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Abstract: The primary objective of this article is to develop a mathematical model and determine the 

optimal policies of an inventory system involving power demand and controlled deterioration 

through preservation technology. This model comes in handy in a power demand-oriented 

inventory system with demand high at the end of the period. The model incorporates backlogged 

shortages and linear holding cost. The triangular neutrosophic numbers (TNN’s) are used for a 

nuanced representation of uncertain and imprecise inventory-related expenses. An efficient 

algorithm is constructed to minimize the total cost, and obtain optimal positive inventory time, 

optimum cycle time and minimum preservation technology investment. Few numerical examples 

are used to illustrate and validate the model. The comparative study conducted between models 

with and without preservation technology investment reveals a significant reduction in total 

inventory costs facilitated by the preservation facility. Also, the numerical results obtained in crisp 

and neutrosophic environment are compared. Specific previously obtained results are discussed to 

illustrate the theoretical findings. Sensitivity analysis of the model provides managerial insights 

replicating reality. 

Keywords: economic order quantity; power demand; deteriorating items; complete backlogging; 

preservation technology; triangular neutrosophic number 

 

1. Introduction 

Inventory systems in the modern days face a huge challenge due to uncertain conditions and 

stiff competition in the product markets. This calls for new strategies or technologies to sustain in the 

global scenario. Deterioration of items is a common phenomenon in any inventory system. Many 

consequences arise due to unforeseen deterioration or breakage of items in stock. Unplanned 

deterioration often leads to unexpected costs for replacements, repairs, or disposal of obsolete items. 

Hence, stock preserving policies could be considered to reduce these costs and also avoid upscaling 

of shortages due to unexpected deterioration. The impact of deterioration can be significantly 

reduced by implementing preservation methods. A strategy is designed to minimize the cost of 

deterioration while making preservation investments. Moreover, stock preserving policies play a 

crucial role in reducing the financial burden associated with inventory maintenance. 

Demand is one of the factors that influences the working mechanism of inventory management. 

The demand for most products is inherently time-dependent, influenced by critical factors such as 
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freshness, seasonality, and the introduction of new products. Power demand represents a specific 

form of time-dependent demand. The power pattern of demand can be visualized in situations 

where the demand is high either at the beginning or end of a cycle. Inventory systems with variable 

demand like power demand are likely to face shortages in supply.  In such cases, to retain the 

goodwill the demand is backlogged. This approach helps businesses retain customer goodwill by 

acknowledging demand during shortages, preventing immediate customer dissatisfaction. It allows 

organizations to manage variable demand effectively while maintaining positive customer 

relationships. 

In general, the costs associated with the inventory are uncertain. Neutrosophic numbers are 

utilized to account for the imprecision in systems. Due to the uncertainty of many parameters in 

real-life scenarios, neutrosophic numbers are invaluable for mitigating uncertainty. 

This article attempts to define new strategies by considering the implementation of preservation 

technology in an inventory system with power demand. The proposed model is particularly suited 

for items that align with the power pattern of demand. Consequently, the inventory model used in 

this study can be beneficial for products like: (i) Fresh vegetables, Bakery items, Milk-based 

products, or Seafoods, which experience higher demand at the beginning of the inventory period 

compared to the end, since fresh or new food products are preferred by the customers. (ii)  

Marginally discounted products including frozen meat and Ice creams which experience higher 

demand towards the end of the expiry period and also, newly introduced products which are 

assessed for their performance at the beginning and purchased towards the end of the period when 

the performance is promising. (iii) Clothing and apparel, Consumer electronics, Exercise equipment, 

Stationery and office supplies, which maintain a nearly constant demand throughout the inventory 

cycle. With the implementation of a well-suited preservation strategy, these items experience a 

significantly prolonged shelf life. 

The remaining part of the article is structured in the following manner: Section 2 addresses the 

literature relevant to the current investigation and the study's contributions. As for Section 3, it 

presents the concept of neutrosophic numbers and their de-neutrosophication technique. Section 4 

contains nomenclature and assumptions. The model is formulated and developed for more 

discussion under crisp and neutrosophic environment in Section 5. Section 6 presents iterative 

algorithms for determining the optimal solution. In Section 7, some particular inventory models 

derived from proposed model. In Section 8, a sensitivity analysis of a few system parameters is 

offered along with a numerical demonstration for testing the model. In Section 9, conclusions are 

provided. 

2. Literature Review 

In literature, researchers have examined various inventory models focusing on the deterioration 

of items. Whitin [1] was the first to introduce the idea of deterioration while modelling the inventory 

system. Ghare & Schrader [2] developed a mathematical model considering constant deterioration of 

items in stock. Sachan [3] revised these models to include shortages in a deteriorating inventory 

environment. Shah et al. [4] later incorporated object degradation after a certain period. Recently, 

Hatibaruah and Saha [5] suggested a model for managing items that deteriorate with a 

two-parameter Weibull distribution. 

The effect of investing in preservation technologies on an inventory system for deteriorating 

items has been investigated by several researchers. Selected works of preservation-related inventory 

models shown in table. 1. Hsu et al. [6] initially proposed the preservation technology principle. 

With the preservation technologies, they established an inventory model based on constant demand. 

Later, Dye and Hsieh [7] developed a model of economic production quantity (EPQ) based on 

preservation-based approach, considering time-reliant demand. He and Huang [8] suggested an 

inventory policy for degrading items accounting for the rate of deterioration which is negatively 

exponentially proportional to the amount spent on preservation technologies.   
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Singh and Sharma [9] introduced a preservation technology based two stage trade 

credit-financing model. Zhang et al. [10] suggested a supply chain model incorporating preservation 

technologies where demand is reliant on stock. Mishra et al. [11] created a preservation inventory 

model under shortages, considering demand to be dependent on both cost and stock levels. Price 

reliant inventory models with preservation strategy have been proposed by Li et al. [12] & Das et al. 

[13]. A stock-dependent demand inventory model based on preservation technologies was 

developed by Khanna et al. [14]. Bhawaria and Rathore [15] presented a controllable deteriorating 

inventory model with Hybrid-Type demand.  

In the literature, few inventory models have been studied by considering deteriorating items 

with power pattern of demand. Naddor [16] was the first to identify and formulate this pattern of 

demand. Datta and Pal [17] investigated the power demand inventory model with a varying 

deterioration. Lee and Wu [18] accounted for power demand and shortages in their model. Dye [19] 

expanded the model to incorporate backlogging in relation to time spent. Later, Rajeswari and 

Vanjikkodi [20] analyzed an inventory model with power demand when deterioration is constant. 

San-José et al. [21] introduced an inventory system that focuses on maximizing the return on 

inventory investment in the context of time-reliant power demand. San-José et al. [22] recently 

devised a sustainable inventory system for a product with demand exhibiting a power pattern over 

time, wherein shortages are entirely backlogged. 

Several researchers have developed their inventory models by considering the complete 

backlog of shortages. Posner and Yansouni [23] drew insight from the impatience of customers and 

associated it with backorders. Abad [24] initiated the thought that the part of backlogged demand 

can be expressed as a function of waiting time.  Valliathal and Uthayakumar [25] presented a 

deteriorating stocking model with two-warehouse and partial, fully backlog of shortages. Mashud 

[26] introduced an economic order quantity (EOQ) model that considers deterioration, price and 

stock depend demand, incorporating a complete backlog of shortages. Mahapatra et al. [27] have 

recently put forward an inventory model dealing with uncertain demand in the presence of 

complete backlog for shortages. 

A few inventory models have been developed in the literature by treating the cost parameters 

as triangular neutrosophic numbers (TNNs). The neutrosophic theory was first developed by 

Smarandache [28]. It efficiently expresses uncertain, contradictory, and incomplete information. 

Classical inventory models rely on crisp values, which cannot accurately reflect the inherent 

uncertainties and inaccuracies connected to actual inventory systems. Mullai and Broumi [29] 

proposed an inventory model that treats demand and ordering cost as TNNs to address this. Mullai 

and Surya [30] proposed a price break EOQ model under a neutrosophic environment. Pal and 

Chakraborty [31] created a time-discounted triangular neutrosophic-based degrading inventory 

model. Mondal et al. [32] created Logistic-growth demand-dependent EOQ model with 

neutrosophic coefficients under trade credit. Sugapriya et al. [33] presented power demand 

dependent two-warehouse deteriorating inventory model under trapezoidal bipolar neutrosophic 

environment. Recently, numerous researchers (Bhavani et al. [34], and Mohanta et al. [35]) 

established inventory models under a triangular neutrosophic environment.  

To the best of our knowledge, no researcher has explored the combined impact of preservation 

technology on a deteriorating inventory model where demand follows a power pattern over time, 

while considering linear holding costs and neutrosophic cost parameters. The present study aims to 

fill this research gap by investigating the application of preservation technology to EOQ models 

with demand following a power pattern under neutrosophic environment. 

Unique Contribution of this Study: 

The subsequent contributions emphasize the novelty of this study: 

1. Customers’ demand size during the entire cycle follows power pattern of time. 
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2. Preservation technology is employed to mitigate the deterioration rate to fulfil customer 

demand, especially when it peaks towards the end of the scheduled period. 

3. Shortages are allowed and that are completely backlogged. The nature of the holding cost is 

linear function of time. 

4. The proposed model calculates the total cost within a neutrosophic environment, 

considering cost parameters as triangular neutrosophic numbers. 

5. We have determined the optimal preservation technology cost, cycle length, and the time of 

shortage that minimize the total cost per unit time in the proposed model. 

3. Preliminaries 

Definition 3.1 [28] 

Suppose X is the universal set. A “neutrosophic set (NS)” Ũ in X is defined by a truth, 

hesitation, false membership functions 
U U U

, ,    respectively. Here, 
U U

,  and 
U

  are 

real-valued parameters in the interval [0,1]. The NS Ũ can be expressed as 

 U U U U U U
U x; (x), (x), (x) : x X & (x), (x), (x) ]0 ,1 [            . The sum of the three 

membership functions is not constrained, allowing for flexibility in the membership 

functions
U U U

0 (x) (x) (x) 3      . 

Definition 3.2 [36] 

If a set Ũ in the universal discourse X satisfies the condition 

Ã  U U U
x; (x), (x), (x) : x X       , then it is considered to be a “Single-Valued neutrosophic set” 

of a Single-Valued independent variable x. Here, truth, hesitation, false membership functions are 

U
(x) : X [0,1]  , 

U
(x) : X [0,1]  , 

U
(x) : X [0,1]   respectively. These functions are used by the 

decision maker to represent their degree of belief in the variable. Additionally, 
U U U

(x) (x) (x)     

is constrained to lie within the interval [0,3]. 

Definition 3.3: 

Suppose we have three variables, ʊ, ʋ, and ʌ, such that 
U U U

( ) 1, ( ) 1, ( ) 1        . In this 

case, the set Ũ is classified as “neutro-normal”. 

Definition 3.4: 

The set Ũ is considered “neutro-convex” if the following criteria are met 

i. 
U U U

( p (1 )q) min( (p), (q))        

ii. 
U U U

( p (1 )q) min( (p), (q))        

iii. 
U U U

( p (1 )q) min( (p), (q))        

Here, [0,1] while the variables p and q are real numbers. 

Definition 3.5 [37] 

A “triangular single valued neutrosophic number” (Ũ) can be expressed as Ũ=<(q₁,q₂,q₃:ψ), 

(r₁,r₂,r₃:ς),(s₁,s₂,s₃:ν)>. Here, 
U

: R [0,1]  , 
U

: R [0,1]  , 
U

: R [0,1]   are truth, hesitation, and 

false membership function, respectively, that are defined as follows: 

1

2 1 1 2

U
3 2 2

3 2

x q
,

q q for q x q

1, for x q
(x)

q x for q x q
,

q q otherwise

0,

 


  
 

  
  

 


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1

2 1 1 2

U
3 2 2

3 2

x q
,

q q for q x q

0, for x q
(x)

q x for q x q
,

q q otherwise

1,

 


  
 

  
  

 



 

1

2 1 1 2

U
3 2 2

3 2

x q
,

q q for q x q

0, for x q
(x)

q x for q x q
,

q q otherwise

1,

 


  
 

  
  

 



 

Definition 3.6: De-neutrosophic Technique  

The removal of area approach [37] has been utilized in this model to compute the 

de-neutrosophic value for the triangular single-valued neutrosophic number Ũ=<(q₁,q₂,q₃:ψ),  

(r₁,r₂,r₃:ς), (s₁,s₂,s₃:ν)>. The resulting de-neutrosophic value of Ũ is expressed as, 

1 2 3 1 2 3 1 2 3

1
D(U) (q 2q q r 2r r s 2s s )

12
                    (1) 

4. Nomenclature and assumptions 

4.1 Nomenclature 

Parameters 

o – The cost of each order placed. 

p – cost per unit of purchase. 

b – Backordered cost of each unit per short-time unit. 

d – Deteriorating cost of each unit. 

y0  The rate of deterioration. 

Decision Variable 

t1 – The instant that the level of inventory is zero, t1 0. 

T –The duration of the cycle, (T=t1+t2). 

ξ – Investing in preservation technologies per unit of time. 

Other variables 

Q – Order volume throughout a cycle of length T, (Q=MI+MB). 

Functions 

t2 – a period in the cycle time where shortages are permitted, t2  0. 

h(t) – (h+bt), The cost per unit and per time unit for keeping inventory. 

MI – The highest amount of inventory during [0, T]. 

MB – The highest number of units backordered during a stockout period. 

I1(t) – At time t, the amount of positive inventory, 0  t  t1. 

I2(t) – At time t, the amount of negative inventory, t1 t  T. 

TC – The overall cost per unit of time. 

4.2 Assumptions 

 The demand rate is formulated as 

1
1

1
1

dt
D(t)

T











at any time t, where T is the planning horizon, η 

can be any positive number, and d is a positive constant. In this expression, when η > 1, most of 
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the demand occurs at the beginning; when η=1, demand is constant; when η < 1, most of the 

demand occurs at end shown in figure 1. 

Time t

D
e
m

a
n
d
 r

a
te

 D
(t

)

 

 

 < 1

 = 1

 > 1

 

Figure 1. Demand depiction 

 The deterioration rate y0 is constant, 0 <y0<<1, this can be controlled by investing in preservation 

strategy m

0
y( ) y e    which satisfies the condition

dy( )
0

d





,  

2

2

d y( )
0

d





 and y(0)=y0, where 

m is the investment's sensitivity parameter. 0 < m < 1. 

 It is considered that the time-dependent holding cost, h(t)=h+bt. 

 A single kind of item makes up the inventory. 

 The replenishment rate is considered to be infinite. 

 There is no limit to the planning horizon. 

 Lead time for delivery is zero. 

 The shortage is permitted, and it is fully backordered. 

5. Mathematical Model 

Figure 2 shows the level of available inventory at any given time. 

Inventory level prior to the shortage  

Inventory level between [0, t1] is depends on demand and deterioration. The differential 

equation can be used to depict the inventory amount during [0, t1] is 
1

1

1
1 1

1

dI (t) dt
y( )I (t)

dt
T







   



,         0 ≤ t ≤ t1        (2) 

with I1(t1) = 0 as the boundary condition. 

Equation (1)'s solution is provided by 
1 1 1 1

1 1 11
1

y( )d
I (t) (1 y( )t) t t t t

1
T

 

   




    
         

         

, 0  t  t1          (3) 
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Figure 2. Inventory system depiction 

Inventory level throughout stockout period 

Inventory level between [t1, T] is depends on demand. The differential equation can be used to 

depict the inventory amount during [t1, T] is 
1

1

2

1
1

dI (t) dt

dt
T







 
 

  
  

,    t1 ≤ t ≤ T             (4)  

with I2(t1) = 0 as a boundary condition. 
1 1

2 11
1

d
I (t) t t

T

 




 
   

 
 

,   t1 ≤ t ≤ T             (5) 

The highest amount of inventory during [0, T] is  
1

1

1
1 11

1

y( )td
MI I (0) t

1
T










 
 

   
 

 
 

               (6) 

The number of backordered units are   
1 1

2 11
1

d
MB I (T) T t

T

 




 
    

 
 

                (7) 

Hence, the purchase volume during the time span [0, T] is Q = MI + MB. 
1

1

1

1
1

y( )td
Q T

1
T










 
 

  
 

 
 

                 (8) 

Cost components: 

The following cost elements make up each replenishment cycle's overall cost. 

Ordering cost 

o
OC                        (9) 



Neutrosophic Sets and Systems, Vol. 65, 2024     19  

 

 

S. Loganayaki, N. Rajeswari, K. Kirupa, S. Broumi, Optimization of triangular neutrosophic based economic order quantity 
model under preservation technology and power demand with shortages 

Holding cost 

1t

1

0

HC h(t)I (t)dt   

 

1 1 2 1 2 1 3

1 1 1 1

1 1
1 1

t y( )t t y( )thd bd
HC

1 1 2 3(1 3 )2 1 2
T 2T

      

   

 
 

   
    

      
         

   

         (10) 

Backordered cost 

 
1

T

b 2

t

BC I (t) dt    

11
1

b 1
11

1

d tT
BC Tt

1 1
T









 
   

    
  

 
 

               (11) 

Deterioration Cost 

1

1

(1 ) 1
t T

d 1 1
1 1

0 t

dt dt
DC Q dt dt

T T

 

 

 
 

    
    

       
       

   

1

1
d 1

1

dy( )t
DC

(1 )T









 

 

                (12) 

Purchase cost 

p
PC ×Q   

1
1

p 1

1
1

d y( )t
PC T

1
T










 
  

  
 

 
 

               (13) 

Preservation technology cost 

PTC T   

Therefore, the overall cost per unit of time is 

 1

1
TC t ,T, OC+HC+BC+DC+PC+PTC

T
      

 
 

11 1 2 1 2 1 3

d 11 1 1 1
1 o 1 1 1

1 1 1
n

dy( )tt y( )t t y( )t1 hd bd
TC t ,T, +

T 1 1 2 3(1 3 )2 1 2
2TT (1 )T

      

   

  
 

    
      

          
                 

   

1 11
1 1

pb 1 1
11 1

1 1

dd t y( )tT
Tt T T

1 1 1
T T

 

 
 

 
 

  
     

                 
    

       (14)

 

5.1 Inventory model under triangular neutrosophic domain 

In real markets, cost parameters are often uncertain, to overcome this neutrosophic numbers are 

used to represent various costs because they have truth, hesitation, and falsity membership 
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functions that can address all types of parameter uncertainties. Specifically, this proposed inventory 

model utilizes TNNs to represent holding cost (h), purchase cost (p), ordering cost (o), 

deterioration cost (d), backordered cost (b). The format of the TNNs 
oN pN N dN bN, ,h , ,     is as 

follows: 

     oN 11 12 13 21 22 23 31 32 33
o ,o ,o , o ,o ,o , o ,o ,o   

     pN 11 12 13 21 22 23 31 32 33
p ,p ,p , p ,p ,p , p ,p ,p   

     N 11 12 13 21 22 21 31 32 33
h h ,h ,h , h ,h ,h , h ,h ,h  

     dN 11 12 13 21 22 23 31 32 33
d ,d ,d , d ,d ,d , d ,d ,d   

     bN 11 12 13 21 22 23 31 32 33
b ,b ,b , b ,b ,b , b ,b ,b   

By applying the removal area technique (1) to above neutrosophic costs, the resulting 

de-neutrosophize costs are 
oN pN N dN bN

D( ),D( ),D(h ),D( ),D( )    .  

To calculate the total cost within the neutrosophic domain 
N

TC , we can substitute the 

de-neutrosophic values into equation (14), resulting in:

 

 

11 1 2 1 2 1 3

N dN 11 1 1 1
N oN 1 1 1

1 1 1
n

D(h )d D( )dy( )tt y( )t t y( )t1 bd
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pNbN 1 1
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D( )dD( )d t y( )tT
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1 n 1 1
T T
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 
 

 
 

   
      

           
      

           

   (15) 

6. Optimal Solution 

In this section the necessary and sufficiency conditions for total cost’s optimality are derived. 

Necessary conditions: 

By solving the equations 
1

TC
0

t





, 

TC
0

T





 and 

TC
0





, the optimum value of t1*, T*, ξ*, 

and thereby the minimum average total cost per unit of time (TC*), Q* can be determined. 

where, 

1 1 1 1 2 1

m m m

1 0 1 1 0 1 d 0 11
1

TC 1 1 bd 1
hd t y e t t y e t dy e t

t 2 2 3
T

   

         



     
        

        

   

  

1 1 1

m

b 1 1 p 0 1
d Tt t d y e t 0



   
   

        
      

           (16) 
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T
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



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          
                 

 

11
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1
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tT 1
d Tt d T y( )t T

1 1 1


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
    

                      
 
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11 112 11 1
po
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dT(1 ) T1 T
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T
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 




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   
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p0 d 11 1
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1 t 0
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T
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Sufficiency conditions: 

A sufficient condition for t1*, T*, ξ* to be minimum point of TC is that the Hessian matrix 

 
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2
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 evaluated at t1*, T* and ξ*, is positive definite. 

The Hessian matrix H (t1, T, ξ) is said to be positive definite if the signs of the principal minor 

determinants of H (t1, T, ξ) are positive. (i.e., D1, D2, D3 >0). 

where 
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Algorithm: 

Step 1: Initialize the values for d, η, πo, h, b, πp, d, πb, δ, y0 and m. 

Step 2: Evaluate TC (t1, T, ξ) 

Step 3: Evaluate 
1

TC

t




, 

TC

T




and 

TC


. 

Step 4: Solve simultaneous equations 
1

TC
0

t





, 

TC
0

T





and 

TC
0





. 

Step 5: Using the results from step 4, check the sufficiency conditions. 

Step 6: If the computed value in step 5 is greater than zero, then move on to step 7 else, move on 

to step 4. 

Step 7: Evaluate TC* and Q* using equations (14) and (8) respectively. 

Step 8: Stop. 

7.  Particular cases 

Next, we demonstrate how the suggested model may be used to get specific situations for 

several inventory models developed by other authors. 

1. When t1 = T, ξ → 0, η=1, and b → 0, then the model is reduced to an EOQ model with 

constant demand, constant holding cost and no shortages. 

2. When η = 1, indicating a constant demand function, the proposed model simplifies to 

the one presented by Dye and Hsieh [9], particularly when their model incorporates 

complete backlogging. 

3. If ξ → 0, b → 0, d → 0, then the reduced system coincides with the model analyzed by 

Rajeswari and Vanjikkodi [23] when, in their model, complete backlogging is 

considered. 

8. Numerical illustration and sensitivity analysis 

8.1 Crisp Environment 

A numerical example is presented here to validate the aforementioned theoretical model. 

Analyzing the outcomes can offer essential information to a decision-maker. Consider the following 

inventory system parameters for a certain type of cake, which may deteriorate over time. 
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d = 100 kilograms (kg),  η = 2,    πo = $ 250/order,  h = $ 1 /kg/week, 

 b= $ 6 /kg/week,   πp = $12/kg,   d = $15/kg/week,  πb = $18/kg/week, 

 y0 = 0.1,   m=0.05. 

The derivatives (16), (17) and (18) are computed. Solving the resulting highly nonlinear 

equation in MATLAB, yields t1* = 1.0292 weeks, T*= 1.3015 weeks and investment in preservation 

technology ξ* = $ 28.867. Then, the order quantity Q* = 131.09 kg and the overall expense per unit of 

time is obtained as TC*= $ 1555.6473 by using (8) and (14) respectively. Total cost function’s 

convexity shown in figure 3 – 5. 

Sufficiency condition: 

D1 = 1119.44 > 0,  
2

777.62
  0
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
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Figure 3. Total cost Vs. ξ and t1 for fixed T 
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Figure 4. Total cost Vs. ξ and T for fixed t1 
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Figure 5. Total cost Vs. t1 and T for fixed ξ 

8.2 Comparitive Study 

Cases 

With using preservation technology Without using preservation technology 

t1*(weeks) T*(weeks) ξ ($) 
Q* 

(kg) 
TC ($) t1*(weeks) T*(weeks) 

Q* 

(kg) 
TC ($) 

(i) 

Present 

model 

1.0292 1.3015 28.867 131.09 1555.6 0.86583 1.1744 120.35 1584.9 

(ii) 

Constant 

demand 

(η=1) 

0.8996 1.1125 32.342 112.05 1615.5 0.75084 1.0031 103.13 1653.9 

By comparing the total cost of the preservation technology model with the non-preservation 

technology model, it becomes evident that preservation technology lowers costs while extending 

positive inventory time. 

8.3 Triangular Neutrosophic Environment 

A numerical illustration has been given utilising TNNs to manifest the impact of imprecise cost 

parameters on the presented inventory system. 

dN (180,250,310),(200,260,320),(150,220,290)    

pN (8,12,15),(10,13,16),(6,9,11)   

Nh (0.8,1,1.5),(0.9,1.3,2),(0.6,0.8,1.4)  

dN (10,15,20),(12,17,21),(8,13,16)   

bN (15,18,21),(16,20,23),(12,16,18)   

Using (1) obtain the de-neutrosophic costs and substitute the obtained values in (16), (17) and 

(18). And solving the resulting simultaneous equations we get, t1* = 1.0166 weeks, T*= 1.2947 weeks 

and ξ* = $ 28.084. 

From (8) and (15) the order quantity Q* = 130.42 kg and the overall expense per unit of time is 
*

N
TC = $ 1525.43.  

The neutrosophic environment has lower optimal inventory costs than a crisp environment. 
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8.4 Sensitivity Analysis 

Sensitivity analysis of the formulated model is done out for various input parameters in Table 2. 

Sensitivity analysis is performed to measure the impact of each model limiting factors on the 

model’s outcome. It is done by adjusting the parameters' value from -30% to +30%. 

Table 2. Variations in parameter ‘y0’, ‘m’, ‘h’, ‘b’, ‘πo’, ‘πp’, ‘πb’, ‘πd’. 

 % change t1*(weeks) T*(weeks) ξ* ($) Q* (kg) TC* ($) 
% change 

in TC* 

y0 

-30 1.0292 1.3015 21.733 131.09 1548.5138 -0.4586 

-20 1.0292 1.3015 24.404 131.09 1551.1844 -0.2869 

-10 1.0292 1.3015 26.76 131.09 1553.5400 -0.1355 

0 1.0292 1.3015 28.867 131.09 1555.6473 0 

+10 1.0292 1.3015 30.773 131.09 1557.5535 +0.1225 

+20 1.0292 1.3015 32.513 131.09 1559.2937 +0.2344 

+30 1.0292 1.3015 34.114 131.09 1560.8945 +0.3373 

m 

-30 1.0018 1.28 30.095 129.32 1566.2577 +0.6821 

-20 1.0133 1.289 30.024 130.09 1562.2375 +0.4236 

-10 1.0221 1.296 29.544 130.64 1558.7540 +0.1997 

0 1.0292 1.3015 28.867 131.09 1555.6473 0 

+10 1.0349 1.306 28.101 131.45 1552.9498 -0.1734 

+20 1.0397 1.3098 27.304 131.75 1550.5823 -0.3256 

+30 1.0438 1.3129 26.508 132.00 1548.4834 -0.4605 

h 

-30 1.0579 1.3239 29.477 133.30 1546.7272 -0.5734 

-20 1.0482 1.3163 29.273 132.55 1549.6328 -0.3866 

-10 1.0386 1.3089 29.07 131.82 1552.6073 -0.1954 

0 1.0292 1.3015 28.867 131.09 1555.6473 0 

+10 1.0199 1.2942 28.665 130.36 1558.7528 +0.1996 

+20 1.0107 1.2871 28.463 129.66 1561.9210 +0.4033 

+30 1.0017 1.280 28.261 128.96 1565.1528 +0.6110 

b 

-30 1.1486 1.4042 31.385 141.28 1543.4880 -0.7816 

-20 1.1033 1.365 30.465 137.39 1546.2535 -0.6039 

-10 1.0639 1.3311 29.631 134.02 1550.4057 -0.3369 

0 1.0292 1.3015 28.867 131.09 1555.6473 0 

+10 0.9983 1.2753 28.161 128.49 1561.6983 +0.3890 

+20 0.9705 1.2518 27.504 126.16 1568.3684 +0.8177 

+30 0.9453 1.2306 26.89 124.07 1575.5177 +1.2773 

πo 

-30 0.8996 1.1226 26.203 113.25 1503.9951 -3.3203 

-20 0.9466 1.1868 27.211 119.65 1519.4851 -2.3246 

-10 0.9896 1.2462 28.09 125.57 1536.9220 -1.2037 

0 1.0292 1.3015 28.867 131.09 1555.6473 0 

+10 1.0661 1.3535 29.564 136.27 1575.2259 +1.2586 
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+20 1.1006 1.4025 30.195 141.16 1595.3640 +2.5531 

+30 1.1332 1.4491 30.771 145.81 1615.8696 +3.8712 

πp 

-30 1.0288 1.3012 26.081 131.20 1192.8696 -23.3200 

-20 1.029 1.3013 27.054 131.16 1313.8390 -15.5439 

-10 1.0291 1.3014 27.981 131.12 1434.7635 -7.7706 

0 1.0292 1.3015 28.867 131.09 1555.6473 0 

+10 1.0293 1.3016 29.715 131.06 1676.4936 +7.7682 

+20 1.0294 1.3017 30.529 131.03 1797.3055 +15.5343 

+30 1.0295 1.3017 31.312 130.99 1918.0858 +23.2982 

πb 

-30 0.9892 1.3579 27.218 136.83 1545.2022 -0.6714 

-20 1.0052 1.3349 27.886 134.49 1549.2555 -0.4109 

-10 1.0183 1.3165 28.424 132.61 1552.6855 -0.1904 

0 1.0292 1.3015 28.867 131.09 1555.6473 0 

+10 1.0384 1.2889 29.238 129.81 1558.2484 +0.1672 

+20 1.0462 1.2783 29.553 128.73 1560.5661 +0.3162 

+30 1.053 1.2692 29.825 127.80 1562.6564 +0.4506 

πd 

-30 1.0287 1.3011 25.32 131.23 1552.1105 -0.2274 

-20 1.0289 1.3012 26.573 131.17 1553.3602 -0.1470 

-10 1.0291 1.3014 27.753 131.13 1554.5364 -0.0714 

0 1.0292 1.3015 28.867 131.09 1555.6473 0 

+10 1.0293 1.3016 29.922 131.05 1556.6997 +0.0677 

+20 1.0294 1.3017 30.924 131.02 1557.6995 +0.1319 

+30 1.0295 1.3018 31.879 130.99 1558.6517 +0.1931 

 

Graphical representations of the sensitivity of positive inventory time, total cycle time, order 

quantity, preservation technology investment and total cost to various factors are provided in 

Figures 6 – 13. 
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Figure 6. Effect of ‘y0’ on optimal values                Figure 7. Effect of ‘m’ on optimal values 
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Figure 8. Effect of ‘h’ on optimal values                Figure 9. Effect of ‘b’ on optimal values 
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Figure 10. Effect of ‘π0’ on optimal values             Figure 11. Effect of ‘πp’ on optimal values 
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Figure 12. Effect of ‘πb’ on optimal values           Figure 13. Effect of ‘πd’ on optimal values 

8.5 Results and discussion: 

The following can be seen by carefully examining the table above: 

1. As the parameters’ values y0, h, b, πo, πp, πb, πd increase, the optimal TC*(t1, T, ξ) also increases. 

Conversely, when the corresponding parameter values y0, h, b, πo, πp, πb, πd decrease, TC*(t1, T, 

ξ) also decreases. A reduction in the parameter m leads to an increase in TC*(t1, T, ξ), whereas 

the optimal TC*(t1, T, ξ) decreases when the parameter m increases. 
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2. The parameters πo and πp have a high degree of sensitivity with regard to changes in TC*(t1, T, 

ξ). While the parameters y0, m, h, b, πb and πd are not as sensitive to changes in TC*(t1, T, ξ). 

3. As the parameters’ values y0, πo, πp, πb, and πd increase, the optimal ξ* also increases. 

Conversely, when the corresponding parameter values y0, πo, πp, πb, and πd decreases, ξ* also 

decreases. As the parameters’ values m, h, and b increase, the optimal ξ* decreases, whereas the 

optimal ξ* increases when the parameters m, h, and b increase. 

4. As the parameters’ values m, πo, πp, πd increase, positive inventory time interval (t1*) and cycle 

time (T*) also increase. Conversely, when the corresponding parameter values m, πo, πp, πd 

decrease, t1*, T* also decreases. As the parameters h and b increase, the optimal t1*, T* decreases. 

Conversely, the optimal t1*, T* increases when the parameters h and b decrease. As the 

parameter πb increase, the optimal t1* increases and T* decreases. t1*, T* remain constant 

regardless of any variation in the parameter y0. 

5. As the parameters’ values m and πo increase, optimal Q* also increases. Conversely, when the 

corresponding parameter values m, and πo decrease, so does Q*. As the parameters’ values h, b, 

πp, πb and πd increase, the optimal Q* decreases. Conversely, the optimal Q* increases when h, 

b, πp, πb and πd values decrease. Q* remain constant regardless of any variation in the 

parameter y0. 

The sensitivity analysis provides the following managerial insights: 

1. When the deterioration rate (y0) increases, the optimal ξ*, TC*(t1, T, ξ) increases. Therefore, the 

retailer aims to minimize deterioration-related losses by enhancing their investment in 

preservation technology. Unnecessary high investments in preservation technology should be 

avoided by the retailer when facing a lower deterioration rate, as observed in the study by 

Khanna et al. [14]. 

2. When the holding cost (h, b) increases, t1*, T*, ξ* and Q* decrease, whereas TC*(t1, T, ξ) increases. 

Therefore, when the holding cost is high, the retailer should maintain only a limited and 

essential amount of inventory. Additionally, it is advisable to decrease the expenditure allocated 

to item preservation, as highlighted in the study by Khanna et al. [14]. 

3. When the ordering cost (πo) increases, optimal ξ*, Q*, TC*(t1, T, ξ) increase. Hence retailer should 

increase the quantity to be ordered when πo is high, as indicated in the study by Mahapatra et al. 

[27]. 

4. When the backordered cost (πb) increases, ξ* and TC*(t1, T, ξ) increases, whereas Q* decreases. To 

minimize total costs, the retailer should increase the order quantity when πb is lower, as 

evidenced in the study by Singh and Sharma [9]. 

5. When the purchase cost (πp), deterioration cost (πd) increases, Q* decreases, whereas the optimal 

t1*, T*, ξ* and TC*(t1, T, ξ) increases. In practice, as the retailer trims these expenses, the overall 

cost decreases, as demonstrated in the study by Das et al. [15] along with a reduction in total 

profit. 

6. When the effectiveness parameter (m), increases, t1*, T*, and Q* increases, whereas ξ* and TC*(t1, 

T, ξ) decreases. Retailers should implement enhanced and high-quality preservation techniques, 

thereby minimizing total costs through reduced preservation technology investments. It is also 

recommended to consider placing larger orders for extended durations, which coincides with 

the findings of the research by Khanna et al. [14]. 

9. Conclusion 

A model has been developed to manage inventory with power demand patterns and 

deteriorating products, underscoring the importance of the preservation technology investment 

function in controlling deterioration rates. This paper makes a significant contribution to business 

knowledge and practice by helping to reduce losses related to deterioration. The representation of 

cost parameters as TNNs enables retailers to obtain accurate results, allowing them to make more 

appropriate and efficient decisions in inventory management. The retailer's total neutrosophic cost 
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has been de-neutrosophied using the removal area method. The convexity of the total cost function 

guarantees the minimization of overall costs. The total cost with preservation technology investment 

is TC* = $1555.6. In contrast, the total cost without considering preservation technology is TC* = 

$1584.9, exceeding the overhead cost. This observation underscores the justification for investing in 

preservation strategies to mitigate deterioration and reduce overall inventory costs. Sensitivity 

analysis results demonstrate the novel contribution of this study to inventory management, offering 

valuable insights for decision-makers and practitioners seeking efficient and cost-effective inventory 

control strategies. 

The following are some suggestions for further research: by considering non-instantaneous and 

time-dependent deteriorating items, partially backlogged shortages, including the demand that 

depends on selling price and advertisement and develop by considering different types of 

uncertainties such as intuitionistic fuzzy, Pythagorean fuzzy, etc. 
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