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Abstract

The Neutrosophic Bonferroni operator is a novel operator that we provide in this paper. Then the arithmetic operations
for Neutrosophic Bonferroni operator is developed which tells the existence of Neutrosophic Bonferroni operator.
Then its properties were discussed with special cases. To group decision-making issues with several attributes,
arithmetic ranking operations and the Neutrosophic approach are used. The result is compared with the existing
methodology. The suggested approach will more accurately give the decision maker the ideal attribute than the existing
system does. Neutrophic multicriteria is a method of decision-making that makes use of ambiguity to integrate various
criteria or factors—often with imprecise or ambiguous data—to reach a result. The neutrosophic multicriteria analysis
enables the assessment of subjective and qualitative factors, which can assist in resolving conflicting goals and
preferences. In Neutrosophic Multi-Attribute Group Decision Making (NMAGDM) problems, all the data supplied
by the decision makers (DMs) is expressed in single-value Neutrosophic triangular and trapezoidal numbers, which
are studied in this work and can improve the flexibility and precision of capturing uncertainty and aggregating
preferences. Studying this operator is crucial because it can be utilised to resolve multi-attribute

Keywords: Group decision making in multi-attributes using Neutrosophic(NMAGDM),Neutrosophic Bonferroni

operator, weighted Neutrosophic Bonferroni operator, Neutrosophic operator.

1.Introduction

[1] was first introduced the fuzzy set theory. This theory was used in many areas which is explained in [2]as the

essential ideas in fuzzy set theory are covered in Fundamentals of Fuzzy Sets. Its four-part structure makes it simple
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to reference both more recent and earlier findings in the subject, In [3] the definitions of the axioms pertaining to the
fundamental relationships between the entropy, distance, and similarity metrics of fuzzy collections are discussed, [4]
as Using probabilistic data, we created a novel decision-making model and aggregated the data using the instantaneous
probability idea. This kind of probability introduces the decision maker's attitude, which changes the objective
probability and in [5] as the theory and procedure of decision making are provided by the grey relational degree-based
decision making approach. The above all can deviate in various situation which was simplified by various fuzzy
members like [6] used interval valued fuzzy members produced by fuzzy disjunctive and conjunctive normal forms,
serve as a type Il fuzzy set model to depict the second order semantic uncertainty achieved by the linguistic connectives
that combine two or more fuzzy, ambiguous ideas, [7] used vague sets, [8] used intuitionistic fuzzy sets, [9] used
interval type 2 fuzzy sets, [9] used fuzzy multisets. This application was clearly explained in [10] as a method for
handling several qualities The suggested aggregation operators are used to make decisions in an intuitionistic fuzzy
environment, and an illustration is given to show the practicality and accuracy of the recommended approach, [11]
and [12]as generalization of a fuzzy set is a membership function and a non-membership function define an
intuitionistic fuzzy set. In this study, we first present a technique based on the accuracy and score functions for
comparing two intuitionistic fuzzy values. In [13], Xia et al. recently presented an intuitionistic multiplicative
preference relation to characterize the preference information provided by a decision maker over a set of objects. Next,
we develop some aggregation operators for aggregating intuitionistic fuzzy values, such as the intuitionistic fuzzy
ordered weighted averaging operator, intuitionistic fuzzy hybrid aggregation operator, and intuitionistic fuzzy
weighted averaging operator, and establish various properties of these operators. The intuitionistic multiplicative
preference relation is made up of all the 2-tuples, which can simultaneously express how much one thing is prior to
another and how much it is not. Compared to the conventional multiplicative preference relation, the 2-tuples can
more fully reflect the decision maker's preferences over objects because each component derives its value from the
closed interval [1/9, 9]. Finding a way to extract the object's priority weights from an intuitionistic multiplicative

preference relation is a key topic of research for decision making with such information.

The intricacy of the problem has increased along with the introduction of various sorts of fuzzy members.
Consequently, the Bonferroni operator was introduced as a new operator. [14] introduced the aggregation operator for
mean for the first time. With the aid of the OWA operator, this was made more generic, and [20] provides the Choquet
integral. The above-mentioned generalised approach is also provided by [21]. The Bonferroni mean(BM) operator of
interval type-2 is defined in [15]. Additionally, [16] applies this Bonferroni mean as the Bonferroni geometric mean,
which is a generalisation of the Bonferroni mean and geometric mean and can reflect the correlations of the combined
arguments. To more correctly define the uncertainty and fuzziness, membership, non-membership, and uncertainty
information could be taken into consideration using an intuitionistic fuzzy set. We go on building the intuitionistic
fuzzy geometric Atanassov To collect the intuitionistic fuzzy information of Atanassov, define the interdependence
between arguments using the Bonferroni mean. A few characteristics and unique circumstances of this mean are also

looked at [17], since it is a desired feature if the BM can capture the correlations between the input arguments. It
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seems, nevertheless, that the existing literature only discusses using the BM to aggregate crisp humbers—it does not
handle other types of reasoning. In this work, we investigate the BM in intuitionistic fuzzy environments. We construct
an intuitionistic fuzzy BM (IFBM) and discuss possible specific cases for it. Next, using fuzzy multi-attribute group
decision making (FMAGDM) scenarios in which the decision makers' (DMs') input is represented as trapezoidal
interval type-2 fuzzy sets (IT2 FS), the weighted IFBM is used to multicriteria decision making. This is done in [18].
We introduce the idea of interval possibility mean value and provide a new method for calculating the possibility
degree of two trapezoidal IT2 FS. The type-2 fuzzy geometric Bonferroni mean operator for trapezoidal intervals and
the type-2 fuzzy weighted geometric Bonferroni mean operator for trapezoidal intervals (TIT2FWGBM) are the two
aggregation techniques that we then develop and the Bonferroni mean (BM) is a crucial aggregation operator in
decision-making, as stated in [19]. A useful aspect of the BM is its capacity to record the relationship between the
individual attributes or the aggregation arguments. Proposed by Jin et al. in 2016, the extensions of the BM consist of
the optimum weighted geometric Bonferroni mean (OWGBM) and the generalised optimised weighted geometric
Bonferroni mean (GOWGBM). However, the OWGBM and GOWGBM lack both reducibility and boundedness,
which may lead to unsuitable and irrational aggregation outputs as well as poor decision-making. To overcome these
existing limitations, we propose two new measures: the generalised normalised weighted geometric Bonferroni mean
(GNWGBM) and the normalised weighted geometric Bonferroni mean (NWGBM), which are based on the
GOWGBM and the normalised weighted Bonferroni mean (NWBM).

Now, this can be expanded upon in this paper. The aggregating operations of a suggested Neutrosophic Bonferroni
operator are defined. [22] using Bonferroni power aggregation operator but the evaluation process is limited in
satisfying sum squares of non-membership and membership value. By using the above operators there will be flaws
in final calculation and that can be overcome by a proposed operator Neutrosophic Bonferroni operator which
satisfying some required properties and theorems and it is extended to weighted Neutrosophic Bonferroni operator
with its properties and theorems. Determining the concepts of neutrosophic possibility mean value and the degree of
neutrosophic possibility of two and three trapezoidal and triangular neutrosophic sets is the aim of this work. The
neutrosophic Bonferroni mean operator in triangular and trapezoidal arrangements [23].This essay attempted to give
a summary of every method that may be used to address the traffic issue [24]. It also applies the given approach to a

profit analysis decision-making problem in [25]

Thus, the paper is formulated as follows in Section 2, the basic definitions and theorems with proof of Neutrosophic
Bonferroni mean operator and theorem is given. In section 3, the properties of Neutrosophic Bonferroni operator will
be explained. In section 4, the weighted Neutrosophic Bonferroni operator is given with properties and theorems are

given. In section 5, the conclusion is given.

2. Neutrosophic Bonferroni operators:

Definition 2.1:
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Let
(TN, IN, FN)) = ((TNZ, INZ, FNY), (TNE, INE, FNE))

= (((Taf, 1a%, Fal), (T}, 1a%, Fa¥), (Tal, 1a%, Fay), (T, Ia%, Fal), (ThY, InY, FRY)),

((Tafy, Iajy, Fayy), (Tagy, lap, Fay), (Tags, Iags, Fap), (Tag, Lag, Fay,), (Thi, Th, FR))) (i = 1,2, ..., m)

represent the collection of Neutrosophic members, and we define the Neutrosophic Bonferroni mean for s,t>0 as

NBMGO((TNy, INy, FNy), (TNg, INy, FN,), .., (TNp, INp, FN)) = | = | ®Ty (sTN; @

S+t S
i#j
1 _1 _ 1
m(m-1) m(m-1) m(m-1)
1 1
tTN;) i | ®lj=1 (SIN; @ tIN;) e | ®lj=1 (sFN; @ tFN)) 1)
L#] l¢j
Theorem 2.1:
Let

(TN, IN, FN) = ((TNZ, INZ, FNY), (TNE, INE, FNE))
= (((Taf, 104, Fa), (Ta%, 1a%, Fa%), (Tal, 1a%, Fay), (T, Ia%, Fa¥), (ThY, IRV, FRY)),
((Tak,Iak, Fal), (Tal, laly, Fal), (Tak, laly, Faly), (Tak, Iak, Fal,), (ThE, IhE, FR))) (@ = 1,2, ..., m)

represent the set of Neutrosophic members, and in the case where s,t>0, the aggregation operation on (1) is likewise a

Neutrosophic member, as shown by

NBMED((TNy, INy, FNy), (TNy, INy, FNy), ..., (T Ny, INm, FNp)) = (TN, IN,FN) =
((TNY,INY,FNY), (TN, INE, FNL))where
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(TNY,INY, FNY)

1
s+t

And

®f=1 (TN @ tTN]

l$]

p <®1, 1 (STN @ tTN}]

l$]

1
pr <®1] 1 (STN @ tTNJ

l$]

i#]

1
o <®1, 1 (TN}, @ tTNj;

(TNL INE FNT)

®7-; (STNL @ TN

i#j

i#j

( o1 (STNL @ T

®7"~1 (STN; @ ¢T

i#j

i*j

(@3}:1 (STNL'Z @ tTN.

m(m-1)

m(m-1)

m(m-1)

m(m 1)

m(m 1)
o

m(m 1)
Nfz)>

m(m 1)
Ni)

m(m 1)
o

1
— (@1, 1 (sIN] @ tIN]

1
parrd (L2
1
_t®

i#j
i#j
-1 (sINZ @ tIN

li]

i#]

(@1, 1 (sIN, @ tINj,

Di—1,2,3,..,m(ThY 1’ FnY)

o
o
o

®” 1 (SINb @ tIN

i#j

lJ =1 (S[NlLl @ tIN
i#j

i#j

<®11 =1 (S[N1L3 @ tIN

l$]

( ®7"=1 (SINS @ tIN

Mi=1,2,3,..m(ThE 1nk FrE)

The proof of the above theorem is dome by mathematical induction,

Proof:

m(m 1)
ij= 1(SIN @tIN ) <®1] 1(SFN @tFN )

m(m 1)
m(m 1)

m(m 1)

m(m 1)
o) s

_t
m(m-1)
1
,—S+t<®,] 1 (sFN{] @ tFNj} )

i#j

1¢]

m(m 1)
(@U 1 (sFN{} @ tFNJ} )

i#j

1
m(m-1)
i#j

m(m 1)
(@,, 1 (sFNf, @ tFNj;

@)

Q-1 (sFN5 @ tFN

i%j

®7j=1 (SFN4 @ tFN
i#j

i%j

<®U -1 (SFNL @ tFN,

i#j

< Q-1 (SFNL @ ¢F

®)
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We start the proof by proving

®™ j=1 (sTN; @ tTN;)
i,j isnot
same

\

i,j is not
same

J\

Q™ j=1 (sTNY @ ¢TN,

®™ j=1 (sIN; @ tIN;)
i,j is not
same

i,j is not
same

\(
J\

l,j:l (SINilll S tIN]lll

\
/

ij=1 (SFN{ @ tFN,

i,j is not
same

®™ j=1 (SFN; @ tFN;)
i,j is not
same

®™j=1 (STNY @ tTNY)
i,j is not
same

®m” 1 (S[Nll2] @ tIN}Z)
i,j is not
same

®mLJ 1 (SFNlZ @ tFNJZZJ

i,j is not
same

I
(

\

®™ij=1 (STNE @ tTNY)

i,j is not
same

i,j is not
same
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(
(

|
|
|

i,j is not
same

i,j is not
same

i,j is not
same

®™j=1 (sTNY @ tTNjZ)
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i,j is not
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J\
\(
J\
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i,j is not
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same
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|
|
|
|
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®Mij=1 (SING @ tINS
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(4)

Then by arithmetic operations on Neutrosophic we get the following equations

(((sTNl- @ tTN,)), ((s1N; ® tIN;)), ((sFN;, @ tFNj)))

(((sTN}{ @ tTNY)), ((sINY @ tINY
(
(

((G7ng @ ern)). (1N @ eINg)). (PN & ePNE))

). (PN @ ern)))
(sTNG @ tTNG)), ((sING @ tING)), ((sFNY & tFNY ))
) ( )

(sTNG @ tTNG)), ((sING @ tING)), ((sFNY @ tFNY

MUN;_1 2,3, m(ThY 1nY FrY)
(((sTNiLl @ tTNY)), ((sINg @ tINE)), ((sFN & tFNE))
(sTNS @ tTN3)), ((sIN: @ tIN)), ((sFNS @ tFNB))
)

(( )
(((sTNiL3 @ tTN5)), ((sIN @ tINY)), ((sFNS @ tFNK )
(((sTNie, @ tTNS)), ((sING @ tING)), ((sFN & thxljﬁ)))

min

i=1,2,3,...m(ThE ink Frk)

(@) form =2,

®%ij=1 (STN;®TN;) |,| ®%1j=1 (SIN; D tIN;) |,| ®%ij=1 (sFN; D tFN;) | | =
i,j is not i,j is not i,j isnot
same same same

(((sTN1 @ tTN,) ® (STN, @ tTN,)), ((sIN, @ tIN,)®(sIN, @ tIN,)), ((sFN, @ tFN,)

® (sFN, ® tFNl)))
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®%ij=1 (sFNY @ tFNY
i,j is not
same

i,j is not i,j is not

same same

(@211 1 (sTNY @ tTNY) <®2u 1 (SIN{ @ tIN])

®%ij=1 (STNY @ tTNY
i,j is not
same

®%ij=1 (SINS @ tING
i,j is not
same

®%ij=1 (SFNY @ tFNJ
i,j is not
same

2i=1 (sFN4 @ tFNj

i,jis not
same

i,j is not
same

i,j is not
same

\ \( \
) J\ J
( fig O ) ( (> ( (>
( \f \( \
\ ) ) )
) gz rse)

<®2” 1 (STN§ @ TN ( ij=1 (SINj @ tINY

min((Th”,Ih ,FhY), (Th”,lhz,Fh

i,jis not i,j is not i,j is not

same same same

®% =1 (STNiﬁGBtTMﬁ)/.\@ ij=1 (SIN§ @ tINj; / \®2 ij=1 (SFN& @ tFNj

i,j is not i,j is not i,j is not
same same same

®%ij=1 (STNE @ tTNE) || @%ij=1 (sIN @ tINS) || ®%1j=1 (sFNj @ tFN;
i,j is not i,j isnot i,j is not
same same same

<®2i,j=1 (sTN; @ tTNS) || ®%1j=1 (SIN; @ tINS) || ®%ij=1 (SFN5 @ tFN g))

same same same

®%ij=1 (STNL @ ¢TNE) || @%ij=1 (SINS @ tIN) || ®%1j=1 (sFNL @ tFNS
i,j is not i,j is not i,j is not

min((Th, Ik, FRY), (ThS, Ih%, FRY))
Therefore, for m = 2, (4) is right

Suppose we assume that (4) is true for m = k, which is given by the following equations
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( ®ki,j=1 (STNi @tTNj)

k k
®"“ij=1 (sIN; @ tIN)) ij=1
i,j isnot i,j is not i,jis not
same same same

(

*ij=1 (STNY @ tTN] \

A\

®* =1 (sINY ® tIN]l{
i,j is not
same

i,j is not
same

k L
®"“ij=1 (sTNh @ tTN/
i,j is not
same

®"ij=1 (sINs @ tIN}

i,j is not
same

’ ’

( ij=1 (STNilzl S tTNjLZI < ij=1 (SINllZJ @ tINJLZI (
i,j is not i,j is not
same same
<®ki.]’—1 (sTNG @ tTNj ) < iji=1 (SING @ tINj ) (
i,j is not i,j is not
same same
(@ki.j—l (sTN; © tTNjZ)) <®ku 1 (sING © tIN; <
i,j is not i,j is not
same same
_ Miz123,..k(thY 1Y FrY)
(@" ij=1 (STN5 @ tTN,-ﬁ)) , <® pj=1 (SINi @ tINf) |, (
i,j is not i,j isnot
same same
®"ij=1 (sTN5 @ tTNS) |, ,
i,j is not i,j is not
same same
%))

—_
S

k L L
®“ij=1 (sTNL @ tTN};
i,j is not
same

® ij=1 (SINLZGBHNJI:L

i,j is not
same

\
)
®" i1 (sINLLzeatuvfz)>

[Fgems){eggmem)

Mi12,3,..k(ThE 1Rk FRE)

(sFN; @ tFN)) \

“ij=1 (sFN§ @ tFN}

i,j is not
same

ij=1 (SFNJ @ tFNj

i,j is not
same

u1WW®W

i,j is not
same

®"ij=1 (SFN§ @ tFNY)

i,j is not
same

®"ij=1 (sFNi @ tFN})

i,j is not
same

®"ij=1 (sFNh @ tFN))

i,j is not
same

®ki,j=1 (SFNiL3 S tFN]-L3)

i,j is not
same

®"*ij=1 (sFNE ® tFNj,

i,j is not
same

|
|
)

|

|
|
|

|
)

®)
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Now we have to prove form = k + 1

( ® sy (STN;@®tTN)) || ®“%j=s (SIN; @ tIN)) || ®“Tj=1 (sFN; @ tFN;) \
i,j is not i,jisnot i,j isnot
same same same

i,j is not i,j is not

same same same

® (B TN @ eTN,,)).

= \@ki,j=1 (sTN; ® tTIVj)) , <®ki,j_1 (sIN; @ UNj)) , (@ki,j_l (sFN; @ tF]Vj))
i,j isnot
(®Ks TN, @ tINe1)), By SN, @ tFNes)))
(

® ((@ﬁgl (STNiy1 ® tTNj)), ®*_, (sINjr ® tIN]-)) , (®§=1 (sFNip1 @ tFNj)))

(6)

Using the arithmetic operations defined for Neutrosophic member, we get

(®ks GTN ® TNy, (BIy (SIN: @ 1)) @y (SN, B tFNy,))

(( £y (STNG @ (NG 11,) ). (® (SINE @ tING1y,)) (@K, (sFNY @ tFN(‘;H)l)))
((@l L (STNY @ TN 1)), (®, (SINS @ tING.11,)), (®L, (sSFNY @ tFN(‘,ﬁH)Z))),
((@l L (STNE @ (TN 1)) ), (® (SING @ tING1113)), (®I, (SFNY @ tFN(i+1)3)))
(( £y (STNY @ tTNG 110)) (R, (SINY @ tING.1y4)), (®1y (sFNY EBtFN(l,’c+1)4)))
min ((Th” InY, FRY), (Th 1, IhY, 1, Fh,,))

(®k, (sTNE @ tTN(k+1)1)) (®L (SINE @ tIN11))), (®L, (sFNE @ tFN(LkH)l)))
(®Ls (STNE @ tTNG1y2)), (®Ly (SINE @ tING11),)), (@, (sFN5 & tFN(LkH)Z))),
(®I1 (STNE @ tTNG11y3)), (®I (SINE @ tING11ys)), (®, (sFN5 @ tFN(L,Hm)))

( i=1 (STNLIZ@tTN(kH)z})) ( i=1 (SIN ®tIN(k+1)4)) ( i=1 (SFN ®tFN(k+1)4) )

min ((ThE, IhE, FRE), (Thy, Ihf s, FhE.))

N NN

~—

And

((@ﬁ?zl (STNias @ tTN;)), (®1Ly (5INias @ tIN,)), (R (SF Nty ® tFNj)))
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(( Ky (STNG 1y @ tTNY)), (@ (SING )y @ tINY)), (@' (SFNY 41y @ EFNY ))
((®, L (STNG 10 @ tTNG)), (@ (SING4ay @ tIN)), (@ (SFNYs1yz © EFNY ))
((@ 1 (STNGs1ys @ tTNE)), (®'y (SING 115 @ tING)), (@' (SFNY 41y © LFNY ))
(( Ky (STNGs1ye @ tTNY)), (@ (SINGs1)s t11vj4)) (®Uy (SFNGsrys © tFNY )

i ((Thfesry Thliry Fhiiersy), (ThY, Ihf, FRY))
(( ®'y (STNGryn @ (TNE)), @Koy (sINGarys @ tINE)), (@K, (SFNyinyy ® tFNle))),
<(® Ky (STNEr1y2 @ tTNS)), (@, (5INE i1y @ tINE)), (®IL; (SFNGary © tFNjg))),
((®1 1 (STNGis1)s © TN 3))'(®§=1 (SINGer1ys @ ”1\’1%))'(®§=1 (SFNier1ys @ tFNjL?»)))'
(( Ky (STNEinys @ tTNS)), (@12, (51N y1y0 @ tINS)), (®ILy (SFNEyys © LFN ))
min ((Th(kny Th{is1y Fhiisr)), (Thi, Ih, thL))

j=1,2,..

The above two equations and equation (5) will applied in (6). The resulting equation will gives

i#j i#] i#]j

( 12 (sTN; e]atTN)) ( 14 (sIN; @ tIN)) ( 14 (sFN; eathvj)>

®H (sTNY @ ¢TNY)), (®1 (sING @ tINY)), (@ (sFNS @ tFNY

®1 (sTNY @ tTNG)), (/< (sINY @ tINY

(®3 (sTNG @ tTNG)), (®1 (sING @ tINg)), (®L (sFNg @ tFNY

). (@ )
). (®< (sFNY & tFNY ))
). ( ))
). (e

MRy 53 k+1(tn? in? Fad)

®I41 (TN @ ¢TNR)), (®I1 (sING @ tINY)), (@ (sFNS @ tFN)

®1 (sTNL @ tTNS) ( K41 (sINS @ tING) ), (®I1 (sFNS @ tFNS)

— —r

(®

(®

(

( ® (sTNY @ tTNY)), (@21 (sINY @ tINy
(e ):

(e ):

( K1 (sTNE @ (TN) ), (®K (sING @ tIN;
(€ ).

). (®
). (® (sFNs ® tFNJ)
(&

K1 (sTNG @ tTNE)), (@K (sIN @ tIN)),

min,

*! (sFNf;, @ tFN}; ))

i=1,2,3,..k+1(ThE 1nk FRE)
Next we prove (1) is true,
By the arithmetic operations defined for Neutrosophic member and equation),

It is verified that the below equation (1) is true for any n.
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NBM(S't)((TNll INll FN]_), (TNZI INZI FNZ)’ ey (Tan Ian FNTL))

m(m-1)
1 1
= (s o ®™ j=1 (STNi (&) tT]Vj) S ®":j=1 (SINi
\ i,j is not i,jis not

same same

1 1

i,j is not
same

m(m—1) m(m-1)
VT )
@ tIN,) / - +t\® =1 (SFN; @ tFN;) /

Now we prove some important property for Neutrosophic Bonferroni mean(NBM)

3.Neutrosophic Bonferroni properties:

Property 3. 1:

This property is also called as idempotency on NBM.

Let
(TN, IN, FN) = ((TNZ, INZ, FNY), (TNE, INE FNE))

= (((Taf, 104, Fa), (T}, 1a%, Fa¥), (Tal, 1a%, Fay), (T, Ia%, Fal), (ThY, InY, FRY)),

((Tak,lak, Fab), (Tak, 1ak, Fak), (Tak, Iak, Fak), (Tak,, 1at, Fak,), (ThE, ThE, FRA)Y)) (i = 1,2, ..., m) be the

and s, t > 0. If every (TN, IN;, FN,) = ((TNl-U, INY,FND), (TNL-L,INL-L,FNL-L)) are equal for all .
(i.8) (TN, IN, FNy) = ((TNY,INY, FNY), (TNE, INE FNE)) = (TN, INo, FNo);

((TNy, INy, FNy) = ((TNY, INY, FNY), (TNE, IN§, FNE)) then

NBMEO((TNy, INy, FNy, (TN, INy, FNg), ..., (T'Ny, INy, FNy)) = ((TNo, INo, FNg) =
((TN,IN{,FN{), (TN§, INE, FNE)) )

Property 3.2:

This property is also called as boundedness on NBM.

(TN, IN, FNp) = ((TNZ, INZ, FNY), (TNE, INE, FNE))

= (((Taf, 1a%, Fa), (T}, 1a%, Fa¥)), (Tal, 1a%, Fay), (T, Ia%, Fal), (ThY, InY, FRY)),
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((Tak, Iak, Fab), (Tak, laky, Fal), (Tak, lak, Fak), (Tak, Iak, Fak), (ThE, Ihf, FR))) (i = 1,2, ..., m) be the
set of members of the Neutrosophic and for s, ¢ > 0 and also we have ((TNY,INY,FNY), (TN%,INL, FNY)) =
(miin Taf, min/ al, minF aﬁ) , (miinTaig, min] al, minF aig) , (miinTal%, min/ al, minF al%) ,
(miinTafi, min] a?, minF aﬂ) , (miinThlV ,min/ hY, minF hY ) ‘
(miinTal-Ll, min/ aty, minF al-Ll) , (miinTa{fZ, min] ab, minF al-LZ) , (miinTaiL3, min/ aly, minF aiL3) ,

(mjnTa{:l, minlal,, mjnFal-L4) , (m,inThiL, minlhF, mjthL-L)
L i L L i L
And((TNY,IN{,FN), (TN}, INY, FNY)) =

(m_ax TaY ,maxla¥, m_axFaiUl) , (maxTailé, maxlap, maxFal%) , (m_axTailé, max/al, m_axFal%) ,
L L L i i i i i i

)

(maxTaﬂ, max/a?, maxFaff}) , (maxThf’, max/h?, mathf’)
L i i l i i
L L L L L L L L L
(m_axTail, maxla;;, maxF ail) , (maxTaiz, max/aj,, maxF aiz) , (maxTalg, max/a;, maxF ai3) ,
L L L L i L 4 4 4

(m_axTaiL4, maxl/al,, maxF a{-“4) , (maxThiL, max/h}, maxF h* )
L l i i L L
Then we have,

(TN_,IN_,FN_) < NBM(S'f)((TNl,INl,FNl), (TN,,IN,, FNy), ..., (TN, IN,,, FNm)) < (TN,,IN,,FN,)
(8)
Property 3.3:

This property is also called as monotonicity on NBM.
(TN, IN;, FN;) = ((TNl-U JNY,FNY), (TN INE, FNiL))
= (((Taf, 104, Fa), (Ta%, 1a%, Fa%), (Tal, 1a%, Fay), (TaY, 1a%, Fa¥), (ThY, IRV, FRY)),

((Tak,lak, Fab), (Taky, 1ah, Fab), (Tak, lak, Fab), (Taky, 1aky, Fak,), (ThE, ThE, FRE))) (i = 1,2, ..., m) and for
s,t = 0and

(TMy, 1M, FM) = ((TMY,IM?, FMY), (TME, IME, FME) )
= (bl 1bY, FBY), (TbY, 1bY, FbY), (TbY, 168, FbY), (TbY, IbY, FbY), (ThY, IhY, FhY)),
((Tbh, Ibly, Fbly), (Thl, Ibh, Fbh), (Tbls, b, Fbl), (T, Ibk, FbY), (ThY, Iht, FRA))(i = 1,2, ..., m) and for

st > 0 and also (T}, < ThY), (Il < IbY), (Fal < FbY)) and ((Tak < Tb), (Iak < Ibk), (Fak < Fbk))

©)
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Property 4:

This property is also called as commutivity on NBM.
(TN, IN, FN)) = ((TNZ, INZ, FNY), (TNE, INE, FNE))
= (((raf, 104, Fa), (Ta%, 1a%, Fa¥), (Tal, 1a%, Fay), (TaY, Ia%, Fa%), (ThY, IRV, FRY)),

((Tak,lak, Fah), (Tak, 1ah,, Fab), (Tak, Iak, Fak), (Tak,, 1aky, Fak,), (ThE, IhE, FRI))Y (i = 1,2, ...,m) and

fors,t = 0and
(TN', IN'y FN') = ((TN{V, IN;", FN{"), (TN;", IN{*, FN"))
= ((Taf, 1af, Faif), (Ta, 108, Faif), (Taf, 1aY, Fal¥), (Taif, 1afy, Faff), (Thi" 1KY, FA{")),

(Tajy, lajt, Faip), (Tajz, lajz, Faig), (Tags, lajz, Faig), (Taig, lai;, Fai), (TR, Ik, FRi)) (i = 1,2,...,m) be
i1 i1 i1 i2 i2 i2 i3 i3 i3 4 i4 i4 i i i

the permutation number of above Neutrosophic member and for s, t = 0. Then,

NBMO((TNy, INy, FNy), (T Ny, INy, FNy), .., (T Ny, INy, FNy)) =
NBMSD((TN'y, IN'y, FN'y), (TN, IN'3, FN'2), oo, (TN i, Iy, FN',1)) (10)

By giving parameters s, t different values, we will get different values.
4.Neutrosophic weighted Bonferroni operator:
Definition 4.1:

Let

(TN, IN, FNp) = ((TNZ, INZ, FNY), (TNE, INE, FNE))

= (((Taf, 104, Fa), (T}, 1a%, Fa¥), (Tal, 1a%, Fay), (T, Ia%, Fa¥), (ThY, IRV, FRY)),

((Tak,lak, Fab), (Tak, 1ak, Fak), (Tak, Iak, Fak), (Tak,, 1at, Fak,), (ThE, IhE, FRE))) (i = 1,2, ..., m) and for
s,t > 0and (Tw, Iw, Fw) = ((Twy, Iwy, Fwy), (Twy, Iwy, Fws,) ... (TWy,, IWp, Fwy,)) be the weight vector for
(TN, IN,, FN,) = ((TNL-U,INL-”, FNY), (TN}, INE, FNiL)), where (Tw; > 0, Iw; > 0, Fw; > 0) and Y™ Tw; +

Ximo Iw; + X7, Fw; = 1, then the Neutrosophic weighted Bonferroni operator is defined as
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NWBM(S't)((TNl,INl,FNl),(TNZ,INZ,FNZ),...,(TNm,INm,FNm))=(ﬁ Q™ =1 (s(TN)Yi B
“same
_tr _r
m(m-1) m(m-1)
wj 1 . Wi 1 .
(rn)) | R @M uN @)Y | R @M (N @
i,j is not i,j is not
same same
1
m(m—1)\
Wi
t(FN;)™) (14)

)

Theorem 4.1:

Let

(TN, IN, FN)) = ((TNZ, INY, FNY), (TNE, INE, FNE))

((raf, 1a8, Fa}), (Tal, 1a%, Fa), (Ta%, a8, Fa¥), (Tal, 1a, Fal), (ThY, IhY, FhY)),

((TaLLI'IalLl'FalLl)' (TaiLz:IaiLz:FaiLz), (TaiL3:1a{'J3:FaiL3):(TaiL4xIaiL4:FaiL4):(ThiLthiLthiL))

(i =1,2,...,n) and for s,£20 are (Tw, Iw, Fw) = ((Twy, Iwy, Fwy), (Twy, Iwy, Fwy) ... (TWy, Iwy, Fwy,)) be the
weight vector for (TN, IN;, FN;) = ((TNl-U, INY, FND), (TNiL,INiL,FNiL)), where (Tw; = 0, Iw; > 0, Fw; > 0)
and X7 Tw; + X%, Iw; + X%, Fw; = 1. Additionally, a Neutrosophic member, so we have

NWBMEO((TNy, INy, FNy), (TNy, INy, FN), ..., (TN, IN,, FN,)) = (TN, IN,,, FN,,) =

((TNY, INS, FNY), (TN, INL, FNE)) (15)

Where
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(TNY,INY, FNY)

(.

m U\Wi Wi
I s+ tk i,jL’i]s:nlot (S(TNH ® t(Tle ))
same
( \m(m 1)
1
o t\®.”.w=l TN @ e(TN)")
i,jisno /
= ( \m(m 1)
1 i
st ®mi,]’=1 (S(TNig v 6Bt(TNj )
\ i,j is not /
( \‘m(m 1)
1 ; j
s+t ®"jon (s(TNG)™ @ t(TNS)™) ’
\ i,j is not }
And

(TN, INj, FN)

1 w; wj

| @ (TN @)
same

| @ (M) @ e(ri)™)

s+t l]lljsniot : 72
same

1 wi w;j

| 7 ()" @ ()™
same

1 wi w;j

S+t ®l]lljsnlot(S(TN4) @ t(TN, 4) )
same

\m(m 1)

_1
m(m—1)

m(m )

"IN Wf)}

i,j isnot
same

.
k@mi,}q (s(ing

( m(m 1
1 wy w;
@M= (sUNZ) " @ t(ING)™)
5+t\ i,jli}snlot ? 2
same
( m(m—l)
1 wy w;
, @™ =1 (sUNE)™ @ t(INE)™)
S+t\ i,jli]snlot B 2
same
( m(m—1)
l Wi w;
Q™ =1 (sUNY)" @ t(IN} 1)\ ,
s+ t\ i,jlijsnlut " i
same
MR _1 53, m(ThY 1nY,FrY)
1
m(m—1)
1 w w
®"j=1 (sUNE)™ @ t(INf)™)
s+t l]llJS nlot n n
same
1
m(m—-1)
1 . .
| ®mn GUNE)™ @ ()™
i,j isnot
same
1
m(m—1)
1 w wi
77| ®"u= (SONE)™ @ t(Ng)™)
s+t l]lljs nlot : 73
same
1
m(m—1)
1 w wi
, ™ (sUNE)" @ t(INR)™)
s+t 1}1115 nlot * *
same
min;

i=1,2,3,...n(ThE IhE FRE)

Now we define the property for Neutrosophic weighted Bonferroni operator

Property 4.1:

)
N

+t

“»

1
+

t

1
s+t

1

s+t

.
K@mi,j—l (s(FNi

"o (FN] W")/

i,j isnot
same
_1
( m(m—1)
w; w;j
®Mj=1 (s(FNZ)™ @ t(FNj3)™)
\ i,j isnot
same
_1
( m(m—1)
w; w;j
®mi,j=1 (S(FNig D t(FNjg l)
\ i,j isnot
same
1

i,j is not
same

( \‘m(m 1)
K®mirf:1 (s(FNE)™ @ ¢(FNE)™)

(16)
1
m(m-1)
®"j=1 (s(FNL)™ @ t(FN5)™)
i,j is not
same
1
m(m—1)
®"j=1 (s(FNE)™ @ t(FNS)™)
i,j is not
same
1
m(m—1)
®"ij=1 (s(FNE)™ @ e(FNE)™)
i,j isnot
same
1
m(m—1)
® i,j=1 (S(FN 4)WL @ t(F 4)Wj)
i,j isnot
same

(17)
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This property is also called as idempotency on NBWM.

Let
(TN, IN,, FN,) = ((TNY, INY, FNY), (TN, INs, FNL))

_ ((((Tai”l)wl (1a%)", (Faft)"), ((Taf)", (1a)", (Fa)"), ((Taf)", (1a)", (Fa)"), ((Taf)", (1a)", (Fafy)" ), (Th{., 1hY, FhY) ) )

A\ (((rak)" (1ak)", (Fak)"), (Tak)", (1a)", (Fab)"), (Tak)", (1ak)”, (Fal)™), (Tak)", (1ak)", (Fak)™), (Thb, Ih}, Fht))
(i =12,..,m) and ifevery (TN, IN,, FN,) = ((TNY,INY,FNY), (TNL,INL, FNL)) are equal for all.

(i.e) (TN, IN,, FN,) = ((TNY,INY, FNY), (TNL, INL, FNL)) = (TN, INg, FNy);

((TNy, INy, FNy) = ((TNY, INY, FNY), (TN§, IN§, FNE)) then

NBWM(”)((TNl, IN;,FN;), (TN,,IN,,FN,), ..., (TN, IN,,, FNm)) = ((TNO, IN,, FNO)
= ((TN§,IN{,FN{), (TN§, INE, FNE))

Property4.2:
This property is also called as boundedness on NBWM.

(TNy,IN,, FN,) = ((TNY, INY, FND), (TNL, INL, FNE)) =

((((Taﬁ)wr (1a})", (Faf)™),((Tah)", (1a)", (Fal)"), ((ray)", (1a%)", (Fas)"), (Tak)", (1af))", (Fay)"), (ThY, 1nY, FhY))
(((Ta{‘“i)wr (laiL1)Wr (FaiLi)W)r ((Ta{‘“z)wr (laiLz)W' (FaiLz)w)' ((Taz'L3)w' (’U—iL3)Wv (FaiL3)w)' ((Taith)w' (’az'L4)Wv (Faz'L4)w)' (Thi, Int, FhiL))

fors,t > 0 and also we have (TN_,IN_,FN_) = ((TNY,INY,FNY), (TNL,INL, FNY)) =
(miin(TaiUl)Wi , miin(laiul)wi, miin(FaiUl)Wi) , (miin(TaiUz)Wi, miin(IaiUZ)Wi, miin(Fai”Z)Wi) , (miin(Ta,%)Wi, miin(lal%)wi, miin(FaL%)Wi) ,
(miin(Taﬂ)W’, miin(laili)wl, miin(FaffL)W’) , (miin(ThlV)W’, miin(lhl@’)wl, miin(Fhf’)W’)
<(miin(Ta{“1)W‘, miin(lafl)wl, miin(Fa,-Ll)Wl) , (miin(Ta{“Z)W‘, miin(Ia{“Z)W‘, miin(Fa{“Z)W‘) , (miin(Ta{-“S)Wl, miin(la{g)wl, miin(Fa{-g)W‘) ,>

(miin(Ta,-L4)Wi, miin(lal-L4)Wi, miin(FaiL4)Wi) , (miinThiL, ml_inlhiL, miith{f)

> G(i=12..,m)and

And

(TN,,IN,,FN,) = ((TN?,INY,FN?), (TNL INE,FNE)) =

(miax(TaiUl)wi , miax(laiul)wi, miax(Fal-Ul)Wi) , (miax(TaiUz)Wi, mlax(laiuz)wi, miax(FaiUz)Wi) , (mLaX(Tai’é)wi, ml_ax(lal%)wi, ml_ax(Fal%)Wi) ,
(miax(Tafft)Wl, miax(lafi)wl, miax(Fafi)wl) , (miax(ThlV)W’, ml_ax(lhf])wl, miaX(FhlV)W‘)
((miax(Tafl)W’, miax(lafl)wl, miax(Fafl)Wl) , (miax(TaiLz)wl, mlax(la{fz)wl, miax(Fa{-“Z)W‘) , (mLaX(Ta{g)W’, miax(la{g)wl, miax(Fa{-“s)W‘) ,>

(mlgix(Tal-L4)wi, miax(lal-L4)Wi, miax(FaiL4)Wi) ) (miaxThiL, miaxlhiL, miathiL)

Then we have,
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(TN_,IN_,FN_) < NBWM O ((TNy, IN,, FN,), (TN, INy, FN,), ..., (T Ny, INy, FN,)) < (TN, IN,,FN,)

Property 4.3:
This property is also called as monotonicity on NBWM.

(TN,,IN,,FN,) = ((TNY,INY,FNY), (TN, INE, FNE)) =

(((Taf)™, Ual)¥, (Fai)™), (Tak)¥, (Tap)”, (Fal)™), (Tai)™, Uai)™, (Fai)™), (Tal)™, (af)”, (Fai)™), (ThY, Ih{, FhY)),
( ((Tak)™, Uaf)¥, (Fai)™), (Tap)", Uap)", (Fab)*), (Tai)™, (Uai)Y, (Fai)™), (Tah), Uaf,)”, (Fai)™), (Thi, Ihi, Fhi)) ) (

1,2,..,m) and for s,t = 0

and
(TMy,, IM,,, FM,,) = (TMY, IMY, FMY), (TML, IML, FML)) =

((((Tbﬁ)w, (15i2)", (FbE)™), (T082)", (1612)", (F8)"), (T088)", (16)", (Fb)"), (762)", (162)", (FE)"). (A 10y F1Y)) ) ‘.

((Crph)", (165)", (Fbl)™), (Tbh)", (16h)", (Fbls)™), (Tbh)", (1bf)", (Fbis)"), (Tbh)”, (16)", (Fb)"), (Tht. 1ht, 1Y)

1.2,...,m) and for s,¢ > 0 and also (((Ta%)™ < (TBY)™), (Uaf)™ < (IbY)™), (Fal)™ < (FbY)™)) and

((Tab)™ < (TBEI™), (Uak)™ < (UbE)™), (Fak)™ < (FBE™))
Then we have

NBWMSO((TNy, INy, FNy), (TNy, INy, FN,), ..., (T Ny, INy, FN,y))
< NBWMGOD((TMy, IMy, FMy), (TMy, IMy, FM,), ..., (TMyy, My, FMp,))

Property 4.4:

This property is also called as commutivity on NBWM.

(TN, IN,,FN,) = ((TNY,INY,FNY), (TN, INE, FNE)) =

((((Tai"l)w, (Iai)™, (Fai)™), ((Tap)", (Tak)”, (Fap)™), (Taiz)™, (Tak)”, (Fai)™), (Tai)™, (ai)", (Fai)™), (ThY, Ih{, Fhﬁ’))) (
(((Taf)¥, Ua)¥, (Faf)Y), (Tah)”, Uab)¥, (Fap)Y), (Taf)”, (ak)Y, (Fai)Y), (Taf)”, Uap)¥, (Fal)Y), (Th, Ihi, Fh)

1,2,..,n)and fors,t > 0

By giving parameters s, t different values, we have some different result.

5. Conclusion:

The classical Bonferroni mean operator and possibility degree have been extended in the trapezoidal and triangular
neutrosophic environment to better organise and model the uncertainties and indeterminacy inside multi-attribute
decision analysis. In FMAGDM, the neutrosophic Bonferroni operator can combine several decisions or evaluations

from multiple decision-makers. Neutropphic surroundings, as opposed to trapezoidal and triangular contexts, are able
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to convey the decision-makers' ambiguity, indecision, and uncertainty. Based on the neutrosophic possibility degree
and the TITRNWBM operator, we have introduced a novel approach for NMAGDM. Numerous difficult multiple-
attribute decision-making issues can be resolved with the help of the suggested Neutrosophic Bonferroni operator and
weighted Neutrosophic Bonferroni operator, both of which meet the necessary criteria and theorems. Therefore, we
see this as a starting point for future research using this operator for solving multiple attributes decision making
problems.
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