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Abstract: The ordinary differential equation of second order is being used in many engineering 

disciplines and sciences to model many real-life problems. These problems are mostly uncertain, 

vague and incomplete and thus they require some more advanced tool for modelling. 

Neutrosophic logic becomes the solution of all these kind of uncertain problems as it describe the 

conditions of uncertainty which occurs during the process of modelling on the basis of grade of 

membership of truth values, indeterminacy values and falsity values, that means it consider all the 

uncertain parameters on the basis of these degrees. In this research paper, we have considered the 

ordinary differential equation of second order with neutrosophic numbers as initial conditions of 

spring mass system is solved using Sumudu transform method which has advantage of unit 

preserving property over the well established Laplace Transform method. The solution obtained at 

various computational points by this method is shown in the form of table. Furthermore, the results 

obtained at different (α, β, γ)-cut and time values are also depicted graphically and are verified 

analytically by de-fuzzifying the data. 

Keywords: Fuzzy numbers; Neutrosophic numbers; Neutrosophic triangular numbers; 

Strongly-generalized differentiability; Sumudu transform. 

 

 

1. Introduction 

In our daily lives we encounter many situations that are mostly vague, uncertain, ambiguous, 

incomplete, and inconsistent. With this limited and incomplete information, it becomes problematic 

to model and find the solution of the problem in a precise manner. To deal with these kinds of 

situations, L.A. Zadeh [1], in 1965 discovered the fuzzy set theory as the extension of classical set 

theory. This theory is more powerful than classical set theory in the sense that it considers uncertain 

environmental conditions as membership values, whereas classical set theory only studies true or 

false values and do not analyze any values between them. In real life situations, we often get 

information in the form of ambiguous words like good, very good, bad, and very bad, etc., but all 

these facts may differ from one person to another, because it is related to human thinking and hence 

depends on the human point of view. In fuzzy set theory these terms are known as linguistic terms 

and to these linguistic terms some membership grades are assigned according to their significance. 

All of these linguistic terms together with their membership degrees are written in the form of 

ordered pairs and finally fuzzy sets are formed using these ordered pairs. Sometimes, we have to 

deal with fuzzified numerical data also. For example, when we ask students how many hours do 

you self-study in a day? Then they use statements such as about 50 minutes a day, about 40 minutes 

or 50 minutes a day, or more than 50 minutes a day, etc. and these types of numbers are known as 
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fuzzy numbers. The set of real numbers act as a superset of these fuzzy numbers. These real values 

actually represent the grade of membership of a fuzzy set A, well defined over the universal set X 

and grade of membership μA(x)∈[0,1]. 

In some practical problems, considering only the membership value is not enough, it is also 

necessary to consider the non-membership value. The fuzzy sets are defined by considering the 

elements which considers only grade of membership of any information and grade of 

non-membership is not considered. Atanassov [2] studied in this direction and introduced another 

type of fuzzy set known as intuitionistic fuzzy set (IFS), which is the natural extension of fuzzy set 

and is more applicable in real life situation. Intuitionistic fuzzy sets considers as an extension of 

fuzzy sets, because it not only provide the information which belongs to the set but also which does 

not belong to the set. For example, suppose we want to collect the information of liking of any 

particular subject among students of class A and a questionnaire has been prepared for this purpose, 

which is distributed to the students so that they can fill it and then submit. The student can either fill 

the plus sign response to show the liking, minus sign to show dislikes or there is also one option to 

show nothing. In this way, for every student X, two responses are recorded, viz; A(x) = number of 

acceptances/likes, N(x) = number of non-acceptances/ dislikes. Another concept is also available in 

the world of uncertainty, which is known as Neutrosophic set theory, which studies the cause, 

description, and possibility of neutral thoughts. Neutrosophic sets deal with belongingness of truth 

values, indeterminate values and false values and it was first introduced by Florentin Smarandache 

[3]. In Neutrosophic logic, grade of membership of Truth values (T), Indeterminate values (I) and 

False values (F) has been defined within the non-standard interval ] 0, 1+− [. Neutrosophic set theory 

with non-standard interval works well in philosophical point of view. But practically when we deal 

with science and engineering problems, it is not possible to define data within this non-standard 

interval. To overcome this problem single valued Neutrosophic sets was defined by the researcher 

Wang et al. [4] by considering unit interval [0,1] in its standard form. The values within this interval 

are called Neutrosophic numbers. Aal SIA et al. [5], Deli and Subas [6], Ye [7] and Chakraborty et al. 

[8], etc., defined different kind of Neutrosophic numbers. Abdel-Basset et al. [9-13] defined 

advanced Neutrosophic numbers and presented results on recent pandemic COVID-19, decision 

making problems, supply chain model, industrial and management problems. In this way, lots of 

work has been done for the development of the Neutrosophic set theory with applications in real life 

problems (see for instance [14-18]).  

 

Neutrosophic logic becomes one of the important and valuable tools in almost all area of science 

and engineering to model various real life phenomenon using differential equations with uncertain 

and imprecise parameters. Fuzzy differential equations (FDE) were introduced by Dubois et al. 

[19-21], by considering only membership values. For defining FDE, fuzzy numbers and 

corresponding fuzzy functions were discovered by Chang et al. [22]. Further the concept of 

intuitionistic fuzzy differential equations [23-25] came into the existence containing both 

membership and non-membership values as its parameters. To study the solutions of these fuzzy 

differential equations, the necessity arises to understand the concept of derivatives in fuzzy 

environment. In this direction lots of work has been reported in the literature, such as differentials 

for fuzzy functions were discussed by Puri and Ralescu [26] and Fuzzy Calculus is studied by 

Goetschel and Voxman [27], etc. Fuzzy derivative concept is used in the solution of ordinary 

differential equations of first order with initial conditions by Seikkala and Kaleva [28-29]. Buckley 

and Feuring [30-31] have solved ordinary differential equation of nth order containing fuzzy initial 

conditions.  In 2005, Bede and Gal [32] worked on fuzzy-valued function and defined generalized 

differentiability for that. Further he provided the solution of fuzzy differential equations with this 

generalized differentiability using the lower-upper representation of a fuzzy numbers. Using 

generalized Hukuhara derivative in 2009, Stefanini et al. [33] represent generalization of fuzzy 

interval valued function. In this way the advancement of the theory of differential equations in a 

fuzzy environment has taken place. 
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It is clear that fuzzy differential equations deal with uncertainty by considering only 

membership values and intuitionistic fuzzy differential equations which considers only membership 

and non-membership values but none of them considers indeterminacy. Thus, it was needed to 

develop neutrosophic differential equations theory to model all three values, i.e., membership, 

indeterminacy and non-membership. Smarandache introduced Neutrosophic Calculus [34] 

containing all the basic concepts such as limit, continuity, differentiability, important functions such 

as exponential and logarithmic, concept of differentials and integrals in the neutrosophic 

environment. This theory is the growing field and researchers started working in this area. One can 

find that the theory of neutrosophic differential equations is studied by Sumathi and Priya [35] in the 

year 2018 and also one recent paper of Sumathi and Sweety [36], which uses trapezoidal 

neutrosophic numbers for solving differential equations of first order having one independent 

variable. 

One can find a rich literature based on the theory of fuzzy differential equations, which contains 

various tools for the solution of fuzzy differential equations. To find the appropriate solutions of 

fuzzy differential equations various analytical, semi-analytical and numerical schemes are suggested 

and used in the recent literature. Salahshour et al. [37] defined Laplace transform for a fuzzy 

differential equation and Mondal et al. [38-39] solved fuzzy differential equations using Laplace 

transform. In 2016, Tapaswini et al. [40] solved fuzzy differential equation using analytical method. 

Ahmadian et al. in 2018, [41] uses Runge-Kutta method of 4th order for the solution of fuzzified 

differential equation. Similarly, Sahni et al. [42] solved fuzzy differential equation of second order 

using trapezoidal Intuitionistic fuzzy numbers.  

In 1993, Watugala [43] introduced a new transform, known as Sumudu transform, which is now 

being used as a tool for solving fuzzy differential equations. This transform have two important 

properties, viz; scale property and unit-preserving property, so that it cannot restore the new 

frequency domain and solves the differential equations. After that many fuzzfied differential 

equations have been solved using this transform (see for instance [44]-[48]). It is needed to contribute 

more and more work for the development of the theory of Neutrosophic differential equations as it 

covers more real life situations. In this paper, we have attempted to solve ordinary differential 

equation of second order based on the spring mass system in a neutrosophic environment using 

Sumudu transform method. The solution is calculated at various levels of cut – points and time 

values. The results are shown graphically and further compared with the solution obtained by 

considering the crisp set values.   

2. Preliminaries  

Definition 2.1(Fuzzy set)[19]. Let X be any set which is non-empty. A fuzzy set M over the elements 

of the set X is defined as = {(𝑥, 𝜇𝑀(𝑥))|𝑥 ∈ 𝑀, 𝜇𝑀(𝑥) ∈ [0,1]} , where the symbol 𝜇𝑀(𝑥) denotes the 

grade of membership of the element 𝑥 ∈ 𝑀.   

 

Definition 2.2(Support)[19]. Let X is any Universal set. The crisp set formed from the set of all points 

in X having grade of membership which is not zero is called as the support of the fuzzy. 

 

Definition 2.3(Core)[19]. The core related to fuzzy set M is defined as the set of all points of the 

Universal set, whose grade of membership is 1. 

 

Definition: 2.4 (Convex set)[19]. If 𝑋 ∈ 𝑅, a fuzzy set M is convex, if for 

𝜇𝑀(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ 𝑚𝑖𝑛( 𝜇𝑀(𝑥1), 𝜇𝑀(𝑥2)) , where 𝜆 ∈ [0,1].  
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Definition 2.5(Fuzzy number)[19]. A fuzzy number is a generalization of the crisp number in which 

there is collection of possible values and not any single value and are connected to each other, where 

each of the possible value has its own weight between 0 and 1. 

 

Definition 2.6(Alpha-cut)[19]. The 𝛼-level cut of the fuzzy set 𝑀 ̃of X is a crisp set 𝑀𝛼that contains 

all the elements of X that have membership values in M greater than or equal to 𝛼 , 

i.e.,𝑀𝛼={𝑥: 𝜇𝑀̃(𝑥) ≥ 𝛼, 𝑥 ∈ 𝑋, 𝛼 ∈ [0,1]}. 

 

Definition 2.7(Triangular fuzzy number)[42]. A triangular fuzzy number A is a subset of fuzzy 

number in R with the following function defined as: 

𝜇𝐴(𝑥) =

{
 
 

 
 

0 𝑓𝑜𝑟 𝑥 ≤ 𝑝
𝑥 − 𝑝

𝑞 − 𝑝
𝑓𝑜𝑟 𝑝 ≤ 𝑥 ≤ 𝑞

𝑟 − 𝑥

𝑟 − 𝑞
𝑓𝑜𝑟 𝑞 ≤ 𝑥 ≤ 𝑟

0 𝑓𝑜𝑟 𝑟 ≤ 𝑥

 

where 𝑝 ≤ 𝑞 ≤ 𝑟 and a triangular fuzzy number is denoted by 𝐴𝑇𝑟〈(𝑝, 𝑞, 𝑟)〉. 

 

Definition 2.8(Intuitionistic fuzzy number-IFS)[2]. Let U be a non empty Universal set. An 

intuitionistic fuzzy set is represented by 𝑀 = {(𝑥, 𝜇𝑀(𝑥), 𝜔𝑀(𝑥))|𝑥 ∈ 𝑈}, where value 𝜇𝑀(𝑥) denotes 

the membership value of 𝑥 in 𝑀, and value 𝜔𝑀(𝑥)denotes the non-membership value of 𝑥 in 𝑀. 

 

Definition 2.9(α,β)-cut[2]. The 𝛼, β-level set of the fuzzy set 𝑀 ̃of X is a crisp set and 𝑀𝛼,𝛃 contains 

all the elements of X that have membership values in M greater than or equal to 𝛼  and 

non-membership values in M greater than or equal to 𝛽 , i.e., 𝑀𝛼,𝛃 ={ 𝑥: 𝜇𝑀̃(𝑥) ≥ 𝛼, 𝑥 ∈ 𝑋, 𝛼 ∈

[0,1], 𝑥:𝜔𝑀̃(𝑥) ≥ 𝛽, 𝑥 ∈ 𝑋, 𝛽 ∈ [0,1]} 

 

Definition 2.10 (Neutrosophic Set)[36]. Let U be a universal set. A neutrosophic set M on U is 

defined as M = {TM(x), IM(x), FM(x): x ∈ U}, where TM(x), IM(x), FM(x): U → ]−0, 1+[ represents the grade 

of membership values, grade of indeterminacy value, and grade of non-membership value 

respectively of the element x∈U, such that −0≤ TM(x) + IM(x) + FM(x): ≤3+. 

 

Definition 2.11 (Single-Valued Neutrosophic Set (SVNS)) [36]. Let U be a universal set. Let M be 

any SVNS defined on the elements of U, then M = {TM(x), IM(x), FM(x): x ∈ U}, where TM(x), IM(x), 

FM(x) : U → [0,1] represents the grade of membership, indeterminacy, and non-membership, 

respectively of the element x∈U. 

 

Definition 2.12 (α,β,γ)-cut[36]. The (α,β,γ)-cut of neutrosophic set is denoted by F(α,β,γ), where 

α,β,γ ∈[ 0,1] and are fixed numbers, such that α + β + γ ≤ 3 and is defined as F(α,β,γ) ={ TM(x), IM(x), 

FM(x): x ∈ U, TM(x)≥ α, IM(x) ≤ β, FM(x) ≤ γ}. 
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Definition2.13 (Neutrosophic Number)[36]. A neutrosophic set M defined over the universal set of 

real numbers R is said to be neutrosophic number if it has the following properties: 

1) M is normal: if there exist x0∈ R, such that TM(x0)=1 (IM(x0) = FM(x0)=0) 

2) M is convex set for the truth function TM(x), i.e., TM(μx1+(1−μ)x2) ≥ min(TM(x1),TM(x2)), ∀x1,x2 ∈R, 

μ∈[ 0,1]. 

3) M is concave set for the indeterminacy function and false function IM(x) and FM(x), i.e.,  

IM(μx1+(1−μ)x2) ≥ max(IM(x1), IM(x2)),  ∀x1, x2 ∈ R, μ∈[ 0,1],  

FM(μx1+(1−μ)x2) ≥max(FM(x1), FM(x2)),  ∀x1, x2 ∈ R, μ∈[0,1] . 

 

Definition 2.14 (Triangular Neutrosophic Number)[36]. A neutrosophic number in R is a superset 

of the triangular neutrosophic number M, having truth 𝑇𝑀(𝑥), indeterminacy 𝐼𝑀(𝑥) and false 𝐹𝑀(𝑥) 

membership function defined as  

𝑇𝑀(𝑥) =

{
 
 

 
 (
𝑥 − 𝑎

𝑏 − 𝑎
)𝑢𝑚,   𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

𝑢𝑚,          𝑓𝑜𝑟  𝑥 − 𝑏

(
𝑐 − 𝑥

𝑐 − 𝑏
) 𝑢𝑚,   𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐼𝑀(𝑥) =

{
 
 

 
 (
𝑏 − 𝑥

𝑏 − 𝑎
) 𝑣𝑚,   𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

𝑣𝑚,          𝑓𝑜𝑟  𝑥 − 𝑏

(
𝑥 − 𝑐

𝑐 − 𝑏
) 𝑣𝑚,   𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐

1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐹𝑀(𝑥) =

{
 
 

 
 (
𝑏 − 𝑥

𝑏 − 𝑎
)𝑤𝑚,   𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

𝑤𝑚,          𝑓𝑜𝑟  𝑥 − 𝑏

(
𝑥 − 𝑐

𝑐 − 𝑏
)𝑤𝑚,   𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐

1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑎 ≤ 𝑏 ≤ 𝑐 . A neutrosophic number in a triangular form is denoted by 

𝑀𝑇𝑁〈(𝑎, 𝑏, 𝑐); 𝑢𝑚, 𝑣𝑚,𝑤𝑚〉. Here the truth membership function, i.e. TM(x) increases in a linear way for 

x ∈ [a,b] and decreases in a linear form for x ∈ [b, c]. The inverse behaviour is seen for IM(x) and FM(x) 

for x ∈ [a, b] and for x ∈ [b, c], where 𝛼 ∈ [0, 𝑢𝑚], 0 < 𝑢𝑚 < 1, 𝛽 ∈ [0, 𝑣𝑚,], 0 < 𝑣𝑚 < 1  , 𝛾 ∈

[0, 𝑤𝑚], 0 < 𝑤𝑚 < 1 . 

 

(a) TM(x) as triangular form                          (b) IM(x) and FM(x) as triangular form 
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Definition 2.15(α,β,γ)-cut of a Triangular Neutrosophic Number [36]. 

The (α,β,γ) − cut of a triangular neutrosophic number 𝑀𝑇𝑁⟨(𝑎, 𝑏, 𝑐); 𝑢𝑚, 𝑣𝑚,𝑤𝑚⟩  is defined as 

follows:  

M(α,β,γ) =[M1(α), M2(α)];[𝑀3(β),𝑀4(β)];  [𝑀5(γ),𝑀6(γ)] ,  0 ≤ α+β +γ ≤3, where, 

M(α,β,γ) = [(𝑎 + 𝛼(𝑏 − 𝑎))𝑢𝑀, (𝑐 − 𝛼(𝑐 − 𝑏))𝑢𝑀], 

[(𝑏 − 𝛽(𝑏 − 𝑎))𝑣𝑀 , (𝑏 + 𝛽(𝑐 − 𝑏))𝑣𝑀], 

[(𝑏 − 𝛾(𝑏 − 𝑎))𝑤𝑀 , (𝑏 + 𝛾(𝑐 − 𝑏))𝑤𝑀]. 

 

Definition 2.16(Differentiability) [36]. For a fuzzy valued function 𝑓 ∶ (𝑎, 𝑏) →  𝑅 at the point 𝑥0 , 

the differentiability is defined as follows: 𝑔′(𝑥0) = lim
ℎ→0

 𝑔 (𝑥0 +ℎ)− 𝑔 (𝑥0)

ℎ
 and 𝑔′(𝑥0) is D1-differentiable 

at x0. If [g(𝑥0)]α =[g1(𝑥0,α), g2(𝑥0,α)] and 𝑔′(𝑥0) is D2-differentiable at x0 and if [g(𝑥0)]α =[g2(𝑥0α), 

g1(𝑥0,α)] for all α ∈[ 0,1]. 

 

Definition 2.17 (Generalized differentiability)[36]. The second-order derivative of a fuzzy value 

function 𝑔 ∶ (𝑎, 𝑏) →  𝑅 at 𝑥0 is defined as follows: 𝑔′′(𝑥0) = lim
ℎ→0

𝑔′(𝑥0+ℎ)−𝑔
′(𝑥0)

ℎ
 and 𝑔′(𝑥0)  is 

D1-differentiable at x0 if  

𝑔′′(𝑥0, 𝛼) = {
(𝑔′

1
(𝑥0, 𝛼), 𝑔

′
2
(𝑥0, 𝛼)) if g is D1 − differentiable on (a, b)

(𝑔′
2
(𝑥0, 𝛼), 𝑔

′
1
(𝑥0, 𝛼)) if g is D2 − differentiable on (a, b)

 

for all 𝛼∈ [0,1] and 𝑔′(𝑥0) is D2-differentiable at x0 if 

𝑔′′(𝑥0, 𝛼) = {
(𝑔′

2
(𝑥0, 𝛼), 𝑔

′
1
(𝑥0, 𝛼)) if g is D1 − differentiable on (a, b)

(𝑔′
1
(𝑥0, 𝛼), 𝑔

′
2
(𝑥0, 𝛼)) if g is D2 − differentiable on (a, b)

 

for all 𝛼∈ [0,1]. 

  

3. Neutrosophic Sumudu Transform[NST] 

Let f(ut) is a neutrosophic valued function which is continuous. Suppose that g(ut)e-t be improper 

neutrosophic Riemann integrable on [0,∞) then ∫ 𝑔(𝑢𝑡)𝑒−𝑡𝑑𝑡
∞

0
 is called neutrosophic Sumudu 

transform and it is defined as, 𝐺(𝑢) = 𝑆[𝑔(𝑡)] = ∫ 𝑔(𝑢𝑡)𝑒−𝑡𝑑𝑡
∞

0
, (𝑢 ∈ [−𝜏, 𝜏]) 

where variable u is used to factor the variable t in the argument of the neutrosophic valued function. 

We have, 

𝑔(𝑡, 𝑟) =  {𝑔𝑇(𝑡, 𝑟), 𝑔𝐼(𝑡, 𝑟), 𝑔𝐹(𝑡, 𝑟) }, which are denoted in neutrosophic triangular form as   

𝑔𝑇(𝑡, 𝑟) = {𝑔𝑇(𝑡, 𝑟), 𝑔𝑇(𝑡, 𝑟)} 𝑔𝐼(𝑡, 𝑟) = {𝑔𝐼(𝑡, 𝑟), 𝑔𝐼(𝑡, 𝑟)} 𝑔𝐹(𝑡, 𝑟) = {𝑔𝐹(𝑡, 𝑟), 𝑔𝐹(𝑡, 𝑟)} 

∫ 𝑔𝑇(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

= (∫ 𝑔𝑇(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

, ∫ 𝑔𝑇(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

, ) 

∫ 𝑔𝐼(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

= (∫ 𝑔𝐼(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

, ∫ 𝑔𝐼(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

, ) 
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∫ 𝑔𝐹(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

= (∫ 𝑔𝐹(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

, ∫ 𝑔𝐹(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

) 

also using definition of classical Sumudu transform. 

𝑠 [𝑔𝑇(𝑡, 𝑟)] = ∫ 𝑔𝑇(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

 

                 𝑠[𝑔𝑇(𝑡, 𝑟)] = ∫ 𝑔𝑇(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

,                 

𝑠 [𝑔𝐼(𝑡, 𝑟)] = ∫ 𝑔𝐼(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

 

𝑠[𝑔𝐼(𝑡, 𝑟)] = ∫ 𝑔𝐼(𝑢𝑡)𝑒
−𝑡𝑑𝑡,

∞

0

 

𝑠 [𝑔𝐹(𝑡, 𝑟)] = ∫ 𝑔𝐹(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

 

𝑠[𝑔𝐹(𝑡, 𝑟)] = ∫ 𝑔𝐹(𝑢𝑡)𝑒
−𝑡𝑑𝑡

∞

0

, 

then it follows S[g(t)]= (𝑠[𝑔(𝑡, 𝑟), 𝑠[𝑔(𝑡, 𝑟)]]). 

 

3.1  Some basic results on fuzzy differential equation using Sumudu transform 

The following theorems are useful in our results:- 

Theorem 3.1.1[44]. Let 𝑔′(𝑡)  be a continuous neutrosophic valued function and 𝑔(𝑡)  is the 

primitive of 𝑔′(𝑡) on [0,∞) then, 

𝑆[𝑔′(𝑡)] =
𝑆[𝑔(𝑡)]

𝑢
−ℎ

𝑔(0)

𝑢
 , where 𝑔 is (a) differentiable or, 

𝑆[𝑔′(𝑡)] =
(−𝑔(0))

𝑢
−ℎ

(−𝑆[𝑔(𝑡)])

𝑢
 , where 𝑔 is (b) differentiable. 

where “−ℎ" 𝑖𝑠 notation of gh-differentiability. 

 

Theorem 3.1.2[44]. Let 𝑔(𝑡),𝑔′(𝑡) be an continuous neutrosophic valued function on [0,∞) and that 

𝑔′′(𝑡) be piece wise continuous neutrosophic valued function on [0,∞) then, 

𝑆[𝑔′′(𝑡)] =
𝑆[𝑔(𝑡)]

𝑢2
−ℎ

𝑔(0)

𝑢
−ℎ

𝑔′(0)

𝑢
,  where 𝑔 is (a) differentiable and 𝑔′ is (a) differentiable or 

𝑆[𝑔′′(𝑡)] = −
𝑔(0)

𝑢2
−ℎ [−

𝑆[𝑔(𝑡)]

𝑢2
]-
𝑔′(0)

𝑢
,  where 𝑔 is (a) differentiable and 𝑔′ is (b) differentiable or 

𝑆[𝑔′′(𝑡)] = −
𝑔(0)

𝑢2
−ℎ [−

𝑆[𝑔(𝑡)]

𝑢2
] −ℎ

𝑔′(0)

𝑢
,  where 𝑔 is (b) differentiable and 𝑔′ is (a) differentiable or 

𝑆[𝑔′′(𝑡)] =
𝑆[𝑔(𝑡)]

𝑢2
−ℎ

𝑔(0)

𝑢2
−

𝑔′(0)

𝑢
,  where 𝑔 is (b) differentiable and 𝑔′ is (b) differentiable. 

where “−ℎ" 𝑖𝑠 notation of gh-differentiability. 

 

Theorem 3.1.3. Let 𝑔 ∶ 𝑅 → 𝐺(𝑅) be a continuous neutrosophic valued function and denote 

  𝑔𝑇(x)=[𝑔𝑇𝛼(𝑥), 𝑔𝑇𝛼(𝑥)] for each 𝛼 ∈ [0,1], 
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  𝑔𝐼(x) = [𝑔𝐼𝛽(𝑥), 𝑔𝐼𝛽(𝑥)] for each 𝛽 ∈ [0,1],  

   𝑔𝐹(x) = [𝑔𝐹𝛾(𝑥), 𝑔𝐹𝛾(𝑥)] for each 𝛾 ∈ [0,1].Then: 

(1) If   𝑔𝑇  is (1)-differentiable, then 𝑔𝑇𝛼  and 𝑔
𝑇𝛼

 are differentiable function and 𝑓′(𝑥) =

[𝑓𝑇𝛼(𝑥), 𝑓𝑇𝛼(𝑥)] 

(2) If   𝑔𝑇  is (2)-differentiable, then 𝑔𝑇𝛼  and 𝑔
𝑇𝛼

 are differentiable function and 𝑓′(𝑥) =

[𝑓𝑇𝛼(𝑥), 𝑓𝑇𝛼(𝑥)] 

(3) If   𝑔𝐼  is (1)-differentiable, then 𝑔𝐼𝛽  and 𝑔
𝐼𝛽

 are differentiable function and 𝑓′(𝑥) =

[𝑓𝐼𝛽(𝑥), 𝑓𝐼𝛽(𝑥)] 

(4) If   𝑔𝐼  is (2)-differentiable, then 𝑔𝐼𝛽  and 𝑔
𝐼𝛽

 are differentiable function and 𝑓′(𝑥) =

[𝑓𝐼𝛽(𝑥), 𝑓𝐼𝛽(𝑥)] 

(5) If   𝑔𝐹  is (1)-differentiable, then 𝑔𝐹𝛾  and 𝑔
𝐹𝛾

 are differentiable function and 𝑓′(𝑥) =

[𝑓𝐹𝛾(𝑥), 𝑓𝐹𝛾(𝑥)] 

(6) If   𝑔𝐹  is (2)-differentiable, then 𝑔𝐹𝛾  and 𝑔
𝐹𝛾

 are differentiable function and 𝑓′(𝑥) =

[𝑓𝐹𝛾(𝑥), 𝑓𝐹𝛾(𝑥)] 

 

3.2 Solution of General Second Order Ordinary Differential Equation in a Neutrosophic Environment using 

Sumudu Transform 

Let us consider a general ordinary differential equation of second order given as follows: 

  

𝑦′′(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦′(𝑡))                                                         (1) 

 

with the initial conditions 𝑦(𝑡0) = 𝑦0,𝑦′(𝑡0) = 𝑧0 , where 𝑓 ∶ [𝑡0, 𝑃] × 𝑅 → 𝑅. 

Suppose that initial values𝑦0 and 𝑧0are uncertain and are defined in terms of lower and upper 

bound of truth, indeterminacy and falsity, i.e. neutrosophic number.  

Thus from equation no. 1, we have the following fuzzy initial value differential equation: 

 

𝑦′′(𝑡) = 𝑔(𝑡, 𝑦(𝑡), 𝑦′(𝑡)), 0 ≤ 𝑡 ≤ 𝑃 

 

𝑦𝑇(𝑡0) = 𝑦0 = [𝑦𝑇𝛼(0), 𝑦𝑇𝛼(0)] , 0<𝛼 ≤ 1, 𝑦′
𝑇
(𝑡0) = 𝑧0 = [𝑧𝑇𝛼(0), 𝑧𝑇𝛼(0)], 0<𝛼 ≤ 1,                            (2) 

𝑦𝐼(𝑡0) = 𝑦0 = [𝑦𝐼𝛽(0), 𝑦𝐼𝛽(0)] , 0<𝛽 ≤ 1, 𝑦′
𝐼
(𝑡0) = 𝑧0 = [𝑧𝐼𝛽(0), 𝑧𝐼𝛽(0)], 0<𝛽 ≤ 1,                                 (3) 
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𝑦𝐹(𝑡0) = 𝑦0 = [𝑦𝐹𝛾(0), 𝑦𝐹𝛾(0)] , 0<𝛾 ≤ 1, 𝑦′
𝐹
(𝑡0) = 𝑧0 = [𝑧𝐹𝛾(0), 𝑧𝐹𝛾(0)], 0<𝛾 ≤ 1,                                (4) 

where 𝑔: [𝑡0, 𝑃] × 𝐹(𝑅) → 𝐹(𝑅) is a function of continuous manner. 

By applying Neutrosophic Sumudu Transform on given second order differential equation, we have  

 

𝑆[𝑦′′(𝑡)] = 𝑠[𝑔(𝑡, 𝑦(𝑡), 𝑦′(𝑡))] 

Case 1: Let y’’(t) is (1)-differentiable, and using the above theorem we have  𝑦′′(𝑡) = [𝑦′
𝛼
(𝑡), 𝑦′𝛼(𝑡)]. 

The differential equation is then reduced to the following: 

𝑦′
𝑇𝛼
(𝑡) = 𝑔𝑇𝛼(𝑡, 𝑦(𝑡), 𝑦

′(𝑡)), 𝑦𝑇𝛼(𝑡0) = 𝑦𝑇𝛼(0) 

𝑦′
𝑇𝛼
(𝑡) = 𝑔

𝑇𝛼
(𝑡, 𝑦(𝑡), 𝑦′(𝑡)), 𝑦

𝑇𝛼
(𝑡0) = 𝑦𝑇𝛼(0) 

𝑦′
𝐼𝛽
(𝑡) = 𝑔𝐼𝛽(𝑡, 𝑦(𝑡), 𝑦

′(𝑡)), 𝑦𝐼𝛽(𝑡0) = 𝑦𝐼𝛽(0) 

𝑦′
𝐼𝛽
(𝑡) = 𝑔

𝐼𝛽
(𝑡, 𝑦(𝑡), 𝑦′(𝑡)), 𝑦

𝑰𝜷
(𝑡0) = 𝑦

𝐼𝛽
(0) 

𝑦′
𝐹𝛾
(𝑡) = 𝑔𝐹𝛾(𝑡, 𝑦(𝑡), 𝑦

′(𝑡)), 𝑦𝐹𝛾(𝑡0) = 𝑦𝐹𝛾(0) 

𝑦′
𝐹𝛾
(𝑡) = 𝑔

𝐹𝛾
(𝑡, 𝑦(𝑡), 𝑦′(𝑡)), 𝑦

𝐹𝛾
(𝑡0) = 𝑦𝐹𝛾(0) 

 

Using the Sumudu transform for solving, we get 

 

𝑠[𝑦′′(𝑡)] =
𝑠[𝑦(𝑡)]−ℎ𝑦(𝑡0)−ℎ𝑢𝑦

′(𝑡0)

𝑢2
 .

 

The following six first order ordinary differential equations are developed, two for both Truth, 

Indeterminacy and falsity and is defined as 

𝑆 [𝑔𝑇𝛼(𝑡, 𝑦(𝑡), 𝑦
′(𝑡))] =

𝑠 [𝑦𝑇𝛼(𝑡)] −ℎ𝑦𝑇𝛼(0)−ℎ𝑢𝑦
′

𝑇𝛼
(0)

𝑢2
 

𝑆[𝑔
𝑇𝛼
(𝑡, 𝑦(𝑡), 𝑦′(𝑡))] =

𝑠[𝑦
𝑇𝛼
(𝑡)]−ℎ𝑦𝑇𝛼(0)−ℎ𝑢𝑦

′
𝑇𝛼
(0)

𝑢2
 

𝑆 [𝑔𝐼𝛽(𝑡, 𝑦(𝑡), 𝑦
′(𝑡))] =

𝑠 [𝑦𝐼𝛽(𝑡)] −ℎ𝑦𝐼𝛽(0)−ℎ𝑢𝑦
′

𝐼𝛽
(0)

𝑢2
 

𝑆 [𝑔
𝐼𝛽
(𝑡, 𝑦(𝑡), 𝑦′(𝑡))] =

𝑠 [𝑦
𝐼𝛽
(𝑡)]−ℎ𝑦𝐼𝛽(0)−ℎ𝑢𝑦

′
𝐼𝛽
(0)

𝑢2  

𝑆 [𝑔𝐹𝛾(𝑡, 𝑦(𝑡), 𝑦
′(𝑡))] =

𝑠 [𝑦𝐹𝛾(𝑡)] −ℎ𝑦𝐹𝛾(0)−ℎ𝑢𝑦
′

𝐹𝛾
(0)

𝑢2
 

𝑆 [𝑔
𝐹𝛾
(𝑡, 𝑦(𝑡), 𝑦′(𝑡))] =

𝑠 [𝑦
𝐹𝛾
(𝑡)]−ℎ𝑦𝐹𝛾(0)−ℎ𝑢𝑦

′
𝐹𝛾
(0)

𝑢2  

 

To solve this, we assume that   
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𝑆 [𝑦𝑇𝛼(𝑡)] = 𝐿𝑇𝛼
1 (𝑢), 𝑆[𝑦

𝑇𝛼
(𝑡)] = 𝑈𝑇𝛼

1 (𝑢), 

𝑆 [𝑦𝐼𝛽(𝑡)] = 𝐿𝐼𝛽
1 (𝑢), 𝑆 [𝑦

𝐼𝛽
(𝑡)] = 𝑈𝐼𝛽

1 (𝑢),
 

𝑆 [𝑦𝐹𝛾(𝑡)] = 𝐿𝐹𝛾
1 (𝑢), 𝑆 [𝑦

𝐹𝛾
(𝑡)] = 𝑈𝐹𝛾

1 (𝑢)
 

 

where, 𝐿𝑇𝛼
1 (𝑢), 𝑈𝑇𝛼

1 (𝑢), 𝐿𝐼𝛽
1 (𝑢), 𝑈𝐼𝛽

1 (𝑢), 𝐿𝐹𝛾
1 (𝑢), 𝑈𝐹𝛾

1 (𝑢)are solution of differential equations.  

By using inverse neutrosophic Sumudu transform, we have 

𝑦𝑇𝛼(𝑡), 𝑦𝑇𝛼(𝑡),𝑦𝐼𝛽(𝑡), 𝑦𝐼𝛽(𝑡),𝑦𝐹𝛾(𝑡), 𝑦𝐹𝛾(𝑡) 

and it follows that, 

𝑦𝑇𝛼(𝑡) = 𝑆−1[𝐿𝑇𝛼
1 (𝑢)] , 𝑦𝑇𝛼(𝑡) = 𝑆−1[𝑈𝑇𝛼

1 (𝑢)] 

 

𝑦𝐼𝛽(𝑡) = 𝑆−1[𝐿𝐼𝛽
1 (𝑢)],𝑦

𝐼𝛽
(𝑡) = 𝑆−1[𝑈𝐼𝛽

1 (𝑢)] 

 

𝑦𝐹𝛾(𝑡) = 𝑆−1[𝐿𝐹𝛾
1 (𝑢)], 𝑦

𝐹𝛾
(𝑡) = 𝑆−1[𝑈𝐹𝛾

1 (𝑢)]
 

 

Case 2: Let y’’(t) be (2)-differentiable, then from above theorem we have 𝑦′′(𝑡) = [𝑦′
𝛼
(𝑡), 𝑦′𝛼(𝑡)]. 

Reducing the second order ordinary differential equations into first order ordinary differential 

equation, we have the following differential equations to be solved, 

𝑦′
𝑇𝛼
(𝑡) = 𝑔𝑇𝛼(𝑡, 𝑦(𝑡), 𝑦

′(𝑡)), 𝑦𝑇𝛼(𝑡0) = 𝑦𝑇𝛼(0) 

𝑦′
𝑇𝛼
(𝑡) = 𝑔

𝑇𝛼
(𝑡, 𝑦(𝑡), 𝑦′(𝑡)), 𝑦

𝑇𝛼
(𝑡0) = 𝑦𝑇𝛼(0) 

𝑦′
𝐼𝛽
(𝑡) = 𝑔𝐼𝛽(𝑡, 𝑦(𝑡), 𝑦

′(𝑡)), 𝑦𝐼𝛽(𝑡0) = 𝑦𝐼𝛽(0) 

𝑦′
𝐼𝛽
(𝑡) = 𝑔

𝐼𝛽
(𝑡, 𝑦(𝑡), 𝑦′(𝑡)), 𝑦

𝑰𝜷
(𝑡0) = 𝑦

𝐼𝛽
(0) 

𝑦′
𝐹𝛾
(𝑡) = 𝑔𝐹𝛾(𝑡, 𝑦(𝑡), 𝑦

′(𝑡)), 𝑦𝐹𝛾(𝑡0) = 𝑦𝐹𝛾(0) 

𝑦′
𝐹𝛾
(𝑡) = 𝑔

𝐹𝛾
(𝑡, 𝑦(𝑡), 𝑦′(𝑡)), 𝑦

𝐹𝛾
(𝑡0) = 𝑦𝐹𝛾(0) 

 

Using [𝑦′′(𝑡)] =
(−𝑦(𝑡0))−ℎ(−𝑆[𝑦(𝑡)]−ℎ𝑢𝑦′(𝑡0)

𝑢2
 ,

 

we get the following six first order ordinary differential equations as,

 

𝑆 [𝑔𝑇𝛼(𝑡, 𝑦(𝑡), 𝑦
′(𝑡))] =

(−𝑦𝑇𝛼(0))−ℎ (−𝑠 [𝑦𝑇𝛼(𝑡)])−ℎ𝑢𝑦
′

𝑇𝛼
(0)

𝑢2
 

𝑆[𝑔
𝑇𝛼
(𝑡, 𝑦(𝑡), 𝑦′(𝑡))] =

(−𝑦
𝑇𝛼
(0))−ℎ(−𝑠[𝑦𝑇𝛼(𝑡)]) −ℎ 𝑢𝑦

′
𝑇𝛼
(0)

𝑢2
 

𝑆 [𝑔𝐼𝛽(𝑡, 𝑦(𝑡), 𝑦
′(𝑡))] =

(−𝑦𝐼𝛽(0))−ℎ(−𝑠 [𝑦𝐼𝛽(𝑡)])−ℎ𝑢𝑦
′

𝐼𝛽
(0)

𝑢2
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𝑆 [𝑔
𝐼𝛽
(𝑡, 𝑦(𝑡), 𝑦′(𝑡))] =

(−𝑦
𝐼𝛽
(0))−ℎ (−𝑠 [𝑦𝐼𝛽(𝑡)])−ℎ𝑢𝑦

′
𝐼𝛽
(0)

𝑢2  

𝑆 [𝑔𝐹𝛾(𝑡, 𝑦(𝑡), 𝑦
′(𝑡))] =

(−𝑦𝐹𝛾(0))−ℎ(−𝑠[𝑦𝐹𝛾(𝑡)])−ℎ𝑢𝑦
′

𝐹𝛾
(0)

𝑢2
 

𝑆 [𝑔
𝐹𝛾
(𝑡, 𝑦(𝑡), 𝑦′(𝑡))] =

(−𝑦
𝐹𝛾
(0))−ℎ(−𝑠[𝑦𝐹𝛾(𝑡)])−ℎ𝑢𝑦

′
𝐹𝛾
(0)

𝑢2  

 

To solve this, we assume that   

𝑆 [𝑦𝑇𝛼(𝑡)] = 𝐿𝑇𝛼
1 (𝑢),          𝑆[𝑦

𝑇𝛼
(𝑡)] = 𝑈𝑇𝛼

1 (𝑢), 

𝑆 [𝑦𝐼𝛽(𝑡)] = 𝐿𝐼𝛽
1 (𝑢),            𝑆 [𝑦

𝐼𝛽
(𝑡)] = 𝑈𝐼𝛽

1 (𝑢),
 

𝑆 [𝑦𝐹𝛾(𝑡)] = 𝐿𝐹𝛾
1 (𝑢),           𝑆 [𝑦

𝐹𝛾
(𝑡)] = 𝑈𝐹𝛾

1 (𝑢)
 

where, 𝐿𝑇𝛼
1 (𝑢), 𝑈𝑇𝛼

1 (𝑢), 𝐿𝐼𝛽
1 (𝑢), 𝑈𝐼𝛽

1 (𝑢), 𝐿𝐹𝛾
1 (𝑢), 𝑈𝐹𝛾

1 (𝑢) are the Sumudu transform for Truth, 

Indeterminacy and falsity solution of equations. 

By using inverse neutrosophic Sumudu transform, we have 

𝑦𝑇𝛼(𝑡), 𝑦𝑇𝛼(𝑡),𝑦𝐼𝛽(𝑡), 𝑦𝐼𝛽(𝑡),𝑦𝐹𝛾(𝑡), 𝑦𝐹𝛾(𝑡) and it follows: 

𝑦𝑇𝛼(𝑡) = 𝑆
−1[𝐿𝑇𝛼

1 (𝑢)], 𝑦
𝑇𝛼
(𝑡) = 𝑆−1[𝑈𝑇𝛼

1 (𝑢)] 

𝑦𝐼𝛽(𝑡) = 𝑆
−1[𝐿𝐼𝛽

1 (𝑢)], 𝑦
𝐼𝛽
(𝑡) = 𝑆−1[𝑈𝐼𝛽

1 (𝑢)]
 

𝑦𝐹𝛾(𝑡) = 𝑆−1[𝐿𝐹𝛾
1 (𝑢)], 𝑦

𝐹𝛾
(𝑡) = 𝑆−1[𝑈𝐹𝛾

1 (𝑢)]
 

 

3.3 Crisp and Fuzzy Solution for Ordinary differential equations of spring mass system 

Consider an elastic string vertically tied to a rigid support. The object attached on the other side of an 

elastic string pulls the string downwards to a distance s from its usual length b. The place at which 

the string extended from its usual position is called as equilibrium position. Now, as the mass of the 

body pulls the spring downwards, the restoring force of the spring acts as a restraint and opposes 

the stretching of the spring. Mathematically, it can be written as 𝐹 = 𝑘𝑠  where 𝑘 >  0  is the 

proportionality constant or spring constant, F is the restoring force and the s is the extension in the 

spring from its equilibrium position. Let ‘m’ be the mass of the object and 𝑦(𝑡) represents the 

displacement, then according to Newton second law of motion, we have = 𝑚 
𝑑2𝑦

 𝑑𝑡2
 . Suppose no 

forces are acting on the system, except the force of gravity, then the differential modeling such type 

of system can be written as   

𝑚 
𝑑2𝑦

 𝑑𝑡2
=∑(𝑓𝑜𝑟𝑐𝑒  𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚) 

      = −𝑘𝑠 − 𝑘𝑦 +𝑚𝑔 

At equilibrium 𝑘𝑠 =  𝑚𝑔, so after calculation we get differential equation as, 

  𝑚 
𝑑2𝑦

 𝑑𝑡2
+ 𝑘𝑦 = 0 



Neutrosophic Sets and Systems, Vol. 38, 2020 269  

 

 

Meghna Parikh and Manoj Sahni, Sumudu Transform for Solving Second Order Ordinary Differential Equation under 

Neutrosophic Initial Conditions 

To solve such second order ordinary differential equations, we require two initial conditions 𝑦(0)  =

 𝑝 and 𝑦’(0)  =  𝑞. Thus, the problem of finding the displacement 𝑦(𝑡) is reduced to solving the 

differential equations of the form, 

 

𝑚 
𝑑2𝑦

 𝑑𝑡2
+ 𝑘𝑦 = 0, y(0)  =  p, y’(0)  =  q.  

 

If we consider the damping force (𝑛
𝑑𝑦

𝑑𝑡
) which is a function of velocity of the motion that helps to 

reduce the vibrations, then the above differential equation reduces to 

𝑚 
𝑑2𝑦

 𝑑𝑡2
+ 𝑛

𝑑𝑦

𝑑𝑡
+ 𝑘𝑦 = 0,            𝑦(0)  =  𝑝 , 𝑦’(0)  =  𝑞. 

Solving the above initial value problem provides the displacement 𝑦(𝑡) in terms of constants 𝑚, 𝑘 

and 𝑛. The above differential equation can be solved by the method of substitution, which provides 

us the characteristic equation as 

𝑚𝑟 2 + 𝑛𝑟 + 𝑘 =  0, 

with solutions of the auxiliary equation as r1,2 =
1

2m
(−n + √n2 − 4mk ). 

The quantity inside the square root, i.e. 𝑛2 − 4𝑚𝑘 classifies the solution into three cases: 

Case 1. If 𝑛2 − 4𝑚𝑘 >  0, it is an over damped situation, as the proportionality constant 𝑘 is very 

small as compared to damping coefficient 𝑛. 

Case 2. If 𝑛2 − 4𝑚𝑘 = 0, the situation iscritically damped and the resulting motion is oscillatory and 

the damping coefficient 𝑛 slightly decreases.  

Case 3. If 𝑛2 − 4𝑚𝑘<0 ,the behaviour of the motion is under damped and the value of spring 

constant is very large as compared to damping coefficient 𝑛. 

 

4. Application 

In this section a problem of spring mass system is considered. The differential equation formed 

for this system is solved in Neutrosophic environment and then compared it with crisp solution. It is 

shown here that, Neutrosophic environment includes differential equations with initial conditions 

containing parameters of belongingness, non-belongingness and indeterminacy, so that it provide 

more precise solution than crisp environment. 

 

Problem Statement: A body of mass 8𝑙𝑏 is tied to a spring of length 4𝑓𝑡. At equilibrium position, 

the length of the spring has 6𝑓𝑡. Let the damping force is defined as 𝐹𝑅  =  2𝑑𝑦/𝑑𝑡 and the body is 

released from the equilibrium position with a down ward initial velocity of 1 𝑓𝑡/𝑠 , find the 

displacement 𝑦(𝑡) for any time t analytically and using fuzzy Sumudu transform. 

 

Solution. 
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The differential equation of this spring-mass system is 𝑚𝑦” + 𝑛𝑦′ + 𝑘𝑦 = 0, where the mass of the 

body is 𝑚 =  8/32 =  1/4 𝑠𝑙𝑢𝑔, the spring constant with 8 =  𝑘 × 2, 𝑠𝑜 𝑘 =  4𝑙𝑏/𝑓𝑡. The resistive 

force 𝐹𝑅  =  𝑛 𝑑𝑦/𝑑𝑡 = 2𝑑𝑦/𝑑𝑡 with the initial conditions 𝑦(0) = 0 ,   𝑦’(0) = 1. 

After putting these values, we get 𝑦”(t) + 8𝑦′(t) + 16𝑦(t) = 0 

 

Crisp solution 

The analytical solutions is given by 𝑦(𝑡) = 𝐶1𝑒
−4𝑡 + 𝑡𝐶2𝑒

−4𝑡. Using initial value 𝑦(0) = 0 , 𝑦’(0) = 1, 

in the solution, we get 𝑦(𝑡) =  𝑡𝑒−4𝑡. At 𝑡 = 0.1, we get y(0.1) = 0.067. 

 

Neutrosophic solution 

Consider the Neutrosophic initial value problem, 𝑦”(t) + 8𝑦′(t) + 16𝑦(t) = 0 

𝑦𝑇(0) = [𝛼 − 1,1 − 𝛼],       𝑦
′
𝑇
(0) = [𝛼, 1 − 𝛼] 

𝑦𝐼(0) = [−0.5𝛽, 0.5𝛽],      𝑦
′
𝐼
(0) = [1 − 0.5𝛽, 1 + 0.5𝛽] 

𝑦𝐹(0) = [−0.2𝛾, 0.2𝛾],     𝑦
′
𝐹
(0) = [1 − 0.2𝛾, 1 + 0.2𝛾] 

Using Neutrosophic Sumudu Transform, we get the expression in Truth, Indeterminacy and Falsity as, 

𝑦𝑇(𝑢, 𝛼) = (
(𝛼 − 1)(1 + 8𝑢)

(1 + 4𝑢)2
+

𝛼𝑢

(1 + 4𝑢)2
) 

𝑦̅𝑇(𝑢, 𝛼) = (
(1 − 𝛼)(1 + 8𝑢)

(1 + 4𝑢)2
+
(2 − 𝛼)𝑢

(1 + 4𝑢)2
) 

𝑦𝐼(𝑢, 𝛽) = (
−0.5𝛽

(1 + 4𝑢)2
−

4𝛽𝑢

(1 + 4𝑢)2
+
(1 − 0.5𝛽)𝑢

(1 + 4𝑢)2
) 

𝑦̅𝐼(𝑢, 𝛽) = (
0.5𝛽

(1 + 4𝑢)2
+

4𝛽𝑢

(1 + 4𝑢)2
+
(1 + 0.5𝛽)𝑢

(1 + 4𝑢)2
) 

𝑦𝐹(𝑢, 𝛾) = (
−0.2𝛾

(1 + 4𝑢)2
−

1.6𝛾𝑢

(1 + 4𝑢)2
+
(1 − 0.2𝛾)𝑢

(1 + 4𝑢)2
) 

𝑦̅𝐹(𝑢, 𝛾) = (
0.2𝛾

(1 + 4𝑢)2
+

1.6𝛾𝑢

(1 + 4𝑢)2
+
(1 + 0.2𝛾)𝑢

(1 + 4𝑢)2
) 

Now the solution as per lower and upper bound for truth value, indeterminacy value and false value 

respectively, are: 

𝑦𝑇(𝑡, 𝛼) = ((𝛼 − 1)𝑒
−4𝑡 + (5𝛼 − 4)𝑡𝑒−4𝑡) 

𝑦𝑇(𝑡, 𝛼) = ((1 − 𝛼)𝑒
−4𝑡 + (6 − 5𝛼)𝑡𝑒−4𝑡) 

𝑦𝐼(𝑡, 𝛽) = ((−0.5𝛽)𝑒
−4𝑡 + (1 − 2.5𝛽)𝑡𝑒−4𝑡) 

𝑦𝐼(𝑡, 𝛽) = ((0.5𝛽)𝑒
−4𝑡 + (1 + 2.5𝛽)𝑡𝑒−4𝑡) 

𝑦𝐹(𝑡, 𝛾) = ((−0.2𝛾)𝑒
−4𝑡 + (1 − 𝛾)𝑡𝑒−4𝑡) 

𝑦𝐹(𝑡, 𝛾) = ((0.2𝛾)𝑒
−4𝑡 + (1 + 𝛾)𝑡𝑒−4𝑡) 

 

4.1. Numerical Observation and Graphical Representation 

The fuzzy differential equation is solved for different (𝛼, 𝛽, 𝛾)-cut values. For the solution the step 

size of 0.1 is considered. It is shown in the table 1 for 𝑡 = 0.1. From table 1, it is observed that the for 

truth membership 𝑦𝑇 (t,𝛼), lower and upper bound both show an inverse behaviour, i.e one is 
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increasing and the other is decreasing. The crisp solution matches with the fuzzy solution at 𝛼 – cut, 

with value 1.0. It is observed that for indeterminacy membership 𝑦𝐼(t,𝛽) and for False membership 

𝑦𝐹(t,𝛾), lower bound is decreasing and the upper bound is increasing at 𝛽, 𝛾 – cut, with value 0, the 

crisp solution matches with the fuzzy solution. 

 

 

Table 1. The solutions for lower and upper bound at 𝒕 = 𝟎. 𝟏and its comparison with thecrisp solution. 

 

(𝛼, 𝛽, 𝛾)-cut 𝒚𝑻(𝒕, 𝜶) 𝒚𝑻(𝒕, 𝜶) 𝒚𝑰(𝒕, 𝜷) 𝒚𝑰(𝒕, 𝜷) 𝒚𝑭(𝒕, 𝜹) 𝒚𝑭(𝒕, 𝜸) Exact solution 

0 -0.938448 1.072510 0.067032 0.067032 0.0670300 0.0670320    0.067032 

0.1 -0.83790 0.971964 0.016758 0.117306 0.0469224 0.0871416 … 

0.2 -0.737352 0.871416 0.033516 0.167580 0.0268128 0.1072510 … 

0.3 -0.636804 0.770868 -0.083790 0.217850 0.0067032 0.1273610 … 

0.4 -0.536256 0.670303 -0.134064 0.268128 -0.0134060 0.1474700 … 

0.5 -0.435708 0.569772 -0.184338 0.318402 -0.0335160 0.1675800 … 

0.6 -0.335160 0.469224 -0.234612 0.368676 -0.0536256 0.1876902 … 

0.7 -0.234612 0.368676 -0.284886 0.418958 -0.0737352 0.2077991 … 

0.8 -0.134064 0.268128 -0.335160 0.469224 -0.0938448 0.2279091 … 

0.9 -0.033516 0.167580 -0.385434 0.519498 -0.1139540 0.2480180 … 

1 0.067032 0.067032 -0.435708 0.569772 -0.1340640 0.2681281 0.067032 

 

In figure 1, the graph is plotted for different (𝛼, 𝛽, 𝛾) – cut values at 𝑡 = 0.1. It is observed that as the 

𝛼-cut values are increasing, the solution approaches to the exact solution and as the (𝛽, 𝛾)-cut values 

are decreasing the solution approaches to the exact solution. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graph for different values of (𝜶, 𝜷, 𝜸) -cuts and at time t = 0.1 
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Figure 2. The lower and upper bounds for different values of (𝜶, 𝜷, 𝜸) - cut for time 0 to 0.5 . 

From figure 2, we can observed that, the motion of the spring decreases with the increase in time for 

truth membership and motion of spring increases with the decreases in time for false and 

indermancy. We can further study the behaviour of motion of the spring under external force for 

different (𝛼, 𝛽, 𝛾) -cut values with varying time under neutrosophic initial values.  

5. Conclusion and Future works 

In this paper, the ordinary differential equation of mechanical spring mass system with 

neutrosophic initial conditions is solved using Sumudu transform method. The solution of 

neutrosophic environment obtained is compared with the crisp solution and is more generalized. 

The results are represented for different (α, β, γ) -cut values in table 1. The behavior is also depicted 

in the form of graphs, for different (α, β, γ) -cut values with varying time. This study helps in solving 

various other ordianry differential equations such as simultaneous differential equation, differential 

equation with variable coefficients under neutosophic environment. The solution of a differential 

equation helps in understanding the behaviour of physical systems under an uncertain 

environment. For non-linear differential equations, our intuition is that it cannot be applied. 
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Nomenclature and Symbols 

 

μM(x) Fuzzy membership function of set M 

Mα The α - level set of the fuzzy set M 

U Universal set 

μM(x) Fuzzy membership function of set M 

ωM(x) Fuzzy Non-membership function of set M 
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Mα,β The α,β - level set of the fuzzy set M 

X Crisp set 

TM(x) Truth membership function of neutrosophic fuzzy set M 

IM(x) Indeterminacy membership function of neutrosophic fuzzy set M 

FM(x) False membership function of neutrosophic fuzzy set M 

F(α,β,γ), (α,β,γ) - cut of neutrosophic set 

M(α,β,γ) (α,β,γ) cut of a triangular neutrosophic number MTN 

g(ut)e-t improper neutrosophic Riemann integrable 

g(t, r) Lower bound of fuzzy membership 

g(t, r) Upper bound of fuzzy membership 

−h Generalized-differentibility 

FR Resistive force 

m Mass of a body 

k Spring constant 

∈ Belongs to 

ATr〈(p, q, r)〉 Triangular fuzzy number 

MTN〈(a, b, c); um, vm,wm〉. Triangular neutrosophic number 

S[g(t)] Sumudu transform of function “g” 

LTα(u), UTα(u) 
Lower and upper bound solution of Sumudu transform with respect to α cut 

for Truth membership function of neutrosophic fuzzy set 

LTβ(u), UTβ(u) 
Lower and upper bound solution of Sumudu transform with respect to β-cut 

for Truth membership function of neutrosophic fuzzy set 

LTγ(u), UTγ(u) 
Lower and upper bound solution of Sumudu transform with respect to γ-cut 

for Truth membership function of neutrosophic fuzzy set 
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