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Abstract: In various fuzzy multiple attribute decision making (MADM) applications, different 

information descriptions and aggregation operators (AOs) play a crucial role. However, both the 

Einstein sum and product can include their typical algebraic operation features, but they lack the 

characteristics of periodicity operations. To fill the research gap of Einstein AOs for single-valued 

neutrosophic values (SvNVs), this article aims to propose Einstein AOs of sine SvNVs and their 

MADM model as their new extension. In this study, we first define a new sine SvNV, which 

integrates sine functions into the membership functions of indeterminacy, falsehood, and truth, and 

the Einstein operation laws of sine SvNVs. Then, we present the sine SvNV Einstein weighted 

average and geometric AOs and their properties. Furthermore, we develop a MADM model based 

on the proposed Einstein AOs in a SvNV circumstance. Lastly, we apply the developed MADM 

model to a site selection example of a hydrogen power plant as the verification of its application in 

a SvNV circumstance. The decision results reveal the rationality and validity of the developed 

model with respect to the comparison of the related models. 

Keywords: decision making problem; sine single-valued neutrosophic value; einstein operation law; 

sine single-valued neutrosophic value Einstein aggregation operator  

 

 

1. Introduction 

Recently, various fuzzy multiple attribute/criteria decision making (MADM/MCDM) theories 

and approaches have become research hotspots in uncertain decision applications. In MADM 

applications, various fuzzy information descriptions and operations/aggregations imply their 

importance and necessity. Fuzzy sets (FSs) [1] contain only membership degrees, but lack non-

membership degrees. Then, intuitionistic or interval-valued FSs (IFSs/IvFSs) [2, 3] can contain both 

membership and non-membership degrees and the dependent relationship of both, but cannot reflect 

the independent relationship of indeterminate, false, and true membership degrees in inconsistent 

and uncertain situations. As a general framework of different FSs, a neutrosophic set (NS) [4] can 

reflect them. Regarding the subsets of NS, some scholars presented single-valued or interval-valued 

or simplified neutrosophic values (SvNVs/IvNVs/SNVs) [5-7] and their operation laws and 

aggregation operators (AOs) to effectively meet scientific and engineering applications. Zhang et al. 

proposed the improved AOs of IvNVs for MADM [8]. Then, Yang and Li [9] introduced the power 

AOs of SvNVs for MADM. Liu et al. [10] presented the power Muirhead mean AOs of SvNVs for 

group decision making (GDM). Liu [11] also introduced the Archimedean AOs of SvNVs for MADM. 

Garg [12] proposed the Frank norm AOs of SvNVs for MADM. Deli and Subas [13] introduced a 
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SvNV sorting method for MADM. Liu and Liu [14] put forward a generalized weighted power 

averaging operator of SvNVs for GDM. Karaaslan and Hayat [15] presented some operations of 

interval-valued neutrosophic matrices and applied them to GDM. Garg [16] used the multiplicative 

preference relation of SvNVs for MADM. Giri and Roy [17] introduced a neutrosophic programming 

approach to solve the transportation problem of green four-dimensional fixed charges. Therefore, the 

SNVs (SvNVs and/or IvNVs) have also revealed their merits in inconsistent and uncertain MADM 

applications [18]. Consequently, many scholars have further developed SNV (SvNV and/or IvNV) 

AOs, such as ordinary weighted arithmetic and geometric AOs, Einstein AOs, generalized AOs [19], 

Bonferroni mean AOs [20], Hamacher AOs [21], exponential AOs [22], subtraction and division AOs 

[23], Frank AOs [24], prioritized interactive AOs [25], and fairly AOs [26] for SNVs (SvNVs and/or 

IvNVs). 

Recently, some scholars [27, 28] have proposed logarithmic SvNV operation laws and 

logarithmic SvNV Einstein AOs for GDM in view of t-conorm and t-norm. However, they reflect 

some limitations, for example, logx(y) cannot be defined when x = 1 or y = 0. Due to the periodicity 

feature of the sine function, it implies some merit that satisfies the multiple periodicity MADM needs 

in real problems. Therefore, the operation laws and AOs of sine SvNVs (S-SvNVs) [29, 30] have been 

introduced in MADM applications. Then, there are the defects of some membership functions that 

belong to the range of [0, 0.46) instead of the whole range of [0, 1] in S-SvNV [29, 30]. To overcome 

this deficiency, AOs of tangent SvNVs (T-SvNVs), where the three membership functions belong to 

the whole range of [0, 1], were presented for MADM [31]. Based on cosine, sine, arccosine, and arcsine 

operations, Ye et al. [32] first proposed the single-valued neutrosophic credibility value trigonometric 

AOs for MADM. However, the Einstein sum and product can include their typical algebraic 

operation merits [19], but lack periodicity operation features. Furthermore, no Einstein operation 

laws and AOs of S-SvNVs are presented in the existing literature. Therefore, it is necessary to develop 

them for MADM issues with S-SvNV information to fill this gap. Motivated by the new ideas, this 

article will propose the Einstein AOs of S-SvNVs and their MADM model as a new extension to 

address the defects and research gaps in the existing S-SvNV operation laws and AOs [29, 30]. In this 

study, the objectives of this paper are to: (1) define a suitable S-SvNV including three membership 

degrees belonging to the whole range of [0, 1] and Einstein operation laws (EOLs) of S-SvNVs, (2) 

establish the S-SvNV Einstein weighted average (S-SvNVEWA) and geometric (S-SvNVEWG) AOs, 

(3) develop a MADM model using the S-SvNVEWA and S-SvNVEWG AOs, and (4) apply the 

proposed MADM model to a site selection example of a hydrogen power plant (HPP) in a SvNV 

circumstance. However, the comparison results with the existing related models indicate the 

rationality and validity of the proposed model. 

The remainder of this article is composed of these parts. Section 2 simply reviews the 

preliminaries of single-valued NSs (SvNSs), including the operation laws and AOs of SvNVs and S-

SvNVs. In view of the integration of sine functions into indeterminate, false, and true membership 

functions, Section 3 defines a new S-SvNV and the EOLs of S-SvNVs, and then presents the S-

SvNVEWA and S-SvNVEWG AOs and their properties. In Section 4, a MADM model is developed 

in terms of the S-SvNVEWA and S-SvNVEWG AOs. Section 5 applies the developed MADM model 

to a site selection example of HPP in a SvNV circumstance. The comparative results of the existing 

related models reveal the validity of the developed model. Conclusions and future research are 

summarized in Section 6. 

2. Preliminaries of SvNSs 

2.1. Operation laws and AOs of SvNVs 

Set XC as a fixed universe set. Then, the SvNS N in XC is represented as N = {<xc, Nt(xc), Nu(xc), 

Nv(xc)>|xc  XC} [6], where Nv(xc), Nu(xc), Nt(xc)  [0, 1] are the membership functions of falsehood, 

indeterminacy, and truth subject to 0  Nt(xc) + Nu(xc) + Nv(xc)  3 for any xc  XC. Then, <xc, Nt(xc), 

Nu(xc), Nv(xc)> in N is represented as the SvNV N = <Nt, Nu, Nv> for simplicity. 
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Set two SvNVs as Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2) with w > 0. Then, their operation relationships 

are presented below [7, 19]: 

(1) N1  N2  Nt(1)  Nt(2), Nu(1)  Nu(2), and Nv(1)  Nv(2); 

(2) N1 = N2  N1  N2 and N1  N2; 

(3) 
1 2 (1) (2) (1) (2) (1) (2), ,N N Nt Nt Nu Nu Nv Nv        =    ; 

(4) 
1 2 (1) (2) (1) (2) (1) (2), ,N N Nt Nt Nu Nu Nv Nv        =    ; 

(5) 
1 (1) (1) (1)( ) ,1 ,c

N Nv Nu Nt   = −  (Complement of N1); 

(6) 
1 2 (1) (2) (1) (2) (1) (2) (1) (2), ,N N Nt Nt Nt Nt Nu Nu Nv Nv          = + − ; 

(7) 
1 2 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2), ,N N Nt Nt Nu Nu Nu Nu Nv Nv Nv Nv            = + − + − ; 

(8) 
1 (1) (1) (1)1 (1 ) , ,w w w

w N Nt Nu Nv

       = − − ; 

(9) 
1 (1) (1) (1),1 (1 ) ,1 (1 )w w w w

N Nt Nu Nv

      = − − − − . 

Set Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) as a collection of SvNVs with their weight vector W = 

(w1, w2, …, wq) subject to 0  ws  1 and 
1

1
q

wss


=
= . Then, SvNVWA and SvNVWG are denoted 

as the SvNV weighted average and geometric AOs and expressed by the two formulae [19]: 

( ) ( ) ( )1 2 ( ) ( ) ( )

1 1 1 1

( , ,..., ) 1 1 , ,
ws ws ws

q q qq

N N Nq ws Ns Nt s Nu s Nv s

s s s s

SvNVWA
  

       
= = = =

= = − −    , (1) 

( ) ( ) ( ) ( )1 2 ( ) ( ) ( )

1 1 1 1

( , ,..., ) ,1 1 ,1 1
ws ws wsws

q q q q

N N Nq Ns Nt s Nu s Nv s

s s s s

SvNVWG
  

      
= = = =

= = − − − −    . (2) 

Set two SvNVs as Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2) with w > 0. Then, their EOLs are presented 

as follows [19]: 

(1) (1) (2) (1) (2) (1) (2)

1 2

(1) (2) (1) (2) (1) (2)

, ,
1 1 (1 )(1 ) 1 (1 )(1 )

Nt Nt Nu Nu Nv Nv

N E N

Nt Nt Nu Nu Nv Nv

     
 

     

+
 =

+ + − − + − −
; 

(2) (1) (2) (1) (2) (1) (2)

1 2

(1) (2) (1) (2) (1) (2)

, ,
1 (1 )(1 ) 1 1

Nt Nt Nu Nu Nv Nv

N E N

Nt Nt Nu Nu Nv Nv

     
 

     

+ +
 =

+ − − + +
; 

(3) (1) (1) (1) (1)

1

(1) (1) (1) (1) (1) (1)

(1 ) (1 ) 2 2
, ,

(1 ) (1 ) (2 ) (2 )

w w w w

w w w w w w

Nt Nt Nu Nv

w N

Nt Nt Nu Nu Nv Nv

   

     

   
 

     

+ − −
 =

+ + − − + − +
; 

(4) 
(1) (1) (1) (1) (1)

1

(1) (1) (1) (1) (1) (1)

2 (1 ) (1 ) (1 ) (1 )
, ,

(2 ) (1 ) (1 ) (1 ) (1 )

w w w w w

w

w w w w w w

Nt Nu Nu Nv Nv

N

Nt Nt Nu Nu Nv Nv

    



     

    


     

+ − − + − −
=

− + + + − + + −
. 

For a collection of SvNVs Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) with their weight vector W = 

(w1, w2, …, wq) subject to 0  ws  1 and 
1

1
q

wss


=
= , SvNVEWA and SvNVEWG are denoted as 

the SvNV Einstein weighted average and geometric AOs and introduced by the two formulae [19]: 

( ) ( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( ) ( )

1 1

( ) ( )

1 1

1 2

1

( ) ( )

1 1

( ) ( ) ( ) ( )

1 1 1 1

1 1

,

1 1

( , ,..., )

2 2

,

2 2

ws ws

ws ws

ws ws

ws ws ws ws

q q

Nt s Nt s

s s

q q

Nt s Nt sq
s s

N N Nq E ws Ns q q
s

Nu s Nv s

s s

q q q q

Nu s Nu s Nv s Nv s

s s s s

SvNVEWA

 

 

 

   

 

 

    

 

   

= =

= =

=

= =

= = = =


+ − −

+ + −

= =

− + − +


 

 


 

   


 
 
 
 
 
 
 
 
 
 



, (3) 
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( )

( )

1

( ) ( )

1 1

( ) ( )

1 1
1 2

1

( ) ( )

1 1

( ) ( )

1

2 ( )

,

(2 ) ( )

(1 ) (1 )

( , ,..., ) ,

(1 ) (1 )

(1 ) (1 )

ws

ws ws

ws ws

ws

ws ws

ws ws

q

Nt s

s

q q

Nt s Nt s

s s

q q

Nu s Nu sq

s s
N N Nq E Ns q q

s

Nu s Nu s

s s

q

Nv s Nv s

s s

SvNVEWG



 

 



 

 



 

 

   

 

 

=

= =

= =

=

= =

= =

− +

+ − −

= =

+ + −

+ − −



 

 


 


1

( ) ( )

1 1

(1 ) (1 )ws ws

q

q q

Nv s Nv s

s s

  
= =

+ + −



 

.  (4) 

 

To sort SvNVs Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2), the score and accuracy equations of SvNVs [19] 

are presented below: 

( ) ( ) ( )( ) (2 ) / 3Ns Nt s Nu s Nv sU    = + − −  for ( ) [0,1]NsU   ,                   (5) 

( ) ( )( )Ns Nt s Nv sV   = −  for ( ) [ 1,1]NsV   − .                         (6) 

In terms of the score and accuracy equations, a sorting order of two SvNVs is defined by the 

following rules: 

(1) N1 > N2 for U(N1) > U(N2); 

(2) N1 > N2 for U(N1) = U(N2) and V(N1) > V(N2); 

(3) N1  N2 for U(N1) = U(N2) and V(N1) = V(N2). 

2.2 Operation laws and AOs of S-SvNVs 

Set SvNV as N = <Nt, Nu, Nv>. Then, S-SvNV is presented by 

sin( ) sin(0.5 ),1 sin(0.5 ),1 sin(0.5 )N Nt Nu Nv      = − − − −  [29, 30], where the membership 

degrees of the indeterminacy, falsehood, and truth are 1 sin(0.5 ) [0,0.46)Nu − −  , 

1 sin(0.5 ) [0,0.46)Nv − −  , and sin(0.5 ) [0,1]Nt   , respectively. 

Let ( ) ( ) ( )sin( ) sin(0.5 ),1 sin(0.5 ),1 sin(0.5 )Ns Nt s Nu s Nv s      = − − − −  for s = 1, 2 be 

two S-SvNVs with w > 0. Then, their operation laws are introduced below [29, 30]: 

(1) 

(1) (2)

1 2 (1) (2)

(1) (2)

1 (1 sin(0.5 ))(1 sin(0.5 )),

sin( ) sin( ) (1 sin(0.5 ))(1 sin(0.5 )),

(1 sin(0.5 ))(1 sin(0.5 ))

Nt Nt

N N Nu Nu

Nv Nv

   

     

   

− − −

 = − − − −

− − − −

; 

(2) 

(1) (2)

1 2 (1) (2)

(1) (2)

sin(0.5 )sin(0.5 ),

sin( ) sin( ) 1 sin(0.5 )sin(0.5 ),

1 sin(0.5 )sin(0.5 )

Nt Nt

N N Nu Nu

Nv Nv

   

     

   

 = − − −

− − −

; 

(3) 

(1)

1 (1)

(1)

1 (1 sin(0.5 )) ,

sin( ) (1 sin(0.5 )) ,

(1 sin(0.5 ))

w

w

w

Nt

w N Nu

Nv







 

   

 

− −

 = − −

− −

; 

(4) 1 (1) (1) (1)(sin( )) (sin(0.5 )) ,1 (sin(0.5 )) ,1 (sin(0.5 ))w w w w

N Nt Nu Nv

         = − − − − .  
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For a group of SvNVs Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) with their weight vector W = (w1, 

w2, …, wq) subject to 0  ws  1 and 
1

1
q

wss


=
= , S-SvNVWA and S-SvNVWG are denoted as the 

S-SvNV weighted average and geometric AOs and introduced by the two equations [29, 30]: 

( )( ) ( )( ) ( )( )

1 2

1

( ) ( ) ( )

1 1 1

( , ,..., ) sin( )

1 1 sin 0.5 , 1 sin 0.5 , 1 sin 0.5
ws ws ws

q

N N Nq ws Ns

s

q q q

Nt s Nu s Nv s

s s s

S SvNVWA

  

    

     

=

= = =

− =

 
= − − − − − − 
 



  

, (7) 

( )

( ) ( ) ( )

1 2

1

( ) ( ) ( )

1 1 1

( , ,..., ) sin( )

sin(0.5 ) ,1 sin(0.5 ) ,1 sin(0.5 )

ws

ws ws ws

q

N N Nq Ns

s

q q q

Nt s Nu s Nv s

s s s

S SvNVWG


  

   

     

=

= = =

− =

 
= − − − − 
 



  

. (8) 

2.3 Operation laws and AOs of T-SvNVs 

Set SvNV as N = <Nt, Nu, Nv>. Then, T-SvNV is presented by 

tan( ) tan(0.25 ),1 tan(0.25 (1 )),1 tan(0.25 (1 ))N Nt Nu Nv      = − − − −  [31], where the 

membership degrees of the indeterminacy, falsehood, and truth are 1 tan(0.25 (1 )) [0,1]Nu − −  , 

1 tan(0.25 (1 )) [0,1]Nv − −  , and tan(0.25 ) [0,1]Nt   , respectively. 

Let ( ) ( ) ( )tan( ) tan(0.25 ),1 tan(0.25 (1 )),1 tan(0.25 (1 ))Ns Nt s Nu s Nv s      = − − − −  for s 

= 1, 2 be two T-SvNVs with w > 0. Then, their operation laws are introduced below [31]: 

(1) 

(1) (2)

1 2 (1) (2)

(1) (2)

1 (1 tan(0.25 ))(1 tan(0.25 )),

tan( ) tan( ) (1 tan(0.25 (1 )))(1 tan(0.25 (1 ))),

(1 tan(0.25 (1 )))(1 tan(0.25 (1 )))

Nt Nt

N N Nu Nu

Nv Nv

   

     

   

− − −

 = − − − −

− − − −

; 

(2) 

(1) (2)

1 2 (1) (2)

(1) (2)

tan(0.25 ) tan(0.25 ),

tan( ) tan( ) 1 tan(0.25 (1 )) tan(0.25 (1 )),

1 tan(0.25 (1 )) tan(0.25 (1 ))

Nt Nt

N N Nu Nu

Nv Nv

   

     

   

 = − − −

− − −

; 

(3)

(1)

1 (1)

(1)

1 (1 tan(0.25 )) ,

tan( ) (1 tan(0.25 (1 ))) ,

(1 tan(0.25 (1 )))

w

w

w

Nt

w N Nu

Nv







 

   

 

− −

= − −

− −

; 

(4)

(1)

1 (1)

(1)

(tan(0.25 )) ,

(tan( )) 1 (tan(0.25 (1 ))) ,

1 (tan(0.25 (1 )))

w

w w

w

Nt

N Nu

Nv



 



 

  

 

= − −

− −

. 

For a group of SvNVs Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) with their weight vector W = (w1, 

w2, …, wq) subject to 0  ws  1 and 
1

1
q

wss


=
= , T-SvNVWA and T-SvNVWG are denoted as the 

T-SvNV weighted average and geometric AOs and introduced by the two equations [31]: 

( )( ) ( )( ) ( )( )

1 2

1

( ) ( ) ( )

1 1 1

( , ,..., ) tan( )

1 1 tan 0.25 , 1 tan 0.25 (1 ) , 1 sin 0.25 (1 )
ws ws ws

q

N N Nq ws Ns

s

q q q

Nt s Nu s Nv s

s s s

T SvNVWA

  

    

     

=

= = =

− =

 
= − − − − − − 
 



  

, (9) 
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( )

( ) ( ) ( )

1 2

1

( ) ( ) ( )

1 1 1

( , ,..., ) tan( )

tan(0.25 ) ,1 tan(0.25 (1 )) ,1 tan(0.25 (1 ))

ws

ws ws ws

q

N N Nq Ns

s

q q q

Nt s Nu s Nv s

s s s

T SvNVWG


  

   

     

=

= = =

− =

 
= − − − − 
 



  

. (10) 

3. EOLs and Einstein AOs of S-SvNVs 

This part presents several EOLs and Einstain AOs of S-SvNVs and their properties. 

First, we give a new S-SvNV definition below.  

Definition 1. If N = <Nt, Nu, Nv> is SvNV, then S-SvNV is defined by 

sin( ) sin(0.5 ),1 sin(0.5(1 ) ),1 sin(0.5(1 ) )N Nt Nu Nv      = − − − − , where the membership 

degrees of indeterminacy, falsehood, and truth are 1 sin(0.5(1 ) ) [0,1]Nu − −  , 

1 sin(0.5(1 ) ) [0,1]Nv − −  , and sin(0.5 ) [0,1]Nt   , respectively. 

Definition 2. Let Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2) be two SvNVs and w > 0. Then, the EOLs of S-

SvNVs are defined below: 

(1) 

(1) (2)

(1) (2)

(1) (2)

1 2

(1) (2)

(1)

sin(0.5 ) sin(0.5 )
,

1 sin(0.5 )sin(0.5 )

(1 sin(0.5(1 ) ))(1 sin(0.5(1 ) ))
sin( ) sin( ) ,

1 sin(0.5(1 ) )sin(0.5(1 ) )

(1 sin(0.5(1 ) ))(1 sin(

Nt Nt

Nt Nt

Nu Nu

N E N

Nu Nu

Nv

   

   

   
 

   

 

+

+

− − − −
 =

+ − −

− − − (2)

(1) (2)

0.5(1 ) ))

1 sin(0.5(1 ) )sin(0.5(1 ) )

Nv

Nv Nv

 

   

 
 
 
 
 
 
 

− 
 + − − 

; 

(2) 

(1) (2)

(1) (2)

(1) (2)

1 2

(1) (2)

(1)

sin(0.5 )sin(0.5 )
,

1 (1 sin(0.5 ))(1 sin(0.5 ))

1 sin(0.5(1 ) ) 1 sin(0.5(1 ) )
sin( ) sin( ) ,

1 (1 sin(0.5(1 ) ))(1 sin(0.5(1 ) ))

1 sin(0.5(1

Nt Nt

Nt Nt

Nu Nu

N E N

Nu Nu

Nv

   

   

   
 

   



+ − −

− − + − −
 =

+ − − − −

− − (2)

(1) (2)

) ) 1 sin(0.5(1 ) )

1 (1 sin(0.5(1 ) ))(1 sin(0.5(1 ) ))

Nv

Nv Nv

  

   

 
 
 
 
 
 
 

+ − − 
 + − − − − 

; 

(3) 

(1)

(1) (1)

(1) (1)

1

(1) (1)

(1)

2(sin(0.5 ))
,

(2 sin(0.5 )) (sin(0.5 ))

(2 sin(0.5(1 ) )) (sin(0.5(1 ) ))
(sin( )) ,

(2 sin(0.5(1 ) )) (sin(0.5(1 ) ))

(2 sin(0.5(1 ) ))

w

w w

w w

w

w w

w

Nt

Nt Nt

Nu Nu

N

Nu Nu

Nv



 

 



 



 

   

   


   

 

− +

− − − −
=

− + + −

− − − (1)

(1) (1)

(sin(0.5(1 ) ))

(2 sin(0.5(1 ) )) (sin(0.5(1 ) ))

w

w w

Nv

Nv Nv



 

 

   

 
 
 
 
 
 
 
 −
  − − + − 

; 
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(4) 

(1) (1)

(1) (1)

(1)

1

(1) (1)

(1)

(1 sin(0.5 )) (1 sin(0.5 ))
,

(1 sin(0.5 )) (1 sin(0.5 ))

2(1 sin(0.5(1 ) ))
sin( ) ,

(1 sin(0.5(1 ) )) (1 sin(0.5(1 ) ))

2(1 sin(0.5(1 ) )

w w

w w

w

w w

Nt Nt

Nt Nt

Nu

w N

Nu Nu

Nv

 

 



 

   

   

 
 

   

 

+ − −

+ + −

− −
 =

+ − + − −

− −

(1) (1)

)

(1 sin(0.5(1 ) )) (1 sin(0.5(1 ) ))

w

w w

Nv Nv



    

 
 
 
 
 
 
 
 
  + − + − − 

. 

In view of EOLs of S-SvNVs, we define the S-SvNVEWA and S-SvNVEWG AOs. 

Definition 3. If Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) are a collection of SvNVs with their weight 

vector W = (w1, w2, …, wq) for 0  ws  1 and 
1

1
q

wss


=
= , the S-SvNVEWA and S-SvNVEWG 

AOs can be defined as follows: 

1 2 1 1 2 2

1

( , ,..., ) sin( ) sin( ) ... sin( ) sin( )
q

N N Nq w N E w N E E wq Nq E ws Ns

s

S SvNVEWA           
=

− =    = , (11) 

( ) ( ) ( ) ( )1 2

1 2 1 2

1

( , ,..., ) sin( ) sin( ) ... sin( ) sin( )
wqw w ws

q

N N Nq N E N E E Nq E Ns

s

S SvNVWG
  

      
=

− =    = . (12) 

Theorem 1. If Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) are a collection of SvNVs with their weight vector 

W = (w1, w2, …, wq) for 0  ws  1 and 
1

1
q

wss


=
= , the aggregated result of the S-SvNVEWA AO 

is still S-SvNV, which is yielded by the equation: 

( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( )

1 2

1

( ) ( )

1 1

( ) ( )

1 1

( )

1

( )

( , ,..., ) sin( )

1 sin 0.5 1 sin 0.5

,

1 sin 0.5 1 sin 0.5

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin 0.5(

ws ws

ws ws

ws

ws

q

N N Nq E ws Ns

s

q q

Nt s Nt s

s s

q q

Nt s Nt s

s s

q

Nu s

s

Nu s

S SvNVEWA

 

 





    

   

   

 

 

=

= =

= =

=

− =

+ − −

+ + −

− −

=

+ − + −



 

 



( )( )

( )( )

( )( ) ( )( )

( )

1 1

( )

1

( ) ( )

1 1

,

1 )

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin 0.5(1 )

ws

ws

ws ws

q q

Nu s

s s

q

Nv s

s

q q

Nv s Nv s

s s





 

 

 

   

= =

=

= =

 
 
 
 
 
 
 
 
 
 

− 
 
 

− − 
 
 

+ − + − − 
 

 



 

.    (13) 

Proof. In terms of mathematical induction and Definition 2, we can give the proof of Theorem 1. 

For q = 2, the operational results are given below: 

1 1

1 1

1

1 1

(1) (1)

(1) (1)

(1)

1 1

(1) (1)

(1 sin(0.5 )) (1 sin(0.5 ))
,

(1 sin(0.5 )) (1 sin(0.5 ))

2(1 sin(0.5(1 ) ))
sin( ) ,

(1 sin(0.5(1 ) )) (1 sin(0.5(1 ) ))

2(1 sin(0.5(1

w w

w w

w

w w

Nt Nt

Nt Nt

Nu

w N

Nu Nu

 

 



 

   

   

 
 

   



+ − −

+ + −

− −
 =

+ − + − −

− − 1

1 1

(1)

(1) (1)

) ))

(1 sin(0.5(1 ) )) (1 sin(0.5(1 ) ))

Nv

Nv Nv



 



   

 
 
 
 
 
 
 
 
  + − + − − 

, 
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2 2

2 2

2

2 2

(2) (2)

(2) (2)

(2)

2 2

(2) (2)

(1 sin(0.5 )) (1 sin(0.5 ))
,

(1 sin(0.5 )) (1 sin(0.5 ))

2(1 sin(0.5(1 ) ))
sin( ) ,

(1 sin(0.5(1 ) )) (1 sin(0.5(1 ) ))

2(1 sin(0.5(1

w w

w w

w

w w

Nt Nt

Nt Nt

Nu

w N

Nu Nu

 

 



 

   

   

 
 

   



+ − −

+ + −

− −
 =

+ − + − −

− − 2

2 2

(2)

(2) (2)

) ))

(1 sin(0.5(1 ) )) (1 sin(0.5(1 ) ))

w

w w

Nv

Nv Nv



 



   

 
 
 
 
 
 
 
 
  + − + − − 

. 

Then, there is the following result： 

( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( )

2

1 2

1

2 2

( ) ( )

1 1

2 2

( ) ( )

1 1

2

( )

1

( ) ( )

( , ) sin( )

1 sin 0.5 1 sin 0.5

,

1 sin 0.5 1 sin 0.5

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin 0.5(1 )

ws ws

ws ws

ws

ws

N N E ws Ns

s

t s Nt s

s s

Nt s Nt s

s s

Nu s

s

Nu s Nu s

S SvNVEWA

 

 





   

   

   

 

  

=

= =

= =

=

− =

+ − −

+ + −

− −

=

+ − + − −



 

 



( )( )

( )( )

( )( ) ( )( )

2 2

1 1

2

( )

1

2 2

( ) ( )

1 1

,

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin 0.5(1 )

ws

ws

ws ws

s s

Nv s

s

Nv s Nv s

s s





 



 

   

= =

=

= =

 
 
 
 
 
 
 
 
 
 
 
 
 − −
 
 
 + − + − − 
 

 



 

.      (14) 

Suppose that Eq. (13) holds for q = p. Then, there is the equation: 

( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( )

1 2

1

( ) ( )

1 1

( ) ( )

1 1

( )

1

( )

( , ,..., ) sin( )

1 sin 0.5 1 sin 0.5

,

1 sin 0.5 1 sin 0.5

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin 0.5(

ws ws

ws ws

ws

ws

p

N N Np E ws Ns

s

p p

Nt s Nt s

s s

p p

Nt s Nt s

s s

p

Nu s

s

Nu s

S SvNVEWA

 

 





    

   

   

 

 

=

= =

= =

=

− =

+ − −

+ + −

− −

=

+ − + −



 

 



( )( )

( )( )

( )( ) ( )( )

( )

1 1

( )

1

( ) ( )

1 1

,

1 )

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin 0.5(1 )

ws

ws

ws ws

p p

Nu s

s s

p

Nv s

s

p p

Nv s Nv s

s s





 

 

 

   

= =

=

= =

 
 
 
 
 
 
 
 
 
 

− 
 
 

− − 
 
 

+ − + − − 
 

 



 

.      (15) 

 

Based on Eqs. (14) and (15) for q = p+1, we have 
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( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( )

1

1 2 1

1

( ) ( )

1 1

( ) ( )

1 1

( )

1

( )

( , ,..., , ) sin( )

1 sin 0.5 1 sin 0.5

,

1 sin 0.5 1 sin 0.5

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1

ws ws

ws ws

ws

ws

p

N N Np Np E ws Ns

s

p p

Nt s Nt s

s s

p p

Nt s Nt s

s s

p

Nu s

s

Nu s

S SvNVEWA

 

 





     

   

   

 

 

+

+

=

= =

= =

=

− =

+ − −

+ + −

− −

=

+ − +



 

 



( )( )

( )( )

( )( ) ( )( )

1

( )

1 1

( )

1

( ) ( )2

1 1

( 1) ( 1)2

,

sin 0.5(1 )

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin (1 )

(1 sin(0.5 )) (1 sin( ))

ws

ws

ws ws

wp

p p

Nu s

s s

p

Nv s

s

p p

Nv s Nv s

s s

Nt p Nt p

E





 


 

 

 

   

   +

= =

=

= =

+ +

 
 
 
 
 
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 
 

Since Eq. (13) can hold for q = p+1, it can exist for all q. 

Then, this S-SvNVEWA AO reveals the features below. 

Theorem 2. The S-SvNVEWA AO reveals some features in view of the sine function below. 

(1) Idempotency: If Ns = <Nt(s), Nu(s), Nv(s)> = <Nt, Nu, Nv> = N (s = 1, 2, …, q), then there is

1 2( , ,..., ) sin( )N N Nq NS SvNVEWA    − = . 

(2) Boundedness: Set 
( ) ( ) ( )min( ),max( ),max( )N Nt s Nu s Nv s

s s s
   − =  and 

( ) ( ) ( )max( ),min( ),min( )N Nt s Nu s Nv s
s ss

   + =  as the minimum and maximum SvNVs. Then, there exists 

1 2sin( ) ( , ,..., ) sin( )N N N Nq NS SvNVEWA    − + −  . 
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(3) Monotonicity: Let Ns = <Nt(s), Nu(s), Nv(s)> and * * * *

( ) ( ) ( ), ,Ns Nt s Nu s Nv s   =  (s = 1, 2, …, q) be two 

collections of SvNVs. Then
 

* * *

1 2 1 2( , , , ) ( , , , )N N Nq N N NqS SvNVEWA S SvNVEWA     −  −  

exists if 
*

Ns Ns  . 

Proof. (1) Applying Eq. (13) for Ns = N, we obtain 
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 
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=

=
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 
 
 
 
 
 
 
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 
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=
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+
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

   

 
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 
 

= 
 
 
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(2) For N Ns N  − +  , sin( ) sin( ) sin( )N Ns N  − +   exists since sin(z) for 0  z  /2 is an 

increasing function. Then, 
1 1 1

sin( ) sin( ) sin( )
q q q

E ws N E ws Ns ws N

s s s

     − +

= = =

     is held. In view 

of the feature (1), 
1 2sin( ) ( , ,..., ) sin( )N N N Nq NS SvNVEWA    − + −   can be also held. 

(3) For 
*

Ns Ns  , 
*sin( ) sin( )Ns Ns   is held since sin(z) for 0  z  /2 is an increasing 

function. 
*

1 1

sin( ) sin( )
q q

ws Ns ws Ns

s s

   
= =

   can be held in view of the feature (2). Thus, 

* * *

1 2 1 2( , , , ) ( , , , )N N Nq N N NqS SvNVEWA S SvNVEWA     −  −  can also hold. 
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Example 1. Suppose that three SvNVs are N1 = <0.6, 0.2, 0.3>, N2 = <0.8, 0.1, 0.1>, and N3 = <0.7, 0.3, 

0.3> with their weight vector W = (0.4, 0.3, 0.3). Using Eq. (13), we give the following aggregation 

result of the S-SvNVEWA AO: 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

3

1 2 3

1

0.4 0.3 0.3
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( , , ) sin( )
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+  +  + 

+ −

=


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0.4 0.3 0.3

0.4
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0.5 0.6 1 sin 0.5 0.8 1 sin 0.5 0.7

2 1 sin 0.5(1 0.2) 1 sin 0.5(1 0.1) 1 sin 0.5(1 0.3)

1 sin 0.5(1 0.2) 1 sin 0.5(1 0.1) 1 sin 0.5(1 0.3)

1 sin 0.5(1 0.2) 1 sin 0.5(1 0.

  
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  


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  −  −  
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0.4 0.3 0.3

0.4 0.3 0.3

0.4 0.3

,

1) 1 sin 0.5(1 0.3)

2 1 sin 0.5(1 0.3) 1 sin 0.5(1 0.1) 1 sin 0.5(1 0.3)

1 sin 0.5(1 0.3) 1 sin 0.5(1 0.1) 1 sin 0.5(1 0.3)
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 
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 
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 
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0.3

.3)

0.8918, 0.0414, 0.0573 .



 
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 
 
 
 
 
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 
 
 
 
 
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 
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  
  
  
  

=   

Theorem 3. Set Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) as a collection of SvNVs with their weight vector 

W = (w1, w2, …, wq) for 0  ws  1 and 
1

1
q

wss


=
= . Then, the aggregated result of the S-SvNVEWG 

AO is still S-SvNV, which is yielded by the equation: 
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1
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( ) ( )
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,
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Nv s Nv s

s s

q q
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s s

 

 

 

  

   
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= =

= =

+ −
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 

 

 

.     (16) 

However, the proof of Theorem 3 can be given based on a similar proof of Theorem 1, which is 

omitted. 

Similarly, the S-SvNVEWG AO also indicates some features by the following theorem. 

Theorem 4. The S-SvNVEWG AO reveals some features in view of the sine function below: 
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(1) Idempotency: If Ns = <Nt(s), Nu(s), Nv(s)> = <Nt, Nu, Nv> = N (s = 1, 2, …, q), then there is

1 2( , ,..., ) sin( )N N Nq NS SvNVEWG    − = .  

(2) Boundedness: Set 
( ) ( ) ( )min( ),max( ),max( )N Nt s Nu s Nv s

s s s
   − =  and 

( ) ( ) ( )max( ),min( ),min( )N Nt s Nu s Nv s
s ss

   + =  as the minimum and maximum SvNVs. Then, there exists 

1 2sin( ) ( , ,..., ) sin( )N N N Nq NS SvNVEWG    − + −  . 

(3) Monotonicity: Let Ns = <Nt(s), Nu(s), Nv(s)> and * * * *

( ) ( ) ( ), ,Ns Nt s Nu s Nv s   =  (s = 1, 2, …, q) be two 

collections of SvNVs. Then,
 

* * *

1 2 1 2( , , , ) ( , , , )N N Nq N N NqS SvNVEWG S SvNVEWG     −  −  

exists if 
*

Ns Ns  . 

However, the proof of Theorem 4 can also be given in terms of a similar proof of Theorem 2, 

which is omitted. 

Example 2. Suppose that three SvNVs are N1 = <0.8, 0.3, 0.1>, N2 = <0.7, 0.2, 0.2>, and N3 = <0.9, 0.4, 

0.4> with their weight vector W = (0.5, 0.3, 0.2). Using Eq. (16), we give the following aggregation 

result of the S-SvNVEWG AO: 
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 

  

  

 
  − − 
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= 77, 0.0595 .  

4. MADM model 

This part develops a MADM model in view of the S-SvNVEWA and S-SvNVEWG AOs in the 

circumstance of SvNVs. 

A MADM issue commonly includes a set of several alternatives YH = {YH1, YH2, …, YHp} and a set 

of several attributes XC = {xc1, xc2, …, xcq}. In the MADM process, the alternatives must meet the 

requirements of the attributes, and then their SvNV assessment results are represented as their 

decision matrix QN = (Nrs)pq, where Nrs (r = 1, 2, …, p; s = 1, 2, …, q) are SvNVs provided by decision 

makers (DMs) according to the satisfactory assessment of an alternative YHr over attributes xcs. The 

weight vector of the attributes is specified by W = (w1, w2, …, wq) for 0  ws  1 and 
1

1
q

wss


=
= . 

Thus, the algorithm of the MADM model in the circumstance of SvNVs is described in detail below. 

Step 1: The aggregated values of Nr for YHr (r = 1, 2, …, p) are yielded by one of the S-SvNVEWA 

and S-SvNVEWG AOs: 
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Step 2: The score (accuracy) values of U(Nr) (V(Nr)) (r = 1, 2, …, p) are yielded by Eq. (5) (Eq. 

(6)). 

Step 3: Alternatives are sorted in the descending order of the score values (the accuracy values), 

and then the best alternative is decided. 

Step 4: End. 

5. MADM application 

5.1 Site selection example of HPP 

Since hydrogen is one of the most efficient and clean energy sources, its share of world energy 

has increased significantly. Then, it is important to choose the most suitable location for a HPP project, 

which is influenced by many factors, such as social, environmental, and economic factors. Hence, the 

site selection problem of HPP is a MADM problem. To apply the proposed MADM model to the 

actual MADM problem, this section adopts a site selection example of HPP in [30] for convenient 

comparison. 

In this site selection example of HPP, experts and DMs preliminarily provide five potential 

locations, which are represented as a set of the five alternatives YH = {YH1, YH2, YH3, YH4, YH5}. Then they 

must satisfy the five main factors/attributes: the economic factor (xc1), the technical factor (xc2), the 
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social factor (xc3), the location factor (xc4), and the environmental factor (xc5). The weight vector of the 

five factors is given by W = (0.22, 0.2, 0.15, 0.15, 0.28). In terms of the satisfactory degrees of each 

location corresponding to the five main factors, experts/DMs provide the SvNVs, which are 

composed of the indeterminate, false, and true degrees due to incompleteness, inconsistency, and 

uncertainty, including the judgements/opinions of the experts/DMs, and then their decision matrix 

of SvNVs QN = (Nrs)55 is presented as follows [30]: 

0.3,0.2,0.4 0.2,0.2,0.6 0.5,0.3,0.4 0.3,0.3,0.4 0.5,0.2,0.3

0.6,0.4,0.2 0.6,0.3,0.2 0.7,0.1,0.3 0.7,0.1,0.2 0.7,0.2,0.3

0.5,0.1,0.3 0.6,0.1,0.2 0.5,0.3,0.4 0.6,0.4,0.3 0.6,0.2,0.4

0

NQ

         

         

=          

 .5,0.2,0.2 0.4,0.5,0.2 0.7,0.3,0.2 0.4,0.5, 0.4 0.7,0.2,0.2

0.4,0.3,0.6 0.4,0.1,0.5 0.4,0.1,0.3 0.3,0.2,0.4 0.5,0.1,0.2

 
 
 
 
 

         
           

. 

In this site selection problem of HPP, we give its MADM algorithm below. 

Step 1: Applying Eq. (17) or Eq. (18), the aggregated results of the S-SvNVEWA or S-SvNVEWG 

AO are given below: 

N1 = <0.5540, 0.0624, 0.1928>, N2 = <0.8616, 0.0520, 0.0693>, N3 = <0.7756, 0.0384, 0.1191>, N4 = 

<0.7792, 0.1055, 0.0604>, and N5 = <0.6073, 0.0247, 0.1594>. 

Or N1 = <0.5174, 0.0670, 0.2154>, N2 = <0.8563, 0.0817, 0.0748>, N3 = <0.7707, 0.0642, 0.1326>, N4 

= <0.7393, 0.1455, 0.0705>, and N5 = <0.5979, 0.0392, 0.2126>. 

Step 2: By Eq. (5), the score values of U(Nr) are yielded below: 

U(N1) = 0.7663, U(N2) = 0.9134, U(N3) = 0.8727, U(N4) = 0.8711, and U(N5) = 0.8077. 

Or U(N1) = 0.7450, U(N2) = 0.8999, U(N3) = 0.8579, U(N4) = 0.8411, and U(N5) = 0.7820. 

Step 4: The sorting order of the five selection locations is YH2 > YH3 > YH4 > YH5 > YH1 and then the 

best one is YH2. 

It is obvious that the sorting orders corresponding to the S-SvNVEWA and S-SvNVEWG AOs 

are the same. 

5.2 Comparative analysis 

In view of the above example, this part conducts a comparative investigation with existing 

related MADM models in the circumstances of SvNVs. 

Based on the decision making methods of the existing MADM models [19, 30, 31], we can obtain 

all the decision results by different AOs of Eqs. (1)–(4) and Eqs. (7)–(10) and the score function of Eq. 

(5), which are tubulated in Table 1. For easy comparison, the decision results of the proposed MADM 

model are also shown in Table 1. 

Table 1. Decision results corresponding to different AOs 

AO Sorting result Optimal location 

SvNVEWA [19] YH2 > YH3 > YH4 > YH5 > YH1 YH2 

SvNVEWG [19] YH2 > YH3 > YH4 > YH5 > YH1 YH2 

S-SvNVWA [30] YH2 > YH4 > YH3 > YH5 > YH1 YH2 

S-SvNVWG [30] YH2 > YH3 > YH4 > YH5 > YH1 YH2 

T-SvNVWA [31] YH2 > YH3 > YH4 > YH5 > YH1 YH2 

T-SvNVWG [31] YH2 > YH3 > YH4 > YH5 > YH1 YH2 

Proposed S-SvNVEWA YH2 > YH3 > YH4 > YH5 > YH1 YH2 

Proposed S-SvNVEWG YH2 > YH3 > YH4 > YH5 > YH1 YH2 

In the decision results of Table 1, we see that the sorting results based on the proposed S-

SvNVEWA and S-SvNVEWG AOs are the same as those based on the SvNVEWA and SvNVEWG 

AOs [19], the T-SvNVWA and T-SvNVWG AOs [31], and the S-SvNVWG AO [30], but different from 
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the ranking order based on the S-SvNVWA AO [30]. Then, the optimal site selection is always YH2 

among the five alternatives. In addition, in the representation of decision information, the newly 

defined S-SvNVs can overcome the flaws of the existing S-SvNVs [30], which include the [0, 0.46) 

range of membership degrees. In the aggregation operations of decision information, the proposed 

S-SvNVEWA and S-SvNVEWG AOs can overcome the defects of the existing SvNVEWA and 

SvNVEWG AOs without including periodicity features [19]. In terms of algebraic operation 

performance, the proposed S-SvNVEWA and S-SvNVEWG AOs are superior to the existing T-

SvNVWA and T-SvNVWG AOs. Hence, the proposed model can satisfy the real needs of DMs in the 

multi-stage decision process. In general, the proposed model reveals obvious superiority over the 

existing models [19, 30, 31]. The decision results reveal the validity and rationality of the proposed 

MADM model and can help us to find the best solution in the practical decision application. 

The obvious advantages of this study are presented below: 

The defined S-SvNV concept contains the superiority of the membership functions belonging to 

[0, 1], which can overcome the defects in the existing S-SvNV concept with the membership functions 

belonging to [0, 0.46) [29, 30]. 

The proposed EOLs and Einstein AOs of S-SvNVs can reflect their typical algebraic operations 

and compensate for the insufficiencies of the existing AOs [19, 30, 31]. 

(c) The developed MADM model using the proposed S-SvNVEWA and S-SvNVEWG AOs 

reveals its superiority over the existing MADM models using the SvNVEWA and SvNVEWG AOs 

[19], the S-SvNVWA and S-SvNVWG AOs [30], and the T-SvNVWA and T-SvNVWG AOs [31].  

6. Conclusions 

In this study, the defined S-SvNV EOLs and the proposed S-SvNVEWA and S-SvNVEWG AOs 

based on the monotonic membership functions of indeterminacy, falsehood, and truth can overcome 

the insufficiencies of the existing S-SvNV representation, operation laws, and AOs. In view of the 

presented S-SvNVEWA and S-SvNVEWG AOs, the developed MADM model can effectively improve 

the MADM models based on the existing SvNVEWA, SvNVEWG, S-SvNVWA, S-SvNVWG, and T-

SvNVWA, and T-SvNVWG AOs in the SvNV circumstance. Then, the validity of the developed model 

was investigated by the actual site selection example of HPP and examined by comparative analysis 

with the existing related MADM models in the setting of SvNVs. 

In this paper, the presented S-SvNVEWA and S-SvNVEWG AOs and their MADM model were 

used only for single-valued neutrosophic aggregations and MADM problems, which shows their 

limitations. Furthermore, the presented S-SvNVEWA and S-SvNVEWG AOs are only based on EOLs 

of S-SvNVs, but cannot imply the trigonometric EOLs of SvNVs based on trigonometric Einstein t-norm 

and t-conorm, which show their disadvantages. Therefore, in the future work, we need to develop the 

trigonometric EOLs and AOs of SNVs (SvNVs and IvNVs) and their MADM models. Then, the 

developed models will be used for decision making problems in the fields of engineering management, 

economic management, and medical management. 
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