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Abstract: The assignment problem (AP) is a well-researched combinatorial optimization problem in 

which the overall assignment cost or time is minimized by assigning multiple items (tasks) to several 

entities (workers). Today's optimization challenges cannot be adequately addressed by a 

single-objective AP, hence the bi-objective AP (BOAP) is taken into consideration. This problem 

frequently occurs in practical applications with ambiguous parameters in real life. Henceforth, in 

this article the uncertain parameters are presented as interval valued neutrosophic numbers. In the 

present study, we formulate bi-objectives assignment problem (BOAP) having cost and time 

parameters as an interval valued neutrosophic numbers. We proposed interactive left-width method 

to solve the interval valued neutrosophic BOAP (IVNBOAP). In this method interval valued 

neutrosophic numbers is reduced to interval numbers using score function.  Then, the bi-objective 

interval assignment problem (BOIAP) is reduced to a deterministic BOAP using the left-width 

attributes on each objective function. The reduced deterministic objective function is separated and 

constructed as a multi-objective AP. In the solution procedure, the global weighted sum method is 

adopted to convert the multi-objective AP into a single objective problem (SOP) and solved using 

Lingo 18.0 software. Finally, numerical examples are illustrated to clarify the steps involved in the 

proposed method and results are compared with the other existing methods. 

Keywords: Interval Assignment Problem, Interval-valued Neutrosophic Numbers, Interactive 

Left-Width Method, Optimal Compromise Solution, Global Weighted Sum Method.  

 

 

1. Introduction 

In the AP, the objective is to distribute several tasks to an equal number of machines, people or 

facilities with optimal decision parameters. From the existing literature, it can be seen that 

several researchers have come up with different methods to resolve AP[1–3]. In all these 

studies, it is noted that actual deterministic numbers are used for effectual matrices of the 

relevant AP.  In real-life situations, the elements of the effectual matrices of AP are an 

imprecise number than deterministic, due to the limited knowledge of personnel on problem 

domain, lack of data, inaccurate estimates, etc. This inexact information on decision parameters 

is expressed by interval numbers or fuzzy numbers or intuitionistic numbers or neutrosophic 

numbers. In recent years, numerous experts [4–7] have conducted thorough studies on the interval 

AP. When the boundary of this interval is ambiguous, that interval is a fuzzy set. In 1965, Lotfi 

Zadeh introduced fuzzy set theory, which was developed to provide formalized techniques for 

addressing imprecision through varying degrees of membership and to mathematically 
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describe uncertainty.  Various researchers such as Gupta et al.[8] , Thorani and Shankar [9], 

Baidya and Bera [10] , Buvaneshwari and Anuradha [11] have utilized the various methods for 

solving fuzzy TP/AP to determine the optimal/ optimal compromise solution.  

The fuzzy set (FS) deals with uncertainty, but hesitation is also taken into consideration in a 

real-life problem. Atanassov [12] has extended FS to intuitionistic FS (IFS) by including 

hesitation as a non-membership degree. An IFS can be a realistic and relevant tool in dealing 

with problems having both uncertainty and hesitation. An accuracy function was applied by 

Ebrahimnejad and Verdegay [13] and Mahmoodirad et al. [14] to solve the intuitionistic fuzzy 

transportation problem (IFTP).  Roy et al. [15] proposed the intuitionistic fuzzy programming 

approach (IFPA) and goal programming approach (GPA) to solve the intuitionistic fuzzy 

multi-objective transportation problem (IFMOTP). Bharati [16] has discussed TP with 

interval-valued IFS influence of a new ranking. Mahajan and Gupta [29] utilized a variety of 

membership functions (MFs) to solve fully IFMOTP. Ahmadini and Ahmad [17] proposed the 

different MFs for solving the intuitionistic fuzzy multi-objective linear programming problem. 

IFS contemplate both the degree of MF and non-MF, but it cannot deal with reality's inherent 

indeterminacy. To tackle these problems, Smarandache [18] introduced a theory of the neutrosophic 

set (NS), which is the degree of indeterminacy as well as the degree of truth MF and falsity MF while 

making decisions. Das and Roy [19] developed novel method named computational algorithm for 

handling the multi-objective non-linear minimization programming problem in the neutrosophic 

environment.  Risk Allah et al.[20] proposed the neutrosophic compromise programming approach 

to solve the MO transportation problem under neutrosophic environment and it is verified by 

applying the TOPSIS technique to measure the ranking degree. Broumi and Smarandaache [21] 

presented innovative approaches for harmonic, geometrical, and arithmetic means for interval 

neutrosophic sets. Khalifa et al.[22] proposed the approach for optimality conditions to the interval 

valued neutrosophic TP and it is solved by Weighting Tchebycheff method.  Saini et.al [23] 

introduced a novel approach namely minimum row column method for interval-valued trapezoidal 

neutrosophic transportation problem. Khalil et al. [24] discussed on the aspirations levels for 

interval-valued true, interval-valued falsity, and interval-valued indeterminacy, which are 

dependent only on the algebra of interval neutrosophic sets and confluence criteria. 

 

The contributions of this paper are as follows: 

 

We proposed interactive left-width method to solve the interval valued neutrosophic BOAP 

(IVNBOAP). The IVNBOAP is first reduced to a BOIAP using the score function and it is reduced to 

deterministic bi-objective assignment problem using the left-width attributes on each objective 

function. Then, construct the multi-objective problem by splitting each objective function. The 

reduced multi-objective problem cannot be solved explicitly. Also, the managers are always keen on 

minimizing the cost and time of AP. The global weighted sum method (GWSM) is used to transform 

the deterministic multi-objective AP into the single-objective AP. Using the Lingo 18.0 software, the 

reduced problem is solved to obtain the optimal compromise solution of the IVNBOIAP. 

  

     The construction of this paper is as follows: In Section 2, basic concepts and preliminaries are 

presented. Section 3 describes the problem formulation of IVNBOAP and Section 4 briefly proposed 
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the interactive left-width method. Section 5 illustrates the proposed method implementation using 

the numerical examples and its computational results. In Section 6, the results and discussion part 

have been included and Section 7 discusses sensitivity analysis and finally the conclusion and future 

scope of this paper. 

 

2. Preliminaries 

The fundamental concepts of arithmetic operations, partial ordering of closed bounded intervals, 

interval optimal solutions, and optimal compromise solutions are found in [25].  

 

Definition 2.1[26]  An interval number is a number whose precise value is unknown, but the range 

in which it lies is known. An interval number with lower and upper boundaries as A =[aL, aU], where 

aL ≤ aU. The mid and width of the interval are similarly shown as 

( )
, { : , }, ( )

L U
m w L U L U m w U La a

A a a a a a a a a a R a a a a
+

= = −   +  = = −where and
2

 respectively. 

Definition 2.2 [26]   The order relation ≤LU  between A =[aL, aU] and B =[bL, bU]. 

,

.

and

and
LU L L U U

LU LU

A B iff a b a b

A B iff A B A B

  

  
 

This order relation ≤LU   represents the decision maker’s (DMs) preference for the alternative with 

lower minimum and maximum cost, that is, if A  ≤LU  B, then A is preferred to B. 

 

Definition 2.3  [26]  The order relation ≤LU  between A =[am, aw] and B =[bm, bw]. 

and ,

and .

mw m m w w

mw mw

A B iff a b a b

A B iff A B A B

  

  
 

This order relation ≤mw represents the DMs preference for the alternative with lower minimum and 

maximum cost, that is, if A≤mw B, then A is preferred to B. To compare interval numbers, the total of 

each element in the interval number is utilised as a scale. The total of all the components of the 

interval number that equals zero is the zero interval. 

Definition 2.4 (Neutrosophic set [27]) Let X be a universe. A neutrosophic set F over X is defined by 

( ) ( ) ( ) , , , :N N N Nx P x Q x R x x X=  where , , : 0 ,3N N NP Q R X − + →    are called the truth, 

indeterminacy and falsity MF of the element x X to the set 
ND with 

( ) ( ) ( )0 3N N NP x Q x R x− + + +  . 

Definition 2.6 (Interval-valued neutrosophic set [21] ). Let 𝑋 be a nonempty set. Then an interval 

valued neutrosophic (IVN) set of 𝑋 is defined as: 

( ) ( ) ( ) ( ) ( ) ( ) ,[ , ],[ , ],[ , ] :IVN IVN IVN IVN IVN IVN IVN

L U L U L Ux P x P x Q x Q x R x R x x X=  , where 

( ) ( ) ( ) ( ) ( ) ( )( )[ , ],[ , ],[ , ] [0,1]N N N N N N

L U L U L UP x P x Q x Q x R x R x  . 

The neutrosophic numbers, trapezoidal neutrosophic numbers and its arithmetic operation are 

referred in [28]. 
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Definition 2.7 Let 
IVNf  be the TrNNs and it can be evaluated using the score function and 

accuracy function as follows: 

i. Score function  ( )  
1

* (1 ) (1 )
16

IVN IVN IVN IVNSC f r s t u P Q R
 

 = + + + + − + −   
 

 

ii. Accuracy function ( )  
1

* (1 ) (1 )
16

N
N Np p

IVN

p
AC f r s t u   

   = + + + + − + +     
 

3. Description and Problem formulation 

 

This section defines the model assumption, indices, formulation of interval valued neutrosophic 

bi-objective assignment problem. 

 

3.1 Mathematical Model of Interval valued Neutrosophic Bi-Objective Assignment Problem  

We consider n skilled workers in agencies and the n companies want the workers to process their 

jobs. Each worker has to be associated with one and only one company. A penalty 

( )1 2 3 4, , , ;[ , ],[ , ],[ , ]IVN IVN IVN IVN IVN IVN IVN

ij ij ij ij ij L U L U L Uc c c c c P P Q Q R R=  is the cost of transport and 

( )1 2 3 4, , , ;[ , ],[ , ],[ , ]N IVN IVN IVN IVN IVN IVN

ij ij ij ij ij L U L U L Ut t t t t P P Q Q R R=  is the total time to reach the companies, which is 

incurred when companies j ( j =1,2,...,n) is processed by the workers i (i =1,2,...,n) respectively. Let 

( )1 2 3 4, , , ;[ , ],[ , ],[ , ]N IVN IVN IVN IVN IVN IVN

ij ij ij ij ij L U L U L Ux x x x x P P Q Q R R= denote the assignment of jth company to ith 

worker. Our aim is to determine the worker-to-company assignment at a minimum assignment cost 

and time to the companies.  

 

  Now, the mathematical model of the above IVNBOAP is given as detailed below. 

     (A)  ( )1

1 1

,
n n

IVN IVN IVN

ij ij

i j

Minimize Z x c x
= =

=          (1) 

        ( )2

1 1

,
n n

IVN IVN IVN

ij ij

i j

Minimize Z x t x
= =

=               (2) 

           subject to the constraints 

           
1

1 , 1,2,..., ,
n

IVN IVN

ij

j

x i n
=

= =              (3) 

           
1

1 , 1,2,..., ,
n

IVN IVN

ij

i

x j n
=

= =             (4) 

           0 1 for all iand j.IVN IVN IVN

ijx or=            (5) 

Using score function (Definition 2.7) the problem (A) is reduced to bi-objective interval AP (B).  

Now, the mathematical model of the BOIAP is given as detailed below. 

 

(B)  1 1

1 1

[ , ] ,
n n

L U L U

ij ij ij

i j

Minimize Z Z c c x
= =

 =              (6) 
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     2 2

1 1

[ , ] ,L U

ij

n n
L U

ij

i

i

j

jMinimize Z Z tt x
= =

 =              (7) 

      subject to the constraints 

      
1

1,2,        1 for
n

ij

j

x i n
=

= =              (8) 

      
1

for 1 1,2,
n

ij

i

x j n
=

==                (9) 

        xij = 0 or 1 for all i and j.             (10) 

Ishibuchi and Tanaka[26] state that the expected value and interval uncertainty can be attributed to 

an interval's midpoint and width. Since the objective function (6) and (7) of Problem (B) is the cost 

and time function which is to be minimized simultaneously and our aim is to obtain optimal 

compromise solution with minimum ambiguity. We can express the problem (B) in terms of 

expected cost and time using definition (2.1). Since any two of the four characteristics of an 

interval—left limit, right limit, mid-value, and width—can be used to represent it. Finally, the 

objective function of BOIAP (6) and (7) can be reduced to a left and width objective value problem 

(M) by employing left and width attributes.  

(M) 1 1

1 1

, ,L w

ij ij

n n
L w

ij

i j

Mini c cmize Z Z x
= =

  =             (11) 

     2 2

1 1

, ,L w

ij ij

n n
L w

ij

i j

Minimize Z Z t t x
= =

  =             (12) 

      subject to the constraints (8) to (10). 

Construct the multi objective problem (N) by splitting the left and width of each objective function 

(11) and (12). 

 (N) 1

1 1 1 1

n n n n
L m w

ij ij ij ij

i j i j

Minimize Z c x c x
= = = =

= −             (13) 

       1

1 1

n n
w w

ij ij

i j

Minimize Z c x
= =

=              (14) 

      2

1 1 1 1

n n n n
L m w

ij ij ij ij

i j i j

Minimize Z t x t x
= = = =

= −             (15) 

      2

1 1

n n
w w

ij ij

i j

Minimize Z t x
= =

=              (16) 

     subject to the constraints (8) to (10). 

The width of the cost coefficient of Z1, 
2

U L

ij ijw

ij

c c
c

 −
=  
 
 

, 

The mid-point of the cost coefficient of Z1, 
2

U L

ij ijm

ij

c c
c

 
=  
 
 

+
, 

The width of the cost coefficient of Z2, 
2

U L

ij ijw

ij

tt
t

 −
=  
 
 

, 
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The mid-point of the cost coefficient of Z2, 
2

U L

ij ijm

ij

t t
t

 
=  
 
 

+
. 

4. Interactive Left-Width Method (ILWM) 

 

Step 1: Construct the problem (B) from the problem (A) using the Score function. 

Step 2:  Using left and width attributes, the objective function of (B) can be reduced into a left and 

width value problem (M). 

Step 3: Construct the multi objective problem (N) by splitting the left and width objective value 

problem (M). 

Step 4: Reduce the problem (N) into single objective problem (G) using global weighted sum 

method [29]. 

Step 5: Using step 4, the optimal compromise solution for (G) is obtained. Also, the optimal 

compromise solution for the problem (A) is obtained from each xij through proposed method. 

 

4.1 Working Methodology 

 
Figure 1: Working methodology of BOIAP 

 

5. Application Example 

In this section, two application examples are provided to illustrate our proposed method. 

Example 5.1 A labour agency must arrange the distribution of three distinct skilled workers to three 

distinct companies in three different locations. Consider that there are two objectives to be 

considered: (i) Determine the distribution that reduces the overall cost of transferring workers to 

companies. (ii) Reduce the overall travel time (in hours) to the companies. We typically can't get 

this information precisely because the allocation schedule has been prepared in advance. The 

typical method for obtaining interval data for this condition is to rate the experience. Consider the 

following IVNBOAP, which is shown in the Table 1. 

Table 1: The bi- objective interval valued neutrosophic AP. 
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cij/ tij 

 D1 D2 D3 

S1 
[ 11]IVN 

            [ 11]IVN 

[ 12]IVN 

         [ 12]IVN 

[ 13]IVN 

           [ 13]IVN 

S2 
[ 21]IVN 

            [ 21]IVN 

[ 22]IVN 

         [ 22]IVN 

[ 23]IVN 

          [ 23]IVN 

S3 
[ 31]IVN 

            [ 31]IVN 

[ 33]IVN 

         [ 32]IVN 

[ 33]IVN 

          [ 33]IVN 

 

[ 11]IVN= ((10, 11, 12, 13);[0.1,0.7],[0.8,0.8],[0.8,0.9] ); [ 11] IVN = ((18, 27, 29, 30);[0.1,0.5],[0.8,0.8],[0.9,0.9] ) 

[ 12]IVN = ((28,29, 31, 38);[0.1,0.6],[0.7,0.7],[0.8,0.8]); [ 12]IVN = ((10, 12, 25, 26);[0.1,0.6],[0.8,0.9],[0.9,0.9]) 

[ 13]IVN = ((23, 25, 31, 38); [0.1,0.6], [0.7,0.7],[0.8,0.8]); [ 13] IVN= ((10, 11, 12, 13);[0.1,0.9], [0.7,0.7],[0.9,0.6]) 

[ 21] IVN =((14, 17, 21, 28);[0.2,0.9], [0.2,0.3],[0.6,0.6]); [ 21] IVN= ((23, 25, 31, 38);[0.1,0.5], [0.7,0.8],[0.8,0.9]) 

[ 22] IVN =((18, 19, 21, 22);[0.1,0.9], [0.8,0.8],[0.9,0.9]); [ 22] IVN= ((14, 17, 21, 28);[0.2,0.8], [0.2,0.2],[0.6,0.6]) 

[ 23] IVN =((18,27, 29, 30);[0.1,0.5], [0.8,0.8],[0.9,0.9]); [ 23] IVN= ((15, 17, 21, 28);[0.2,0.9], [0.1,0.2],[0.4,0.6]) 

[ 31] IVN =((14, 17, 21, 28);[0.2,0.9], [0.2,0.2],[0.6,0.6]); [ 31] IVN =((23, 25, 31, 38);[0.1,0.6], [0.7,0.7],[0.8,0.8]) 

[ 32] IVN =((18, 27, 29, 30);[0.1,0.5], [0.8,0.8],[0.9,0.9]); [ 32] IVN= ((23, 25, 31, 38);[0.1,0.5], [0.8,0.8],[0.9,0.9]) 

[ 33] IVN =((28, 29, 31, 38);[0.1,0.6], [0.7,0.8],[0.8,0.9]); [ 33] IVN= ((10, 11, 12, 13);[0.1,0.5], [0.8,0.9],[0.8,0.9]) 

Using Step 1, the problem (A) is reduced to problem (B) using the score function (definition 2.7) as 

shown in Table 2. 

Table 2: The bi- objective interval assignment problem. 

 
Labour Agencies 

L1 L2 L3 

W
o

rk
er

s 

W1 
[1,3] 

            [3,5] 

[5,9] 

           [2,4] 

[4,8]  

           [1,5] 

W2 
[7,10] 

            [4,6] 

[2,6] 

         [7,10] 

[3,5] 

        [9,11] 

W3 
[7,11] 

             [4,8] 

[3,5] 

           [3,6] 

[5,7] 

          [1,2] 
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Using Step 2, construct the problem (M) from the problem (B) by using the definition (2.1) as shown 

in Table 3. 

Table 3: The bi- objective left-width assignment problem(M). 

 
Labour Agencies 

L1 L2 L3 

W
o

rk
er

s 

W1 
<1,1>  

           <3,1> 

<5,2>  

           <2,1> 

<4,2>  

           <1,2> 

W2 
<7,1.5>  

           <4,1> 

<2,2>  

          <7,1.5> 

<3,1>  

           <9,1> 

W3 
<7,2>  

           <4,2> 

<3,1>  

          <3,1.5> 

<5,1>  

         <1,0.5> 

By Step 3, split the problem (M) into four objectives ( , , , ) by left and width objective 

function, which is shown in below Table 4. 

Table 4: Multi- objective assignment problem(N). 

 

Labour Agencies 

Problem ( ) Problem ( ) Problem( ) Problem ( ) 

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 

W
o

rk
er

s 

W1 1 5 4 1 2 2 3 2 1 1 1 2 

W2 7 2 3 1.5 2 1 4 7 9 1 1.5 1 

W3 7 3 5 2 1 1 4 3 1 2 1.5 0.5 

 

By Step 4, the problem (M) is reduced into single objective problem (SOP) using global weighted 

sum method as follows. In problem (M), solve each objective function individually with the 

constraints (8-10) using the Hungarian algorithm. Optimal solution for ( ) = 7, x11=x23=x32=1, ( )=3, 

x11=x23=x32=1, ( ) =7, x12=x21=x33=1, and ( )=2.5, x11=x23=x32=1. Then, create the pay-off matrix is as 

shown in Table 5. 

Table 5: Pay-off matrix 

     

x1 7 3 15 3.5 

x2 7 3 15 3.5 

x3 17 4.5 7 2.5 

x4 17 4.5 7 2.5 
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We find the lower and upper bound of each objective function that is L1=7, L2=3, L3=7, L4=2.5, 

U1=17, U2=4.5, U3=15, U4=3.5. Formulate the deterministic model with the weights 0.25 to each 

objective, 

(G)Minimize   ; 

             subject to the constraints (9) to (11), 0  ;. 

 

1
22 2 2

1 1 2

2

27 3 7 2.5

17 7 4.5
0.25 0.25 0

3 15 7 3.5 2.5
.25 0.25 ;=

L w L wZ Z Z Z


 − − − −
 

− − −

        
+ + +        

    −     
 

Then, using Step 5, Lingo 18.0 software is employed to solve the problem (G) to obtain optimal 

allocation is x11=x22=x33=1. Replace the optimal allocation of the problem (G) to the problem (B) is 

Z=([8,16],[11,17]) and for problem (A) is 
IVNZ ={((56,59,64,73);[0.7,0.9],[0.7,0.8],[0.8,0.9]), 

((42,55,62,71);[0.8,0.9], [0.2,0.2],[0.6,0.6] )}. 

 

Example 5.2 The bi- objective interval- valued Neutrosophic AP model is considered in order to 

confirm the method's efficacy: Three separate skilled workers must be allocated among three various 

branches of businesses in four different locations, according to an automobile manufacturing 

corporation. Consider that there are two goals to consider: (i) Identify the distribution that 

minimizes the overall cost of hiring new personnel. (ii) Shorten the distance travelled (in hours) 

between the companies. Typically, the allocation plan has been created in advance, thus we are 

unable to obtain this information precisely. The standard method is to rate the experience to gather 

interval data for this circumstance. Consider the following bi-objective interval valued neutrosophic 

assignment problem is shown in Table 6. 

 

Table 6: The bi- objective interval valued neutrosophic AP. 

 

cij/ tij 

 D1 D2 D3 D4 

S1 
[ 11]IVN 

          [ 11]IVN 

[ 12]IVN 

         [ 12]IVN 

[ 13]IVN 

           [ 13]IVN 

[ 14]IVN 

           [ 14]IVN 

S2 
[ 21]IVN 

          [ 21]IVN 

[ 22]IVN 

         [ 22]IVN 

[ 23]IVN 

          [ 23]IVN 

[ 24]IVN 

          [ 24]IVN 

S3 
[ 31]IVN 

          [ 31]IVN 

[ 33]IVN 

         [ 32]IVN 

[ 33]IVN 

          [ 33]IVN 

[ 34]IVN 

          [ 34]IVN 

 

[ 11]= ((14, 17, 23, 28);[0.3,0.8], [0.2,0.3],[0.1,0.2]); [ 11]= ((14, 17, 21, 28);[0.4,0.9], [0.1,0.3],[0.5,0.5]) 

[ 12]= ((26,27, 30, 33);[0.4,0.9], [0.2,0.3],[0.2,0.4]); [ 12]= ((26, 27, 30, 33);[0.6,0.9], [0.2,0.3],[0.2,0.3]) 

[ 13]= ((49, 50, 55, 57);[0.5,0.9], [0.4,0.5],[0.5,0.6]); [ 13]= ((49, 50, 55, 57);[0.5,0.9], [0.4,0.5],[0.5,0.6]) 

[ 14]=((49, 52, 55, 57);[0.4,0.9], [0.4,0.5],[0.4,0.5]); [ 14]= ((26, 27, 30, 33);[0.6,0.9], [0.2,0.2],[0.2,0.2]) 
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[ 21]=((48, 49, 50, 51);[0.1,0.9], [0.5,0.5],[0.4,0.4]); [ 21]= ((17, 19, 23, 28);[0.2,0.8], [0.3,0.3],[0.2,0.2]) 

[ 22]=((53, 56, 57, 58);[0.1,0.9], [0.5,0.6],[0.9,0.9]); [ 22]= ((51, 56, 57, 58);[0.1,0.9], [0.5,0.6],[0.6,0.9]) 

[ 23]=((14,17, 21, 28);[0.4,0.9], [0.1,0.3],[0.5,0.5]); [ 23]= ((26, 27, 30, 33);[0.6,0.9], [0.2,0.2],[0.2,0.2]) 

[ 24]=((60, 61, 65, 69);[0.3,0.7], [0.5,0.7],[0.7,0.8]); [ 24]= ((60, 61, 65, 69);[0.4,0.6], [0.5,0.7],[0.6,0.7]) 

[ 31]=((49, 52, 56, 58);[0.4,0.9], [0.4,0.5],[0.5,0.5]); [ 31]= ((30, 34, 38, 45);[0.1,0.9], [0.6,0.6],[0.5,0.5]) 

[ 32]=((28, 31, 35, 38);[0.1,0.9], [0.6,0.6],[0.3,0.3]); [ 32]= ((49, 50, 52, 53);[0.5,0.9], [0.5,0.5],[0.4,0.4]) 

[ 33]=((48, 49, 50, 51);[0.5,0.9], [0.5,0.5],[0.4,0.4]); [ 33]= ((59, 65, 80, 83);[0.5,0.6], [0.7,0.7],[0.4,0.4]) 

[ 34]=((49, 52, 56, 58);[0.2,0.6], [0.6,0.6],[0.5,0.5]); 

 

[ 34]= ((72, 82, 83, 84);[0.4,0.6], [0.6,0.7],[0.4,0.5]) 

By Step 1, using the score function (definition 2.7) the problem (A) is reduced to problem (B) as 

shown in Table 7. 

 

Table 7: The bi- objective interval unbalanced assignment problem. 

 

 

 

cij/ tij 

 D1 D2 D3 D4 

S1 
[10,12] 

         [9,11] 

[15,16] 

        [16,17] 

[21,24] 

       [21,24] 

[21,25] 

         [16,18] 

S2 
[15,25] 

         [9,13] 

[10,20] 

        [14,19] 

[9,11] 

       [16,18] 

[18,19] 

         [19,20] 

S3 
[20,26] 

         [9,17] 

[10,17] 

        [20,26] 

[20,25] 

       [25,27] 

[15,20] 

         [28,29] 

 

Using Step 2, construct the problem (N) by using the equations (6-17) which is shown in Table 8. 

 

Table 8: The bi- objective left-width unbalanced assignment problem. 

 

cij/ tij 

 D1 D2 D3 D4 

S1 
<10,1> 

         <9,1> 

<15,0.5> 

      <16,0.5> 

<21,1.5> 

     <21,1.5> 

<21,2> 

         <16,1> 

S2 
<15,5> 

         <9,2> 

<10,5> 

       <14,2.5> 

<9,1> 

       <16,1> 

<18,0.5> 

        <19,0.5> 

S3 
<20,3> 

         <9,4> 

<10,3.5> 

        <20,3> 

<20,2.5> 

       <25,1> 

<15,2.5> 

        <28,0.5> 
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By Step 3, split the problem (N) into four objective using left and width values of the function. Table 

9 and Table 10 shows that the multi- objective unbalanced assignment problem (MOUBAP) for cost 

and time. 

 

Table 9: The multi- objective unbalanced assignment problem for cost. 

 

Labour Agencies  

( )  

Labour Agencies 

( ) 

D1 D2 D3 D4 D1 D2 D3 D4 

W
o

rk
er

s S1 10 15 21 21 1 0.5 1.5 2 

S2 15 10 9 18 5 5 1 0.5 

S3 20 10 20 15 3 3.5 2.5 2.5 

 

Table 10: The multi- objective unbalanced assignment problem for time. 

 

Labour Agencies  

( )  

Labour Agencies 

( ) 

D1 D2 D3 D4 D1 D2 D3 D4 

W
o

rk
er

s S1 9 16 21 16 1 0.5 1.5 1 

S2 9 14 16 19 2 2.5 1 0.5 

S3 9 20 25 28 4 3 1 0.5 

 

Now, using Step 4, reduce the MOUBAP into SOP using global weighted sum method. Then, 

formulate the deterministic model with the weights 0.25 to each objective function. Using Step 5, 

obtain the optimal compromise solution for the problem (B) is x11=x23=x34=x42=1, Z=([34,43],[53,58]) 

and for the problem (A) is 
IVNZ = {((77, 86, 100, 114);[0.4,0.9], [0.1,0.3],[0.1,0.2] ), ((112, 126, 134, 

143);[0.6,0.9], [0.1,0.2],[0.2,0.2] )}. 

 

6. Result and Discussion 

The numerical examples are used to investigate the efficacy of the proposed interactive left-width 

method to obtain the optimal compromise solution. Table 11 and Table 12 displays the comparison 

between the optimal compromise solution for the problem (B) with different existing solution 

methods. Table 11 demonstrates that optimal compromise solution for example 1, which is obtained 

by our proposed method is same to Global criteria method (GCM) [30] and obtain minimum value to 

the Fuzzy programming approach [31], Weighted sum method [32]. Table 12 demonstrates that 

optimal compromise solution for example 2, which is obtained by our proposed method is same to 

Global criteria method and obtain minimum value to the Fuzzy programming approach, Weighted 

sum method. To show the effectiveness, the same is plotted in the Figure 2 and Figure 3. The optimal 

compromise solution for our proposed approach is minimum by taking average to the interval. 

Overall, the proposed strategy is better suited to problems involving multi-criteria in structures.  
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Table 11 Optimal compromise solution for different approaches-Example 1 

 

Approaches Allocations Optimal compromise solution 

Fuzzy programming 

approach[31] 
x11=x23=x32=1 Z=([7,13],[15,22]) 

Weighted sum 

method[32] 
x11=x23=x32=1 Z=([7,13],[15,22]) 

Global criteria 

method[30] 
x11=x22=x33=1 Z=([8,16],[11,17]) 

Proposed interactive 

left-width method 
x11=x22=x33=1 Z=([8,16],[11,17]) 

 

Table 12 Optimal compromise solution for different approaches-Example 2 

 

Approaches Allocations Optimal compromise solution 

Fuzzy programming 

approach 
x14=x23=x32=x41=1 

Z=[(40,53);(52,62)] 

 

Weighted sum method x14=x23=x32=x41=1 
Z=[(40,53);(52,62)] 

 

Global criteria method x11=x23=x34=x42=1 Z=([34,43],[53,58]) 

Proposed interactive 

left-width method 
x11=x23=x34=x42=1 Z=([34,43],[53,58]) 

 

 

 

 

Figure 2: Comparison for Example 1 

 

Figure 3: Comparison for Example 2 
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7. Sensitivity analysis 

 

In this section, sensitivity analysis (SA) is performed for the optimality in terms of cost coefficients 

for the problem (B). First, we perform the SA of first objective problem having the interval cost 

,L U

ij ijc c   and then for the second objective having the interval time , .L U

ij ijt t   We split interval cost 

,L U

ij ijc c    and time ,L U

ij ijt t     as lower bound IAP 
L

ijc  , 
L

ijt   and upper bound IAP 
U

ijc  , 
U

ijt  . 

Analyse the sensitivity of (i,j)th cost of upper and the lower bound of interval for the problem (B). 

Using GWSM the optimal compromise solution obtained for problem (B) is x11=x22=x33=1. Therefore, 

the basic cells of the given problem (B) are (1,1), (2,2) and (3,3). Now, analyse the sensitivity range 

of (i,j)th cost for the 
L

ijc  to the problem (B). Replace the (i,j)th cost value 
L

ijc  by 
L

ijc + λ  in which 

the parameter λ  may vary. We find the modi indices ui and vj to calculate (
L

ijc + λ) − (ui +vj ) ≥ 0 for 

all i and j. Then, we compute the minimum and maximum range of λ (i.e) [λ*, λ**], so that the 

optimal basis to the problem 
L

ijc  is not changed. Hence, the sensitivity ranges is [
L

ijc +λ*, 
L

ijc +λ**]. 

Similarly, we can calculate for 
U

ijc , 
L

ijt  and .U

ijt  

Now, we preform the SA for each cell in the 
L

ijc  which is a basic/ non-basic variable cell. 

Case (Ia): Now, we consider the SA of the 
L

ijc  in the basic cell (1, 1) and compute the ranges of 

non-basic variables, (
L

ijc + λ) − (ui +vj ) ≥ 0 for all i and j. 

Table 13 

ui / vj v1 =1+ λ v2 =5 v3 =4 

u1 =0 1 +λ             5 4 

u2=0 7 2         3 

u3=0 7 3 5 

 

Compute the ranges of non-basic variables, 7 − (0 +1 +λ) ≥ 0. Then, λ varies from -∞ to 6. Therefore, 

sensitivity range of 
L

ijc  varies from -∞ to 7.. 

 Case (Ib): We consider the SA of the 11

Uc in the basic cell (1, 1). 

Table 14 

ui / vj v1 =3 v2 =6 v3 =5 

u1 =0 3+λ             9 8 

u2=0 10 6 5 
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u3=0 11 5 7 

 

Compute the ranges of non-basic variables (i.e) 10 − (0 +3+λ) ≥ 0 and 11 − (0 +3+λ) ≥ 0. Then, choose 

the minimum range of λ that varies from -∞ to 7. Therefore, 11

Uc  varies from -∞ to 10. Thus, the cell 

(1,1) interval cost, 11 11,L Uc c     varies from (-∞, -∞) to [7, 10]. 

Similarly, we can do for the second objective function. Then, the lower δ varies from -∞ to 1 and 11

Lt  

varies from -∞ to 4. Then, upper δ varies from -∞ to 1 and 11

Ut  varies from -∞ to 6. Therefore, 

,L U

ij ijt t    varies from [-∞, -∞] to [4, 6]. 

Next, we consider the SA of the 
L

ijc in the cell (1, 2) which is a non-basic cell. 

Case (IIa): We consider the SA of the lower bound TP in the cell (1, 2). 

 

Table 15 

ui / vj v1 =1 v2 =2 v3 =5 

u1 =0 1 5+λ 4 

u2=0 7 2 3 

u3=0 7 3 5 

 

Then, λ12 varies from -3 to ∞. Thus, c12 varies from 2 to ∞.  

 

Case (IIb): We consider the SA of the upper bound TP in the cell (1, 2). 

Table 16 

ui / vj v1 =3 v2 =6 v3 =5 

u1 =0 
3  9+λ             8 

u2=0 10 6 5 

u3=0 11 5 7 

 

Then, λ varies from -∞ to -3. Thus, c12 varies from -∞ to 6. Similarly, we can do for the second 

objective function. Then, lower δ varies from 5 to ∞ and t12 varies from 10 to ∞. Then, upper δ varies 

from 6 to ∞ and t12 varies from 10 to ∞.  Therefore, ,L U

ij ijt t    varies from [7,10] to [∞, ∞]. Similarly, 

we can find the sensitivity ranges of costs in the problem (B) which is shown in Table 17 and Table 

18. 
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Table 17 SA for First objective problem(B) 

Limit for 
L

ijc  Limit for 
U

ijc  Limit for ,L U

ij ijc c    

11 7c−    11 10c−    11[ , ] [7,10]c− −    

122 c    126 c    12[2,6] [ , ]c     

135 c    137 c    13[5,7] [ , ]c     

211 c    213 c    21[1,3] [ , ]c     

22 3c−    22 3c−    22[ , ] [3,3]c− −    

235 c    237 c    23[5,7] [ , ]c     

311 c    313 c    31[1,3] [ , ]c     

322 c    326 c    32[2,6] [ , ]c     

33 3c−    33 5c−    11[ , ] [3,5]c− −    

 

Table 18 SA for Second objective problem(B) 

Limit for 
L

ijt  Limit for 
U

ijt  Limit for ,L U

ij ijt t    

11 4t−    11 6t−    11[ , ] [4,6]t− −    

127 t    1210 t    12[7,10] [ , ]t     

131 t    132 t    13[1,2] [ , ]t     

213 t    215 t    21[3,5] [ , ]t     

22 2t−    22 4t−    22[ , ] [2,4]t− −    

231 t    232 t    23[1,2] [ , ]t     

313 t    315 t    31[3,5] [ , ]t     

327 t    3210 t    32[7,10] [ , ]t     

33 1t−    33 5t−    33[ , ] [1,5]t− −    

 

Table 17 and Table 18, show that the sensitivity of the interval cost parameter is used to examine 

how uncertainties in a parameter affect the overall uncertainty of the problem (B).  This helps the 

DM to change the variables within models, based on information specific to a certain scenario to 

understand the outcome of a real-life situation. 

 

8. Concluding remarks and future research directions 

 

This study proposed a novel solution methodology interactive left-width technique for the interval 

valued neutrosophic BOAP. In this methodology the problem is first reduced to BOIAP using score 

function and it is reduced to a deterministic bi-objective AP using the left-width technique on each 

objective function. Then, each objective function of left-width problem is separated along with the 

constraints and multi-objective AP is constructed. Global weighted sum method is adopted to 

convert the multi-objective AP into SOP and then reduced problem is solved using Lingo 18.0 

software to obtain the optimal compromise solution. This article demonstrates the effectiveness of 
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the proposed interactive left-width method in problem and obtains the following improved results 

for the same case study: (i) illustrate the reliability and transparency of our proposed method and (ii) 

less assignment costs and shorter total allocation time. Applying nonlinear membership functions 

requires a significant amount of computational effort, which is the primary limitation of the 

proposed method.  In future research, evolutionary computation may be used to effectively address 

multi-objective interval nonlinear problems in uncertain parameters. Further future research 

endeavors could potentially employ the solution method to address other supply chain planning 

problems such as inventory management, vendor selection, production distribution planning, and 

procurement-production-distribution planning. 
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