Neutrosophic crisp α^* -continuous, neutrosophic crisp α^{**} -continuous, neutrosophic crisp semi- α -continuous, neutrosophic crisp semi- α^* -continuous, and neutrosophic crisp semi- α^{**} -continuous functions.

1. Introduction

In 2014, Salama et al. [1] performed the abstraction of neutrosophic crisp topological space (concisely, *NCTS*). Al-Hamido et al. [2] submitted the intellect of neutrosophic crisp semi- α -closed sets in *NCTS*s. Abdel-Basset et al. [3-8] gave a novel neutrosophic approach. Maheswari et al. [9] presented gb-closed sets and gb-continuity in aspects of the neutrosophic theory. Banupriya et al. [10] investigated the notion of α gs continuity and α gs irresolute maps in the sense of neutrosophic view. In [11], Dhavaseelan et al. exhibited the theme of neutrosophic α^m -continuity. Al-Hamido et al. [15] introduced neutrosophic crisp topology via N-topology. Imran et al. [16] introduced and studied the thought of neutrosophic generalized alpha generalized continuity. Hanif PAGE et al. [17] presented neutrosophic generalized homeomorphism. This paper aspires to lay on new types of weakly neutrosophic crisp continuity, for instance, neutrosophic crisp α^* -continuous, neutrosophic crisp semi- α^* -continuous and neutrosophic crisp semi- α^* -continuous functions. Likewise, we shall explain the relationships between these types of weakly neutrosophic crisp continuity and the concepts of neutrosophic crisp continuity.

2. Preliminaries

For the whole of the disquisition, (\mathbb{X}, Γ_1) , (\mathbb{Y}, Γ_2) , and (\mathbb{Z}, Γ_3) (merely \mathbb{X}, \mathbb{Y} , and \mathbb{Z}) habitually intend *NCTS*s. Let \mathcal{C} be a neutrosophic crisp set (shortly, *NCS*) in *NCTS* (\mathbb{X}, Γ_1) and denote its complement by \mathcal{C}^c . Indicate the neutrosophic crisp open set as *NC*-OS, and the neutrosophic crisp closed set (its complement) as *NC*-CS in *NCTS* (\mathbb{X}, Γ_1) . Additionally, we refer to the neutrosophic crisp closure and neutrosophic crisp interior of \mathcal{C} via $NCcl(\mathcal{C})$ and $NCint(\mathcal{C})$, correspondingly.

Definition 2.1 [1]: Assume that nonempty particular understudy space \mathbb{X} has mutually disjoint subsets $\mathcal{C}_1, \mathcal{C}_2$ and \mathcal{C}_3 . A *NCS* \mathcal{C} with form $\mathcal{C} = \langle \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3 \rangle$ is called an object.

Definition 2.2: For any *NCS C* in *NCTS* (\mathbb{X} , Γ_1), we have

(i) if $C \subseteq NCint(NCcl(NCint(C)))$, then it is called a neutrosophic crisp α -open set and symbolize by $NC\alpha$ -OS. Furthermore, its complement is named neutrosophic crisp α -closed set and signified by $NC\alpha$ -CS. Likewise, we reveal the collection consisting of all $NC\alpha$ -OSs in $\mathbb X$ with $NC\alpha$ O($\mathbb X$). [12] (ii) if $C \subseteq NCcl(NCint(NCcl(NCint(C))))$, then it is said to be a neutrosophic crisp semi- α -open set and indicated via $NCS\alpha$ -OS. Moreover, its complement is known as a neutrosophic crisp semi- α -closed set and referred with $NCS\alpha$ -CS. Besides, we mentioned the collection of all $NCS\alpha$ -OSs in $\mathbb X$ through $NCS\alpha$ O($\mathbb X$). [2]

Proposition 2.3 [12]: For any *NCS* \mathcal{C} in *NCTS* (\mathbb{X}, Γ_1) , then $\mathcal{C} \in NC\alpha\mathcal{O}(\mathbb{X})$ iff we have at least a *NC*-OS \mathcal{D} satisfying $\mathcal{D} \subseteq \mathcal{C} \subseteq NCint(NCcl(\mathcal{D}))$.

Proposition 2.4 [14]: Every NC-OS is a $NC\alpha$ -OS, but the opposite is not valid in general.

Proposition 2.5 [2]: In a *NCTS* (\mathbb{X} , Γ_1), the next assertions stand, but not vice versa:

- (i) All *NC*-OSs are *NCS* α -OSs.
- (ii) All $NC\alpha$ -OSs are $NCS\alpha$ -OSs.

Definition 2.6 [1]: Let $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ be a function, we called it a neutrosophic crisp continuous and denoted by *NC*-continuous iff for all *NC*-OSs \mathcal{D} from \mathbb{Y} , then its inverse image $\eta^{-1}(\mathcal{D})$ is a *NC*-OS from \mathbb{X} .

Theorem 2.7 [1]: A function $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ is NC -continuous iff $\eta^{-1}(NCint(\mathcal{D})) \subseteq NCint(\eta^{-1}(\mathcal{D}))$ for every $\mathcal{D} \subseteq \mathbb{Y}$.

Definition 2.8 [1]: Let $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ be a function, we named it a neutrosophic crisp open and indicated via *NC*-open iff for all *NC*-OSs \mathcal{C} from \mathbb{X} , then its image $\eta(\mathcal{C})$ is a *NC*-OS from \mathbb{Y} .

Definition 2.9 [13]: Let $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ be a function, we said it a neutrosophic crisp α-continuous and referred through $NC\alpha$ -continuous iff for all NC-OSs \mathcal{D} from \mathbb{Y} , then its inverse image $\eta^{-1}(\mathcal{D})$ is a $NC\alpha$ -OS from \mathbb{X} .

Proposition 2.10 [14]: Every *NC*-continuous function is a $NC\alpha$ -continuous, but the opposite is not valid in general.

3. Weakly Neutrosophic Crisp Continuity Functions

Definition 3.1: Let $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ be a function, we call it as

- (i) a neutrosophic crisp α^* -continuous and denoted by $NC\alpha^*$ -continuous iff for all $NC\alpha$ -OSs \mathcal{D} from \mathbb{Y} , then its inverse image $\eta^{-1}(\mathcal{D})$ is a $NC\alpha$ -OS from \mathbb{X} .
- (ii) a neutrosophic crisp α^{**} -continuous and indicated via $NC\alpha^{**}$ -continuous iff for all $NC\alpha$ -OS \mathcal{D} from \mathbb{Y} , then its inverse image $\eta^{-1}(\mathcal{D})$ is a NC-OS from \mathbb{X} .

Definition 3.2: Let $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ be a function, we named it as

- (i) a neutrosophic crisp semi- α -continuous and referred through $NCS\alpha$ -continuous iff for all NC-OSs \mathcal{D} from \mathbb{Y} , then its inverse image $\eta^{-1}(\mathcal{D})$ is a $NCS\alpha$ -OS from \mathbb{X} .
- (ii) a neutrosophic crisp semi- α^* -continuous and symbolize by $NCS\alpha^*$ -continuous iff for all $NCS\alpha$ -OSs \mathcal{D} from \mathbb{Y} , then its inverse image $\eta^{-1}(\mathcal{D})$ is a $NCS\alpha$ -OS from \mathbb{X} .
- (iii) a neutrosophic crisp semi- α^{**} -continuous and signified via $NCS\alpha^{**}$ -continuous iff for all $NCS\alpha$ -OSs \mathcal{D} from \mathbb{Y} , then its inverse image $\eta^{-1}(\mathcal{D})$ is a NC-OS from \mathbb{X} .

Theorem 3.3: Let $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ be a function, then the next declarations are same:

- (i) η is a *NCS* α -continuous.
- (ii) its inverse image of each *NC*-CS from $\mathbb Y$ is *NCS* α -CS from $\mathbb X$.
- (iii) $\eta(NCint(NCcl(NCint(NCcl(C))))) \subseteq NCcl(\eta(C))$, for each $C \in X$.
- (iv) $NCint(NCcl(NCint(NCcl(\eta^{-1}(\mathcal{D}))))) \subseteq \eta^{-1}(NCcl(\mathcal{D}))$, for each $\mathcal{D} \in \mathbb{Y}$.

Proof:

- [(i) \Rightarrow (ii)] Suppose \mathcal{D} is a *NC*-CS from \mathbb{Y} . This implies that \mathcal{D}^c stands a *NC*-OS. Hence $\eta^{-1}(\mathcal{D}^c)$ is a *NCS* α -OS from \mathbb{X} . In other words, $(\eta^{-1}(\mathcal{D}))^c$ stands a *NCS* α -OS from \mathbb{X} . Thus $\eta^{-1}(\mathcal{D})$ is a *NCS* α -CS in \mathbb{X} .
- [(ii) \Rightarrow (iii)] Let $\mathcal{C} \in \mathbb{X}$, then $NCcl(\eta(\mathcal{C}))$ stays a NC-CS from \mathbb{Y} . Hence $\eta^{-1}(NCcl(\eta(\mathcal{C})))$ is $NCS\alpha$ -CS in \mathbb{X} . Thus we have $\eta^{-1}(NCcl(\eta(\mathcal{C}))) \supseteq NCint(NCcl(NCint(NCcl(\eta(\mathcal{C}))))))) \supseteq NCint(NCcl(NCint(NCcl(\mathcal{C}))))$.
- Or $NCcl(\eta(\mathcal{C}))) \supseteq \eta(NCint(NCcl(NCint(NCcl(\mathcal{C})))))$.
- [(iii) \Rightarrow (iv)] Since $\mathcal{D} \in \mathbb{Y}, \eta^{-1}(\mathcal{D}) \in \mathbb{X}$.So, we have by our hypothesis the corresponding notation $NCint(NCcl(NCint(NCcl(\eta^{-1}(\mathcal{D}))))) \subseteq NCcl(\eta(\eta^{-1}(\mathcal{D}))) \subseteq NCcl(\mathcal{D})$, and that leads us to this fact $NCint(NCcl(NCint(NCcl(\eta^{-1}(\mathcal{D}))))) \subseteq \eta^{-1}(NCcl(\mathcal{D}))$.
- [(iv) \Rightarrow (i)] Let \mathcal{D} be a NC-OS of \mathbb{Y} . Let $\mathcal{C} = \mathcal{D}^c$ and $\mathcal{D} = \eta^{-1}(\mathcal{C})$ by (iii) we have $NCint(NCcl(NCint(NCcl(\eta^{-1}(\mathcal{C}))))) \subseteq NCcl(\mathcal{C}) = \mathcal{C}$.

That is $NCint(NCcl(NCint(NCcl(\eta^{-1}(\mathcal{D}^c))))) \subseteq \eta^{-1}(\mathcal{D}^c)$. Or $NCint(NCcl(NCint(NCcl(\eta^{-1}(\mathcal{D}))))) \supseteq \eta^{-1}(\mathcal{D})$. Hence $\eta^{-1}(\mathcal{D})$ is a $NCS\alpha$ -OS in \mathbb{X} and thus η be there a $NCS\alpha$ -continuous.

Proposition 3.4:

- (i) all NC-continuous functions are $NCS\alpha$ -continuous, but the opposite is not valid in general.
- (ii) all $NC\alpha$ -continuous functions are $NCS\alpha$ -continuous, but the opposite is not exact in general.

Proof:

(i) Suppose $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ is a NC-continuous function, and \mathcal{D} be a NC-OS from \mathbb{Y} . Next $\eta^{-1}(\mathcal{D})$ remains a NC-OS from \mathbb{X} . Since any NC-OS is a $NCS\alpha$ -OS, $\eta^{-1}(\mathcal{D})$ stays a $NCS\alpha$ -OS from \mathbb{X} . Thus η exists a $NCS\alpha$ -continuous function.

(ii) Let $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ be a $NC\alpha$ -continuous function and \mathcal{D} be a NC-OS from \mathbb{Y} . Subsequently $\eta^{-1}(\mathcal{D})$ happens a $NC\alpha$ -OS from \mathbb{X} . Since any $NC\alpha$ -OS is $NCS\alpha$ -OS, $\eta^{-1}(\mathcal{D})$ stays a $NCS\alpha$ -OS from \mathbb{X} . Thus η is a $NCS\alpha$ -continuous function.

Example 3.5: Suppose $\mathbb{X} = \{p, q, r, s\}$ and $\mathbb{Y} = \{u, v, w\}$. Then $\Gamma_1 = \{\phi_N, \mathbb{X}_N\} \cup \{\langle \{p\}, \phi, \phi \rangle\}$ and $\Gamma_2 = \{\phi_N, \mathbb{Y}_N\} \cup \{\langle \{u\}, \phi, \phi \rangle\}$ be neutrosophic crisp topologies (shortly, *NCTs*) on \mathbb{X} and \mathbb{Y} , correspondingly. Define the function $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ via $\eta(\langle \{p\}, \phi, \phi \rangle) = \eta(\langle \{q\}, \phi, \phi \rangle) = \langle \{u\}, \phi, \phi \rangle$, $\eta(\langle \{r\}, \phi, \phi \rangle) = \langle \{v\}, \phi, \phi \rangle$, $\eta(\langle \{s\}, \phi, \phi \rangle) = \langle \{w\}, \phi, \phi \rangle$. Then η is a *NC* α-continuous function but not *NC* -continuous since $\langle \{u\}, \phi, \phi \rangle$ is *NC* -OS but $\eta^{-1}(\langle \{u\}, \phi, \phi \rangle) = \langle \{p, q\}, \phi, \phi \rangle$ which is not *NC*-OS in \mathbb{X} . Also, η is a *NCS*α-continuous function but not *NC*-continuous, since $\langle \{u\}, \phi, \phi \rangle$ is *NC*-OS in \mathbb{Y} but $\eta^{-1}(\langle \{u\}, \phi, \phi \rangle) = \langle \{p, q\}, \phi, \phi \rangle$ is not *NC*-OS from \mathbb{X} .

Example 3.6: Suppose $\mathbb{X} = \{p, q, r\}$. Then $\Gamma = \{\phi_N, \mathbb{X}_N\} \cup \{\langle \{p\}, \phi, \phi \rangle, \langle \{q\}, \phi, \phi \rangle, \langle \{p, q\}, \phi, \phi \rangle\}$ be a *NCT* on \mathbb{X} .

Define the function $\eta: (\mathbb{X}, \Gamma) \to (\mathbb{X}, \Gamma)$ by $\eta(\langle \{p\}, \phi, \phi \rangle) = \langle \{p\}, \phi, \phi \rangle, \eta(\langle \{q\}, \phi, \phi \rangle) = \eta(\langle \{r\}, \phi, \phi \rangle) = \langle \{q\}, \phi, \phi \rangle$. It is easily seen that η is a $NCS\alpha$ -continuous function but not $NC\alpha$ -continuous, since $\langle \{q\}, \phi, \phi \rangle$ is NC-OS in \mathbb{X} but $\eta^{-1}(\langle \{q\}, \phi, \phi \rangle) = \langle \{q, r\}, \phi, \phi \rangle$ is not $NC\alpha$ -OS in \mathbb{X} .

Remark 3.7: The concepts of *NC*-continuity and $NC\alpha^*$ -continuity are independent, for examples.

Example 3.8: Suppose $\mathbb{X} = \{p, q, r, s\}$ and $\mathbb{Y} = \{u, v, w\}$. Then

 $\Gamma_1 = \{\phi_N, \mathbb{X}_N\} \cup \{\langle \{p\}, \phi, \phi \rangle, \langle \{q, r\}, \phi, \phi \rangle, \langle \{p, q, r\}, \phi, \phi \rangle\}$ and $\Gamma_2 = \{\phi_N, \mathbb{Y}_N\} \cup \{\langle \{u\}, \phi, \phi \rangle\}$ be *NCT*s on \mathbb{X} and \mathbb{Y} , correspondingly. Define the function $\eta : (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ via $\eta(\langle \{p\}, \phi, \phi \rangle) = \langle \{u\}, \phi, \phi \rangle$, $\eta(\langle \{q\}, \phi, \phi \rangle) = \langle \{v\}, \phi, \phi \rangle) = \eta(\langle \{s\}, \phi, \phi \rangle) = \langle \{w\}, \phi, \phi \rangle$. Then η is a *NC*-continuous function but not $NC \alpha^*$ -continuous, since $\langle \{u, v\}, \phi, \phi \rangle$ is $NC \alpha$ -OS in \mathbb{Y} but $\eta^{-1}(\langle \{u, v\}, \phi, \phi \rangle) = \langle \{p, q\}, \phi, \phi \rangle$ is not $NC \alpha$ -OS in \mathbb{X} .

Example 3.9: Assume $\mathbb{X} = \{p, q, r, s\}$ and $\mathbb{Y} = \{u, v, w\}$. Then $\Gamma_1 = \{\phi_N, \mathbb{X}_N\} \cup \{\langle \{p\}, \phi, \phi \rangle\}$ and $\Gamma_2 = \{\phi_N, \mathbb{Y}_N\} \cup \{\langle \{u\}, \phi, \phi \rangle\}$ be *NCT*s on \mathbb{X} and \mathbb{Y} , correspondingly. Define the function $\eta : (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ via $\eta(\langle \{p\}, \phi, \phi \rangle) = \eta(\langle \{q\}, \phi, \phi \rangle) = \langle \{u\}, \phi, \phi \rangle$, $\eta(\langle \{r\}, \phi, \phi \rangle) = \langle \{v\}, \phi, \phi \rangle, \eta(\langle \{s\}, \phi, \phi \rangle) = \langle \{w\}, \phi, \phi \rangle$. Then η is a *NC* α^* -continuous function but not *NC*-continuous, since $\langle \{u\}, \phi, \phi \rangle$ is *NC*-OS in \mathbb{Y} , but $\eta^{-1}(\langle \{u\}, \phi, \phi \rangle) = \langle \{p, q\}, \phi, \phi \rangle$ is not *NC*-OS in \mathbb{X} .

Theorem 3.10:

- (i) If a function $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ is NC-open, NC-continuous, and bijective, then η is a $NC\alpha^*$ -continuous.
- (ii) A function $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ is $NC \alpha^*$ -continuous iff $\eta: (\mathbb{X}, NC\alpha O(\mathbb{X})) \to (\mathbb{Y}, NC\alpha O(\mathbb{Y}))$ is a NC-continuous.

Proof:

(i) Let $\mathcal{D} \in NC\alpha O(\mathbb{Y})$, to prove that $\eta^{-1}(\mathcal{D}) \in NC\alpha O(\mathbb{X})$, i.e., $\eta^{-1}(\mathcal{D}) \subseteq NCint(NCcl(NCint(\eta^{-1}(\mathcal{D}))))$. Let $r \in \eta^{-1}(\mathcal{D}) \Rightarrow \eta(r) \in \mathcal{D}$. Hence $\eta(r) \in NCint(NCcl(NCint(\mathcal{D})))$ (since $\mathcal{D} \in NC\alpha O(\mathbb{Y})$). Therefore, at least NC-OS \mathcal{H} from \mathbb{Y} where $\eta(r) \in \mathcal{H} \subseteq NCcl(NCint(\mathcal{D}))$. Then $r \in \eta^{-1}(\mathcal{H}) \subseteq \mathbb{Y}$ $\eta^{-1}(NCcl(NCint(\mathcal{D})))$, but $\eta^{-1}(NCcl(NCint(\mathcal{D}))) \subseteq NCcl(\eta^{-1}(NCint(\mathcal{D})))$ (since η^{-1} is a NC-continuous, which is equivalent to η is a NC-open and bijective). Then $r \in \eta^{-1}(\mathcal{H}) \subseteq NCcl(\eta^{-1}(NCint(\mathcal{D})))$ (since η is a NC-continuous). Hence $r \in \eta^{-1}(\mathcal{H}) \subseteq NCcl(\eta^{-1}(NCint(\mathcal{D}))) \subseteq NCcl(NCint(\eta^{-1}(\mathcal{D})))$ (since η is a NC-continuous). Hence $r \in \eta^{-1}(\mathcal{H}) \subseteq NCcl(NCint(\eta^{-1}(\mathcal{D})))$, but $\eta^{-1}(\mathcal{H})$ remains a NC-OS from \mathbb{X} (because η be present a NC-continuous). Therefore, $r \in NCint(NCcl(NCint(\eta^{-1}(\mathcal{D}))))$. Hence $\eta^{-1}(\mathcal{D}) \subseteq NCint(NCcl(NCint(\eta^{-1}(\mathcal{D})))) \Rightarrow \eta^{-1}(\mathcal{D}) \in NC\alphaO(\mathbb{X}) \Rightarrow \eta$ is a $NC\alpha^*$ -continuous. (ii) The proof of (ii) is easily.

Theorem 3.11: A function $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ is a $NCS \alpha^*$ -continuous iff $\eta: (\mathbb{X}, NCS\alpha O(\mathbb{X})) \to (\mathbb{Y}, NCS\alpha O(\mathbb{Y}))$ is a NC-continuous.

Proof: Obvious. ■

Remark 3.12: The concepts of *NC*-continuity and $NCS\alpha^*$ -continuity are independent, for examples.

Example 3.13: Suppose $\mathbb{X} = \{p, q, r, s\}$ and $\mathbb{Y} = \{u, v, w\}$.

Then $\Gamma_1 = \{\phi_N, \mathbb{X}_N\} \cup \{(\{p\}, \phi, \phi), (\{q, r\}, \phi, \phi), (\{p, q, r\}, \phi, \phi)\}$ and $\Gamma_2 = \{\phi_N, \mathbb{Y}_N\} \cup \{(\{u\}, \phi, \phi)\}$ be NCTs on \mathbb{X} and \mathbb{Y} , correspondingly. Define the function $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ via $\eta(\langle \{p\}, \phi, \phi\rangle) = \langle \{u\}, \phi, \phi\rangle, \eta(\langle \{q\}, \phi, \phi\rangle) = \langle \{v\}, \phi, \phi\rangle, \eta(\langle \{r\}, \phi, \phi\rangle) = \eta(\langle \{s\}, \phi, \phi\rangle) = \langle \{w\}, \phi, \phi\rangle$. It is easily seen that η is a NC-continuous function but not $NCS\alpha^*$ -continuous, since $\langle \{u, v\}, \phi, \phi\rangle$ is $NCS\alpha$ -OS in \mathbb{Y} but $\eta^{-1}(\langle \{u, v\}, \phi, \phi\rangle) = \langle \{p, q\}, \phi, \phi\rangle$ is not $NCS\alpha$ -OS in \mathbb{X} .

Example 3.14: Assume $\mathbb{X} = \{p, q, r, s\}$ and $\mathbb{Y} = \{u, v, w\}$. Then $\Gamma_1 = \{\phi_N, \mathbb{X}_N\} \cup \{\langle \{p\}, \phi, \phi \rangle\}$ and $\Gamma_2 = \{\phi_N, \mathbb{Y}_N\} \cup \{\langle \{u\}, \phi, \phi \rangle\}$ be *NCT*s on \mathbb{X} and \mathbb{Y} , correspondingly.

Define the function $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ via $\eta(\langle \{p\}, \phi, \phi \rangle) = \eta(\langle \{q\}, \phi, \phi \rangle) = \langle \{u\}, \phi, \phi \rangle$, $\eta(\langle \{r\}, \phi, \phi \rangle) = \langle \{v\}, \phi, \phi \rangle$, $\eta(\langle \{s\}, \phi, \phi \rangle) = \langle \{w\}, \phi, \phi \rangle$. Then η is a $NCS\alpha^*$ -continuous function but not NC-continuous, since $\langle \{u\}, \phi, \phi \rangle$ is NC-OS in \mathbb{Y} , but $\eta^{-1}(\langle \{u\}, \phi, \phi \rangle) = \langle \{p, q\}, \phi, \phi \rangle$ is not NC-OS in \mathbb{X} .

Proposition 3.15: Every $NC\alpha^*$ -continuous function is a $NC\alpha$ -continuous and $NCS\alpha$ -continuous; however, the reverse generally is not valid.

Proof: Assume $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ is a $NC\alpha^*$ -continuous function and let \mathcal{D} be any NC-OS from \mathbb{Y} . Then we have \mathcal{D} as a $NC\alpha$ -OS from \mathbb{Y} [from proposition 2.4]. Since η is a $NC\alpha^*$ -continuous, then $\eta^{-1}(\mathcal{D})$ considers a $NC\alpha$ -OS from \mathbb{X} . Thus, η stands a $NC\alpha$ -continuous. \blacksquare

Example 3.16: Let $X = \{p, q, r, s\}$.

Then $\Gamma = \{\phi_N, \mathbb{X}_N\} \cup \{\langle \{p\}, \phi, \phi \rangle, \langle \{q\}, \phi, \phi \rangle, \langle \{p, q\}, \phi, \phi \rangle, \langle \{p, q, r\}, \phi, \phi \rangle\}$ be a *NCT* on \mathbb{X} . Define the function $\eta : (\mathbb{X}, \Gamma) \to (\mathbb{X}, \Gamma)$ by $\eta(\langle \{p\}, \phi, \phi \rangle) = \langle \{p\}, \phi, \phi \rangle, \eta(\langle \{q\}, \phi, \phi \rangle) = \eta(\langle \{r\}, \phi, \phi \rangle) = \langle \{s\}, \phi, \phi \rangle, \eta(\langle \{s\}, \phi, \phi \rangle) = \langle \{r\}, \phi, \phi \rangle$. It is easily seen that η is a *NC* α -continuous function but not *NC* α *-continuous, since $\langle \{p, q, r\}, \phi, \phi \rangle$ is *NC* α -OS in \mathbb{X} , but $\eta^{-1}(\langle \{p, q, r\}, \phi, \phi \rangle) = \langle \{p, s\}, \phi, \phi \rangle$ is not *NC* α -OS in \mathbb{X} .

Example 3.17: Let $\mathbb{X} = \{p, q, r\}$. Then $\Gamma = \{\phi_N, \mathbb{X}_N\} \cup \{\langle \{p\}, \phi, \phi \rangle, \langle \{q\}, \phi, \phi \rangle, \langle \{p\}, \phi, \phi \rangle\}$ be a *NCT* on \mathbb{X} . Define a function $\eta : (\mathbb{X}, \Gamma) \to (\mathbb{X}, \Gamma)$ by $\eta(\langle \{p\}, \phi, \phi \rangle) = \langle \{p\}, \phi, \phi \rangle, \eta(\langle \{q\}, \phi, \phi \rangle) = \eta(\langle \{r\}, \phi, \phi \rangle) = \langle \{q\}, \phi, \phi \rangle$. It is easily seen that η is a *NCS* α -continuous function but not *NC* α *-continuous, since $\langle \{q\}, \phi, \phi \rangle$ is *NC* α -OS in \mathbb{X} , but $\eta^{-1}(\langle \{q\}, \phi, \phi \rangle) = \langle \{q, r\}, \phi, \phi \rangle$ is not *NC* α -OS in \mathbb{X} .

Definition 3.18: A function $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ is called \mathcal{M} -function iff $\eta^{-1}(NCint(NCcl(\mathcal{D}))) \subseteq NCint(NCcl(\eta^{-1}(\mathcal{D})))$, for every $NC\alpha$ -OS \mathcal{D} from \mathbb{Y} .

Theorem 3.19: If $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ is a $NC\alpha$ -continuous function and \mathcal{M} -function, then η is a $NC\alpha^*$ -continuous.

Proof: Let \mathcal{C} be any $NC\alpha$ -OS of \mathbb{Y} , then we have at least a NC-OS \mathcal{D} from \mathbb{Y} where $\mathcal{D} \subseteq \mathcal{C} \subseteq NCint(NCcl(\mathcal{D}))$. Since η is \mathcal{M} -function, we have $\eta^{-1}(\mathcal{D}) \subseteq \eta^{-1}(\mathcal{C}) \subseteq \eta^{-1}(NCint(NCcl(\mathcal{D}))) \subseteq NCint(NCcl(\eta^{-1}(\mathcal{D})))$. By proposition 2.3, we have $\eta^{-1}(\mathcal{C})$ is a $NC\alpha$ -OS. Hence, η is a $NC\alpha^*$ -continuous.

Remark 3.20: The concepts of $NC\alpha^*$ -continuity and $NCS\alpha^*$ -continuity are independent as the following examples show.

Example 3.21: Assume $\mathbb{X} = \{p, q, r, s\}$ and $\mathbb{Y} = \{u, v, w\}$.

Then $\Gamma_1 = \{\phi_N, \mathbb{X}_N\} \cup \{\langle \{p\}, \phi, \phi \rangle, \langle \{q\}, \phi, \phi \rangle, \langle \{p, q\}, \phi, \phi \rangle, \langle \{p, q, r\}, \phi, \phi \rangle\}$ and $\Gamma_2 = \{\phi_N, \mathbb{Y}_N\} \cup \{\langle \{u\}, \phi, \phi \rangle, \langle \{v\}, \phi, \phi \rangle, \langle \{u, v\}, \phi, \phi \rangle\}$ be NCTs on \mathbb{X} and \mathbb{Y} , correspondingly. Define the function $\eta \colon (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ via $\eta(\langle \{p\}, \phi, \phi \rangle) = \eta(\langle \{s\}, \phi, \phi \rangle) = \langle \{v\}, \phi, \phi \rangle, \eta(\langle \{r\}, \phi, \phi \rangle) = \langle \{w\}, \phi, \phi \rangle$ and $\eta(\langle \{q\}, \phi, \phi \rangle) = \langle \{u\}, \phi, \phi \rangle$. It is easily seen that η is a NCS α^* -continuous function but not NC α^* -continuous, since $\langle \{v\}, \phi, \phi \rangle$ is NC α -OS in \mathbb{Y} but $\eta^{-1}(\langle \{v\}, \phi, \phi \rangle) = \langle \{p, s\}, \phi, \phi \rangle$ is not $NC\alpha$ -OS in \mathbb{X} .

Example 3.22: Suppose $X = \{p, q, r, s\}$.

Then $\Gamma = \{\phi_N, \mathbb{X}_N\} \cup \{\langle \{p\}, \phi, \phi \rangle, \langle \{q\}, \phi, \phi \rangle, \langle \{p, q\}, \phi, \phi \rangle, \langle \{p, q, r\}, \phi, \phi \rangle\}$ be a *NCT* on \mathbb{X} . Define the function $\eta : (\mathbb{X}, \Gamma) \to (\mathbb{X}, \Gamma)$ via $\eta(\langle \{p\}, \phi, \phi \rangle) = \eta(\langle \{q\}, \phi, \phi \rangle) = \langle \{q\}, \phi, \phi \rangle, \quad \eta(\langle \{r\}, \phi, \phi \rangle) = \langle \{s\}, \phi, \phi \rangle, \eta(\langle \{s\}, \phi, \phi \rangle) = \langle \{r\}, \phi, \phi \rangle$. It is easily seen that η is a *NC* α *-continuous function but not *NCS* α *-continuous, since $\langle \{p, r\}, \phi, \phi \rangle$ is *NCS* α -OS in \mathbb{X} , but $\eta^{-1}(\langle \{p, r\}, \phi, \phi \rangle) = \langle \{s\}, \phi, \phi \rangle$ is not *NCS* α -OS in \mathbb{X} .

Theorem 3.23: If a function $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ is $NC\alpha^*$ -continuous, NC-open and bijective, then it is $NCS\alpha^*$ -continuous.

Proof: Let $\eta: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ be a $NC\alpha^*$ -continuous, NC-open and bijective. Let \mathcal{D} be a $NCS\alpha$ -OS in \mathbb{Y} . Then we have at least a $NC\alpha$ -OS say \mathcal{P} where $\mathcal{P} \subseteq \mathcal{D} \subseteq NCcl(\mathcal{P})$. Therefore $\eta^{-1}(\mathcal{P}) \subseteq \eta^{-1}(\mathcal{D}) \subseteq \eta^{-1}(NCcl(\mathcal{P})) \subseteq NCcl(\eta^{-1}(\mathcal{P}))$ (since η is a NC-open), but $\eta^{-1}(\mathcal{P}) \in NC\alpha O(\mathbb{X})$ (since η is a $NC\alpha^*$ -continuous). Hence $\eta^{-1}(\mathcal{P}) \subseteq \eta^{-1}(\mathcal{D}) \subseteq NCcl(\eta^{-1}(\mathcal{P}))$. Thus, $\eta^{-1}(\mathcal{D}) \in NCS\alpha O(\mathbb{X})$. Therefore, η is a $NCS\alpha^*$ -continuous.

Remark 3.24: Let $\eta_1: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ and $\eta_2: (\mathbb{Y}, \Gamma_2) \to (\mathbb{Z}, \Gamma_3)$ be two functions, then:

- (i) If η_1 and η_2 are NC α -continuous, then $\eta_2 \circ \eta_1 : (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ need not to be a $NC\alpha$ -continuous.
- (ii) If η_1 and η_2 are *NCS* α -continuous, then $\eta_2 \circ \eta_1: (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ need not to be a *NCS* α -continuous.

Theorem 3.25: Let $\eta_1: (\mathbb{X}, \Gamma_1) \to (\mathbb{Y}, \Gamma_2)$ and $\eta_2: (\mathbb{Y}, \Gamma_2) \to (\mathbb{Z}, \Gamma_3)$ be two functions, then:

- (i) If η_1 is NC α -continuous and η_2 is NC -continuous, then $\eta_2 \circ \eta_1: (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a $NC\alpha$ -continuous.
- (ii) If η_1 is NC α^* -continuous and η_2 is NC α -continuous, then $\eta_2 \circ \eta_1 : (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a $NC\alpha$ -continuous.
- (iii) If η_1 and η_2 are $NC\alpha^*$ -continuous, then $\eta_2 \circ \eta_1: (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a $NC\alpha^*$ -continuous.
- (iv) If η_1 and η_2 are $NCS\alpha^*$ -continuous, then $\eta_2 \circ \eta_1: (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a $NCS\alpha^*$ -continuous.
- (v) If η_1 and η_2 are $NC\alpha^{**}$ -continuous, then $\eta_2 \circ \eta_1: (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a $NC\alpha^{**}$ -continuous.
- (vi) If η_1 and η_2 are $NCS\alpha^{**}$ -continuous, then $\eta_2 \circ \eta_1: (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a $NCS\alpha^{**}$ -continuous.
- (vii) If η_1 is $NC \alpha^{**}$ -continuous and η_2 is $NC \alpha^{*}$ -continuous, then $\eta_2 \circ \eta_1: (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a $NC \alpha^{**}$ -continuous.
- (viii) If η_1 is $NC \alpha^{**}$ -continuous and η_2 is $NC \alpha$ -continuous, then $\eta_2 \circ \eta_1 : (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a NC-continuous.
- (ix) If η_1 is NC α -continuous and η_2 is NC α^{**} -continuous, then $\eta_2 \circ \eta_1 \colon (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a $NC\alpha^*$ -continuous.
- (x) If η_1 is NC-continuous and η_2 is NC α^{**} -continuous, then $\eta_2 \circ \eta_1 \colon (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a NC α^{**} -continuous.

Proof:

- (i) Assume \mathcal{F} considers a NC-OS from \mathbb{Z} . Since η_2 is a NC-continuous, $\eta_2^{-1}(\mathcal{F})$ is a $NC\alpha$ -OS in \mathbb{Y} . Since η_1 is a $NC\alpha$ -continuous, $\eta_1^{-1}(\eta_2^{-1}(\mathcal{F})) = (\eta_2 \circ \eta_1)^{-1}(\mathcal{F})$ is a $NC\alpha$ -OS in \mathbb{X} . Thus, $\eta_2 \circ \eta_1: (\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ exists a $NC\alpha$ -continuous.
- (ii) Let \mathcal{F} be a NC-OS in \mathbb{Z} . Subsequently η_2 stands a $NC\alpha$ -continuous, and ${\eta_2}^{-1}(\mathcal{F})$ stays a $NC\alpha$ -OS from \mathbb{Y} . Since η_1 is a $NC\alpha$ *-continuous, ${\eta_1}^{-1}(\eta_2^{-1}(\mathcal{F})) = (\eta_2 \circ \eta_1)^{-1}(\mathcal{F})$ is a $NC\alpha$ -OS in \mathbb{X} . Thus, $\eta_2 \circ \eta_1$: $(\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a $NC\alpha$ -continuous.
- (iii) Let \mathcal{F} be a $NC\alpha$ -OS in \mathbb{Z} . Since η_2 is a $NC\alpha^*$ -continuous, $\eta_2^{-1}(\mathcal{F})$ is a $NC\alpha$ -OS in \mathbb{Y} . Since η_1 is a $NC\alpha^*$ -continuous, $\eta_1^{-1}(\eta_2^{-1}(\mathcal{F})) = (\eta_2 \circ \eta_1)^{-1}(\mathcal{F})$ is a $NC\alpha$ -OS in \mathbb{X} . Thus, $\eta_2 \circ \eta_1$: $(\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a $NC\alpha^*$ -continuous.
- (iv) Let \mathcal{F} be a $NCS\alpha$ -OS in \mathbb{Z} . Since η_2 is a $NCS\alpha^*$ -continuous, $\eta_2^{-1}(\mathcal{F})$ is a $NCS\alpha$ -OS in \mathbb{Y} . Since η_1 is a $NCS\alpha^*$ -continuous, $\eta_1^{-1}(\eta_2^{-1}(\mathcal{F})) = (\eta_2 \circ \eta_1)^{-1}(\mathcal{F})$ is a $NCS\alpha$ -OS in \mathbb{X} . Thus, $\eta_2 \circ \eta_1$: $(\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a $NCS\alpha^*$ -continuous.
- (v) Let \mathcal{F} be a $NC\alpha$ -OS in \mathbb{Z} . Since η_2 is a $NC\alpha^{**}$ -continuous, $\eta_2^{-1}(\mathcal{F})$ is a NC-OS in \mathbb{Y} . Since any NC-OS is a $NC\alpha$ -OS, $\eta_2^{-1}(\mathcal{F})$ is a $NC\alpha$ -OS in \mathbb{Y} . Since η_1 is a $NC\alpha^{**}$ -continuous, $\eta_1^{-1}(\eta_2^{-1}(\mathcal{F})) = (\eta_2 \circ \eta_1)^{-1}(\mathcal{F})$ is a NC-OS in \mathbb{X} . Thus, $\eta_2 \circ \eta_1$: $(\mathbb{X}, \Gamma_1) \to (\mathbb{Z}, \Gamma_3)$ is a $NC\alpha^{**}$ -continuous. The proof is obvious for others.

Remark 3.26: The next figure describes the relationship between various classes of weakly *NC*-continuous functions:

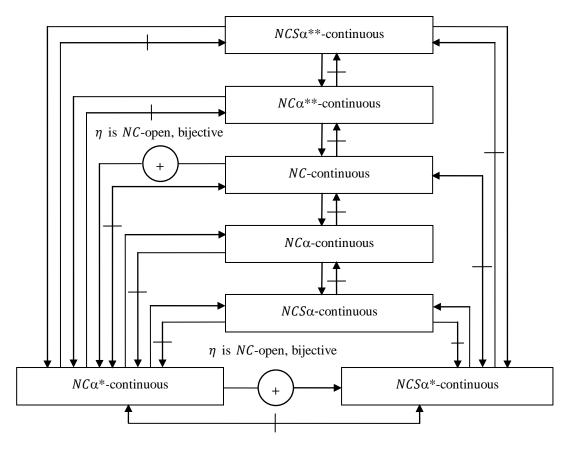


Fig. 1

4. Conclusion

We shall use the concepts of $NC\alpha$ -OS and $NCS\alpha$ -CS to define several new types of weakly NC-continuity such as; $NC\alpha^*$ -continuous, $NC\alpha^*$ -continuous, $NCS\alpha$ -continuous, $NCS\alpha^*$ -continuous and $NCS\alpha^*$ -continuous functions. The neutrosophic crisp α -open and neutrosophic crisp semi- α -open sets can be used to derive some new types of weakly NC-open (NC-closed) functions.

References

- 1. A. A. Salama, F. Smarandache and V. Kroumov, Neutrosophic crisp sets and neutrosophic crisp topological spaces. Neutrosophic Sets and Systems, 2(2014), 25-30.
- 2. R. K. Al-Hamido, Q. H. Imran, K. A. Alghurabi and T. Gharibah, On neutrosophic crisp semi- α -closed sets. Neutrosophic Sets and Systems, 21(2018), 28-35.
- 3. M. Abdel-Basset, R. Mohamed, A.E.N.H. Zaied, & F. Smarandache, A Hybrid Plithogenic Decision-Making Approach with Quality Function Deployment for Selecting Supply Chain Sustainability Metrics. Symmetry, 11(7), (2019), 903.
- 4. M. Abdel-Basset, N.A. Nabeeh, H.A. El-Ghareeb, & A. Aboelfetouh, Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise Information Systems, (2019), 1-21.

- M. Abdel-Baset, V. Chang, & A. Gamal, Evaluation of the green supply chain management practices: A novel neutrosophic approach. Computers in Industry, 108 (2019), 210-220.
- 6. M. Abdel-Basset, M. Saleh, A. Gamal, & F. Smarandache, An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Applied Soft Computing, 77 (2019), 438-452.
- M. Abdel-Baset, V. Chang, A. Gamal, & F. Smarandache, An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Computers in Industry, 106 (2019), 94-110.
- 8. M. Abdel-Basset, G. Manogaran, A. Gamal, & F. Smarandache, A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection. Journal of medical systems, 43(2), (2019), 38.
- 9. C. Maheswari and S. Chandrasekar, Neutrosophic gb-closed Sets and Neutrosophic gb-Continuity. Neutrosophic Sets and Systems, 29(2019), 89-100.
- 10. V. Banupriya and S. Chandrasekar, Neutrosophic α gs Continuity and Neutrosophic α gs Irresolute Maps. Neutrosophic Sets and Systems, 28(2019), 162-170.
- 11. R. Dhavaseelan, R. Narmada Devi, S. Jafari and Q. H. Imran, Neutrosophic α^m -continuity. Neutrosophic Sets and Systems, 27(2019), 171-179.
- 12. A. A. Salama, Basic structure of some classes of neutrosophic crisp nearly open sets & possible application to GIS topology. Neutrosophic Sets and Systems, 7(2015), 18-22.
- 13. A. A. Salama, I. M. Hanafy, H. Elghawalby and M. S. Dabash, Some GIS Topological Concepts via Neutrosophic Crisp Set Theory. New Trends in Neutrosophic Theory and Applications, 2016.
- 14. W. Al-Omeri, Neutrosophic crisp sets via neutrosophic crisp topological spaces. Neutrosophic Sets and Systems, 13(2016), 96-104.
- 15. R. K. Al-Hamido, T. Gharibah, S. Jafari, F. Smarandache, On neutrosophic crisp topology via N-topology. Neutrosophic Sets and Systems, 23(2018), 96-109.
- 16. Q. H. Imran, R. Dhavaseelan, A. H. M. Al-Obaidi and Md. Hanif PAGE, On neutrosophic generalized alpha generalized continuity. Neutrosophic Sets and Systems, 35(2020), 511-521.
- 17. Md. Hanif PAGE and Q. H. Imran, Neutrosophic generalized homeomorphism. Neutrosophic Sets and Systems, 35(2020), 340-346.

Received: May 15, 2020. Accepted: Nov, 20, 2020.