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Abstract: We introduce the notion of neutrosophic Φ-open set and neutrosophic Φ-continuous 

mapping via neutrosophic topological spaces and investigate several properties of it. By defining 

neutrosophic Φ -open set, neutrosophic Φ -continuous mapping, and neutrosophic Φ -open 

mapping, we prove some remarks, theorems on neutrosophic topological spaces. 
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1. Introduction 

Smarandache [53] defined the Neutrosophic Set (NS) in 1998 by extending fuzzy set [58], and 

intuitionistic fuzzy set [2] to deal with uncertain, inconsistent and indeterminate information.  An 

NS defined over the universe , ( , , )  with ,  and being the real standard or 

non-standard subsets of ]0-, 1+ [. ,  and are the degrees of true membership function, 

indeterminate membership function and falsity membership function respectively in the set .  

Wang, Smarandache, Zhang, and Sunderraman [56] defined Interval NS (INS) as an instance and a 

subclass of NS by considering the subunitary interval [0, 1]. An INS  defined on universe , 

( , , )  with ,  and being the subinterval of [0, 1].  Wang, Smarandache, Zhang, and 

Sunderraman [57] defined Single Valued NS (SVNS) as an instance of NS. In SVNS, the degrees of 

truth-membership function, indeterminacy-membership function and falsity-membership function 

lie in the interval [0,1]. NS has drawn many researchers' much attention for theoretical as well as 

practical applications [3-18, 24, 26-34, 36-46, 54-55].   

Salama and Alblowi [49] grounded the concept of Neutrosophic Topological Space (NTS).  

Salama and Alblowi [50] also studied the generalized NS and generalized NTS.  Salama, 

Smarandache and Alblowi [51] presented a new concept on neutrosophic crisp topology. Iswaraya 

and Bageerathi [23] presented the neutrosophic semi-closed set and neutrosophic semi-open set. 

Arokiarani, Dhavaseelan, Jafari, and Parimala [1] present the neutrosophic semi-open functions and 

established some relations between them. Rao and Srinivasa [48] presented neutrosophic pre-open 
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set and pre-closed set. Dhavaseelan, Parimala, Jafari, and Smarandache [20] presented the 

neutrosophic semi-supra open set and neutrosophic semi-supra continuous functions.  

 Dhavaseelan, Ganster, Jafari, and Parimala [21] presented the neutrosophic 𝛼-supra open set 

and neutrosophic 𝛼 -supra continuous functions. Parimala, Karthika, Dhavaseelan, & Jafari [35] 

presented the neutrosophic supra pre- continuous functions, the neutrosophic supra pre-open maps, 

and the neutrosophic supra pre-closed maps in terms of neutrosophic supra pre-open sets and 

neutrosophic supra pre-closed sets. Dhavaseelan, and Jafari [21] studied Generalized Neutrosophic 

Closed Set (GNCS). Pushpalatha and Nandhini [47] defined the GNCS in NTSs. Ebenanjar, 

Immaculate, and Wilfred [22] studied neutrosophic b-open sets in NTSs. Maheswari, Sathyabama, 

and Chandrasekar [25] studied the neutrosophic generalized b- closed sets in NTSs.  Das and 

Pramanik [17] presented the generalized neutrosophic b-open sets in NTSs. 

 Research gap: No study on neutrosophic Φ-open sets and neutrosophic Φ-continuous functions 

neutrosophic generalized b-open set has been reported in the recent literature. 

Motivation: To fill the research gap, we introduce the neutrosophic Φ-open set. 

In this paper, we develop the notion of neutrosophic Φ-open set and neutrosophic Φ-continuous 

mapping, neutrosophic Φ-open mapping, and neutrosophic Φ-closed mapping via NTSs. 

  

The rest of the paper is designed as follows: 

Section 2 recalls the definitions neutrosophic set, neutrosophic topological space, neutrosophic 

supra topological space, neutrosophic 𝛼 -open sets, and neutrosophic 𝛼 -closed sets. Section 3 

introduces neutrosophic Φ-open set, neutrosophic Φ-continuous mapping, and neutrosophic Φ-

open mapping and proofs of some remarks, and theorems on neutrosophic Φ -open sets and 

neutrosophic Φ-continuous mapping. Section 4 presents concluding remarks.   

2. Preliminaries and some properties 

In this section, we discuss some existing definitions and theorems which are already defined by many 

researchers.  

 

Definition 2.1. Assume that W be a universal set. Then D, an NS [53] over W is denoted as follows: 

D= {(m, TD(m), ID(m), FD(m)): m ∈W and TD(m), ID(m), FD(m) ∈]-0,1+[} where TD, ID and FD are the 

functions from D to ]-0,1+[ and for each y ∈W,  -0 ≤ TD(m)+ID(m)+FD(m) ≤ 3+. 

 

Definition 2.2. Assume that D = {(m, TD(m), ID(m), FD(m)): m ∈W} and K = {(m, TK(m), IK(m), FK(m)): m 

∈W} are any two NS over W, then D∪K and D∩K [53] are defined by 

i. D∪K = {(m, TD(m)⋁TK(m), ID(m)⋀ IK(m), FD(m)⋀ FK(m)): m ∈W}; 

ii. D∩K = {(m, TD(m)⋀ TK(m), ID(m)⋁IK(m), FD(m)⋁FK(m)): m ∈W}. 

 

Definition 2.3. Assume that D = {(m, TD(m), ID(m), FD(m)): m ∈W} is an NS over W. Then the 

complement [53] of D is defined by Dc = {(m, 1-TD(m), 1-ID(m), 1-FD(m)): m ∈W}. 
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Definition 2.4. Assume that D = {(m, TD(m), ID(m), FD(m)): m ∈W} and K = {(m, TK(m), IK(m), FK(m)): m 

∈W} are any two NSs over W. Then D is contained in K [53] if and only if TD(m)≤TK(m), ID(m) ≥IK(m), 

FD(m) ≥FK(m), for all m ∈W. 

 

Now we may consider two NSs 0N and 1N over W as follows: 

1) 0N = {(m, 0, 1, 1): m ∈W}; 

2) 1N= {(m, 1, 0, 0): m ∈W}. 

Clearly, 0N⊆1N. 

 

Definition 2.5. Assume that W is a universe of discourse and 𝜏 is the collection of some NSs over W. 

Then the collection 𝜏 is said to be a Neutrosophic Topology (NT) [49] on W if the following axioms 

hold: 

1. 0N, 1N ∈ 𝜏 

2. C1, C2 ∈ 𝜏 ⇒C1∩C2 ∈ 𝜏 

3. ∪Ci ∈ 𝜏, for every {Ci: i ∈ ∆} ⊆ 𝜏. 

The pair (W,𝜏) is said to be an NTS. If H ∈ 𝜏, then H is called a Neutrosophic Open Set (NOS) and the 

complement of H i.e. Hc is called a Neutrosophic Closed Set (NCS). 

 

Example 2.1.  Assume that W = {s1, s2, s3} is a set with three NSs over W as follows:  

M1= {(s1, 0.9, 0.5, 0.7), (s2, 0.7, 0.6, 0.8), (s3, 0.7, 0.4, 0.7): s1, s2, s3 ∈W}; 

M2= {(s1, 1.0, 0.3, 0.4), (s2, 0.9, 0.5, 0.5), (s3, 1.0, 0.1, 0.5): s1, s2, s3 ∈W}; 

M3= {(s1, 0.9, 0.3, 0.5), (s2, 0.8, 0.5, 0.8), (s3, 0.9, 0.3, 0.5): s1, s2, s3 ∈W}; 

Then (W,𝜏) is an NTS, where 𝜏= {0N, 1N, M1, M2, M3} is an NT on W.  

 

Remark 2.1. The collection of all NOSs and NCSs in (W, 𝜏) may be denoted as NOS(W) and NCS(W) 

respectively. The neutrosophic interior and neutrosophic closure [49] of a neutrosophic subset H of 

W is denoted by Nint(H) and Ncl(H) respectively and defined as follows: 

Nint(H) =∪{D: D is an NOS in W and D⊆H}, 

Ncl(H) =∩{L: L is an NCS in W and H⊆L}. 

Clearly Nint(H) ⊆H⊆ Ncl(H). 

 

Definition 2.6. Assume that (W,𝜏) is an NTS and H be an NS over W. Then H is  

1) Neutrosophic Pre-Open (NPO) set [48] iff H ⊆NintNcl(H); 

2) Neutrosophic Semi-Open (NSO) set [23] iff H ⊆NclNint(H); 

3) Neutrosophic 𝛼-Open (N𝛼-O) set [1] iff H ⊆NintNclNint(H). 

 

Definition 2.7. Assume that W is a universal set and Ω be the collection of some NSs over W. Then 

Ω is said to be a Neutrosophic Supra Topology (NST) [19] on W if the following axioms hold: 

1) 0N, 1N∈ Ω 

2) ∪Ci ∈ Ω, for every {Ci: i ∈ ∆}⊆ Ω. 
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The pair (W, Ω) is said to be a Neutrosophic Supra Topological Space (NSTS). If H∈ Ω, then H is called 

a Neutrosophic-Supra Open (N-SO) set and its complement Hc is called a Neutrosophic-Supra Closed 

(N-SC) set in (W, Ω). The neutrosophic-supra interior and neutrosophic-supra closure of an NS H is 

denoted by 𝑁𝑖𝑛𝑡
Ω (H) and 𝑁𝑐𝑙

Ω(H) respectively and are defined as follows: 

𝑁𝑖𝑛𝑡
Ω (H)=∪{D: D is an N-SO set in W and D⊆H}, 

𝑁𝑐𝑙
Ω(H)=∩{L: L is an N-SC set in W and H⊆L}. 

 

Definition 2.8.  Assume that (W, Ω) be an NSTS and H is an NS over W. Then H is  

1) Neutrosophic-Pre Supra Open (N-PSO) set [35] iff H ⊆ 𝑁𝑖𝑛𝑡
Ω (𝑁𝑐𝑙

Ω(H)); 

2) Neutrosophic-Semi Supra Open (N-SSO) set [20] if and only if H ⊆ 𝑁𝑐𝑙
Ω(𝑁𝑖𝑛𝑡

Ω (H)); 

3) Neutrosophic-𝛼-Supra Open (N-𝛼SO) set [19] if and only if H ⊆ 𝑁𝑖𝑛𝑡
Ω (𝑁𝑐𝑙

Ω(𝑁𝑖𝑛𝑡
Ω (H))). 

The complement of N-PSO set, N-SSO set and N-𝛼SO set are called Neutrosophic Pre Supra-

Closed (N-PSC) set, Neutrosophic Semi Supra-Closed (N-SSC) set and Neutrosophic 𝛼-Supra-Closed 

(N-𝛼SC) set respectively. 

 

Theorem 2.1. Assume that (W, Ω) be an NSTS.  

Then 

i. Every N-SO set is an N-𝛼SO set. 

ii. Every N-𝛼SO set is an N-PSO set (N-SSO set). 

For proof, see Parimala, Karthika, Dhavaseelan, and Jafari (2018). 

 

Theorem 2.2. Assume that (W, Ω) be an NSTS.  

Then 

i. Union of two N-𝛼SO sets is an N-𝛼SO set. 

ii. Intersection of two N-𝛼SO sets may not be an N-𝛼SO set in general.  

For proof, see [19]. 

 

Definition 2.9. Let (W, Ω) and (M,Π) be any two NTSs. Then a function  𝜉:(W, Ω)→(Y, M) is called a 

neutrosophic continuous function [52] if the inverse image of each NOS G in M is an NOS in W. 

 

Definition 2.10.  Let (W, Ω) and (M,Π) be any two NSTSs. Then a function  𝜉:(W, Ω)→(Y, M) is called 

a neutrosophic supra continuous [ 19} if and only if the inverse image of each N-SO set G in M is an 

N-SO set in W. 

 

Definition 2.11. A function 𝜉:(W, Ω)→(M,Π), where (W, Ω) and (M,Π) are two NSTSs is said to be a 

neutrosophic 𝛼-supra [19] continuous iff 𝜉−1(G) is an N-𝛼SO set in W whenever G is an N-SO set in 

M. 
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Theorem 2.3. Assume that 𝜉 be a function from an NSTS (W, Ω) to another NSTS (M,Π). Then the 

following statements [19] are equivalent: 

i. 𝜉 is a neutrosophic 𝛼-supra continuous mapping. 

ii. 𝜉−1(G) is an N-𝛼SC set in W whenever G is an N-SC set in M. 

3. Neutrosophic 𝚽-open set and neutrosophic 𝚽-continuous mapping 

Definition 3.1. Assume that (W, 𝜏) is an NTS and H s an NS over W. Then H is called a Neutrosophic 

Φ-Open (N-Φ-O) set iff there exist an N𝛼-O set K such that K ⊆ H⊆ 𝑁𝑐𝑙(K), where 𝑁𝑐𝑙(K) denotes the 

neutrosophic closure of K with respect to the NT 𝜏 on W. 

 

Theorem 3.1. In an NTS (W, 𝜏),  

1) Every NOS is a neutrosophic Φ-open set; 

2) Every N𝛼-O set is a neutrosophic Φ-open set. 

 

Proof.  

1) Assume that Q is an NOS in an NTS (W, 𝜏). Since every NOS is an N𝛼-O set, so Q is an N𝛼-

O set in (W, 𝜏). Clearly Q ⊆ Q⊆ 𝑁𝑐𝑙(Q). Therefore, Q is a neutrosophic Φ-open set. Hence 

every NOS in (W, 𝜏) is a neutrosophic Φ-open set. 

2) Assume that R is an N𝛼-O set in an NTS (W, 𝜏). For any neutrosophic set R, R⊆R⊆Ncl(R). 

Therefore, there exists an N𝛼-O set R in (W, 𝜏) such that R⊆R⊆Ncl(R).  

Hence R is a neutrosophic Φ-open set.  

Thus, every N𝛼-O set in (W, 𝜏) is a neutrosophic Φ-open set. 

 

Theorem 3.2. Assume that (W,𝜏) is an NTS and 𝜃 is a neutrosophic supra topology such that       𝜏 

⊆ 𝜃. Then  

1) Every neutrosophic Φ-open set in (W,𝜏) is a neutrosophic Φ-supra open set in (W, 𝜃); 

2) Every NOS in (W,𝜏) is a neutrosophic Φ-supra open set in (W, 𝜃). 

 

Proof.   

1) Assume that (W,𝜏) is an NTS and  𝜃 is an NST such that 𝜏 ⊆ 𝜃. 

Assume that Q is an arbitrary neutrosophic Φ-open set in (W,𝜏).  

Then there exists an N 𝛼 -O set K such that K  ⊆ Q ⊆ 𝑁𝑐𝑙 (K), where 𝑁𝑐𝑙 (K) denotes the 

neutrosophic closure of K with respect to the topology 𝜏. 

 Since 𝜏  ⊆  𝜃  and 𝜃  is an NST on W, so 𝑁𝑐𝑙 (K) ⊆ 𝑁𝑐𝑙
𝜃 (K), where 𝑁𝑐𝑙

𝜃 (K) denotes the 

neutrosophic supra-closure of K with respect to the NST 𝜃.  

Therefore K ⊆Q⊆ 𝑁𝑐𝑙
𝜃(K). 
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Hence Q is a neutrosophic Φ-supra open set in (W, 𝜃). 

2) Assume that (W,𝜏) is an NTS and  𝜃 be an NST on W such that ⊆ 𝜃. 

Assume that Q be an arbitrary NOS in (W,𝜏). From Theorem 3.1, it is clear that every NOS 

in an NTS (W,𝜏) is a neutrosophic Φ-open set. So, Q is a neutrosophic Φ-open set in (W,𝜏). 

From the first part of the theotem 3.2, it is clear that Q is a neutrosophic Φ-open set in (W, 𝜃). 

Hence every NOS in an NTS (W, 𝜏) is a neutrosophic Φ-supra open set in the NSTS (W, 𝜃). 

 

Lemma 3.1. In an NTS (W,𝜏), the union of two neutrosophic Φ-open sets is a neutrosophic Φ-open 

set. 

 

Proof.  

Assume that K and L are any two neutrosophic Φ-open sets in an NTS (W,𝜏). Then there exist two 

N𝛼-O sets Q1 and Q2 in (W,𝜏) such that Q1⊆K⊆ 𝑁𝑐𝑙(Q1), Q2⊆L⊆ 𝑁𝑐𝑙(Q2). 

Now, Q1∪Q2⊆K∪L⊆ 𝑁𝑐𝑙(Q1) ∪ 𝑁𝑐𝑙(Q2)= 𝑁𝑐𝑙(Q1∪Q2) and Q1∪Q2 is an N𝛼-O set in (W,𝜏). Therefore K∪L 

is a neutrosophic Φ-open set in (W,𝜏). Hence the union of two neutrosophic Φ-open sets in an NTS 

(W,𝜏) is a neutrosophic Φ-open set. 

 

Theorem 3.3. Assume that (W,𝜏) is an NTS. Then   

1) Union of an NOS and a neutrosophic Φ-open set is a neutrosophic Φ-open set. 

2) Union of an N𝛼-O set and a neutrosophic Φ-open set is a neutrosophic Φ-open set. 

 

Proof. Let Q be an NOS and R be a neutrosophic Φ-open set in an NTS (W,𝜏). From Theorem 3.1, Q 

is a neutrosophic Φ-open set. Again, from Lemma 3.1, it is clear that Q∪R is a neutrosophic Φ-open 

set in (W,𝜏). 

1) Assume that H is an N𝛼-O set and G is a neutrosophic Φ-open set in an NTS (W,𝜏). From 

Theorem 3.1, it is clear that H is a neutrosophic Φ-open set. Again, from Remark 3.1, it is 

clear that H∪G is a neutrosophic Φ-open set in (W,𝜏). 

 

Definition 3.2. Assume that (W,𝜏) and (M,𝛿) are two NTSs. Then a function 𝜉: (W, 𝜏)→ (M,𝛿) is called 

a neutrosophic Φ-continuous function iff the inverse image of every NOS G in M is a neutrosophic 

Φ-open set in W.  

 

Definition 3.3. Assume that (W,𝜏), and (M,𝛿) are two NTSs and 𝜃 is an NST on W such that 𝜏 ⊆ 𝜃. 

Then a function 𝜉: (W, 𝜏)→ (M,𝛿) is called a neutrosophic Φ-supra continuous function iff the inverse 

image of every NOS G in M is a neutrosophic Φ-supra open set in W with respect to the NST 𝜃 on 

W.  
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Theorem 3.3. Every neutrosophic continuous function from an NTS (W,𝜏) to another NTS (M,𝛿) is a 

neutrosophic Φ-continuous function. 

 

Proof. Assume that 𝜉:(W, 𝜏)→(M,𝛿) is a neutrosophic continuous function and K be an arbitrary NOS 

in M. Then by hypothesis, 𝜉−1(K) is an NOS in W. Since each NOS is a neutrosophic Φ-open set, so 

𝜉−1(K) is a neutrosophic Φ-open set in W. Therefore, for each NOS K in M, 𝜉−1(K) is a neutrosophic 

Φ-open set in W. Hence 𝜉 is a neutrosophic Φ-continuous function. Therefore, every neutrosophic 

continuous function is a neutrosophic Φ-continuous function. 

 

Theorem 3.4. Assume that (W,𝜏) and (M,𝛿) are two NTSs and 𝜏 ⊆ 𝜃, where 𝜃 is an NST on W. Then 

every neutrosophic Φ -continuous function from (W, 𝜏 ) to (M, 𝛿 ) is a neutrosophic Φ -supra 

continuous function from (W,𝜃) to (M,𝛿). 

 

Proof. Assume that 𝜉:(W, 𝜏)→(M,𝛿) is a neutrosophic Φ-continuous mapping. Let 𝜃 be an NST such 

that 𝜏 ⊆ 𝜃. Let T be an NOS in M. Then by hypothesis 𝜉−1(T) is a neutrosophic Φ-open set in W. 

Since each neutrosophic Φ-open set (W,𝜏) is a neutrosophic Φ-supra open set in (W,𝜃), so 𝜉−1(T) is 

a neutrosophic Φ -supra open set in (W,𝜃 ). Therefore 𝜉  is a neutrosophic Φ -supra continuous 

mapping from (W, 𝜃) to (M, 𝛿). 

 

Definition 3.4. Let (W, 𝜏 ) and (M, 𝛿 ) be two NTSs. A function 𝜉 :(W,  𝜏 ) →  (M, 𝛿 ) is called a 

neutrosophic Φ-open function if 𝜉(Q) is a neutrosophic Φ-open set in M for each NOS Q in W. 

 

Definition 3.5. Let (W,𝜏) and (M,𝛿) be two NTSs. A function 𝜉:(W,𝜏)→(M,𝛿) is called a neutrosophic 

Φ-closed function if 𝜉(Q) is a neutrosophic Φ-closed set in M for each NCS Q in W. 

 

Theorem 3.5. Assume that (W,𝜏) and (M,𝛿) are any two NTSs. Then 𝜉:(W,𝜏)→(M,𝛿) is a neutrosophic 

Φ-open function iff 𝜉(Nint(K))⊆Nint(𝜉(K)), for each neutrosophic subset K of W. 

 

Proof. Let 𝜉:(W,𝜏)→(M,𝛿) be a neutrosophic Φ-open function and K be a neutrosophic subset of W. 

Clearly Nint(K)  is an NOS in W and Nint(K)  ⊆K. Since 𝜉  is a neutrosophic Φ-open function, so 

𝜉(Nint(K)) is a neutrosophic Φ-open set in M and 𝜉(Nint(K))⊆ 𝜉(K). Since each NOS is a neutrosophic 

Φ-open set and Nint(𝜉(K)) is the largest NOS contained in 𝜉(K), so Nint(𝜉(K)) is the largest neutrosophic 

Φ-open set contained in 𝜉 (K). Therefore 𝜉 (Nint(K))  ⊆Nint(𝜉 (K)) ⊆ 𝜉 (K) i.e. 𝜉 (Nint(K))  ⊆Nint(𝜉 (K)). 

Hence for each neutrosophic subset K of W, 𝜉(Nint(K))⊆Nint(𝜉(K)). 
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 Conversely, let L be an NOS in (W, 𝜏 ). Therefore, Nint(L) = L. Now by hypothesis 

𝜉(Nint(L))⊆Nint(𝜉(L)). This implies 𝜉(L)⊆Nint(𝜉(L)). We know that Nint(𝜉(L)) ⊆ 𝜉(L). Therefore 𝜉(L)= 

Nint(𝜉(L)). This means that 𝜉(L) is an NOS in (M,𝛿). Since each NOS is a neutrosophic Φ-open set, so  

𝜉(L) is a neutrosophic Φ-open set in (M,𝛿). Hence for each NOS L in (W,𝜏), 𝜉(L) is a neutrosophic Φ-

open set in (M,𝛿). Therefore 𝜉 is a neutrosophic Φ-open function. 

  

Theorem 3.6. Assume that 𝜉 is a bijective function from an NTS (W,𝜏) to another NTS (M,𝛿). Then 

the following mathematical statements are equivalent: 

1) 𝜉 is a neutrosophic Φ-continuous function; 

2) 𝜉 is a neutrosophic Φ-closed function; 

3) 𝜉 is a neutrosophic Φ-open function. 

 

Proof.  

(1)⇒(2) Assume that 𝜉:(W,𝜏)→(M,𝛿) is a neutrosophic Φ-continuous function. Let Q be any arbitrary 

NCS in (W,𝜏). Then Qc is an NOS in (W,𝜏). Since each NOS is a neutrosophic Φ-open set, so Qc is a 

neutrosophic Φ-open set in (W,𝜏). Since 𝜉 is a bijective function, so 𝜉(Qc)=(𝜉(Q))c is an NOS in (M,𝛿). 

Hence 𝜉(Q) is an NCS in (M,𝛿). Therefore, for each NCS Q in (W,𝜏), 𝜉(Q) is a neutrosophic Φ-closed 

set in (M,𝛿). Hence 𝜉 is a neutrosophic Φ-closed function.  

 

(2)⇒(3) Assume that 𝜉:(W,𝜏)→(M,𝛿) be a neutrosophic Φ-closed function. Let L be any arbitrary NOS 

in (W,𝜏). Then Lc is an NCS in (W,𝜏). Since 𝜉 is a neutrosophic Φ-closed function, so 𝜉(Lc)=(𝜉(L))c is a 

neutrosophic Φ-closed set in (M,𝛿). Then 𝜉(L) is a neutrosophic Φ-open set in (M,𝛿). Therefore, for 

each NOS L in (W,𝜏), 𝜉(L) is a neutrosophic Φ-open set in (M,𝛿). Hence 𝜉 is a neutrosophic Φ-open 

function. 

(3)⇒(1) Assume that 𝜉:(W,𝜏)→(M,𝛿) is a neutrosophic Φ-open function. Let P be any arbitrary NOS 

in (M,𝛿). Then P is a neutrosophic Φ-open set in (M,𝛿). Since 𝜉 is a bijective function, so 𝜉−1(P) is an 

NOS in (W,𝜏). Again, since each NOS is a neutrosophic Φ-open set, so 𝜉−1(P) is a neutrosophic Φ-

open set in (W,𝜏). Therefore, for each NOS P in (M,𝛿), 𝜉−1(P) is a neutrosophic Φ-open set in (W,𝜏). 

Hence 𝜉 is a neutrosophic Φ-continuous function. 

4. Conclusion 

In this study we have introduced neutrosophic Φ -open set, neutrosophic Φ -continuous 

mapping via NTSs and investigated their several properties. By defining neutrosophic Φ-open set, 

neutrosophic Φ-continuous mapping, we have proved some remarks, and theorems on NTSs. In the 

future, we hope that based on Φ-open set, neutrosophic Φ-continuous mapping via NTSs, many new 

investigations can be carried out. 

. 
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