
University of New Mexico

A Python Framework for Neutrosophic Sets and Mappings

Giorgio Nordo1,∗, Saeid Jafari2, Arif Mehmood3 and Bhimraj Basumatary4

1MIFT Department – Mathematical and Computer Science, Physical Sciences and Earth Sciences

University of Messina, 98166 Sant’Agata, Messina, Italy; giorgio.nordo@unime.it
2Mathematical and Physical Science Foundation, 4200 Slagelse, Denmark; jafaripersia@gmail.com
3Department of Mathematics, Institute of Numerical Sciences, Gomal University, Dera Ismail Khan 29050,

KPK, Pakistan; mehdaniyal@gmail.com
4Department of Mathematical Sciences, Bodoland University, Kokrajhar, BTAD, India;

brbasumatary14@gmail.com
∗Correspondence: giorgio.nordo@unime.it

Abstract. In this paper we present an open source framework developed in Python and consisting of three

distinct classes designed to manipulate in a simple and intuitive way both symbolic representations of neu-

trosophic sets over universes of various types as well as mappings between them. The capabilities offered by

this framework extend and generalize previous attempts to provide software solutions to the manipulation of

neutrosophic sets such as those proposed by Salama et al. [21], Saranya et al. [23], El-Ghareeb [7], Topal et

al. [29] and Sleem [26]. The code is described in detail and many examples and use cases are also provided.

Keywords: neutrosophic set; neutrosophic mapping; Python; class; framework.

———–

1. Introduction

Since the notion of neutrosophic set was introduced in 1999 by Smarandache [27] as a gen-

eralization of both the notions of fuzzy set introduced by Zadeh [31] in 1965 and intuitionistic

fuzzy set proposed by Atanassov [4] in 1983, neutrosophic set theory had a rapid development

and has been profitably used in many fields of pure Mathematics [1,12,13,15,16] as well as in

several areas of applied sciences such as Graph Theory [5], Decision Making [14], Medicine [6],

Statistics [10,24,28], Image Analysis [9, 32] Machine Learning [8, 25], etc.

In numerous instances, especially when dealing with applications stemming from real-world

issues, manually manipulating neutrosophic sets that possess a finite yet consistent number of

elements, along with their associated mappings, can be quite laborious and challenging. Con-

sequently, there exists a significant demand for a system that can streamline the automation

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024

of key neutrosophic operations, including union, intersection, neutrosophic difference, and the

calculation of neutrosophic images or counterimages by mappings. Previous attempts to ad-

dress this need were undertaken by Salama et al., who initially employed tools like Microsoft

Excel [20] and later transitioned to using C# [21]. Another software application for process-

ing neutrosophic sets developed in C# was described by Saranya et al. [23]. More recently,

El-Ghareeb introduced a Python package designed to handle both single and interval-valued

neutrosophic numbers and sets [7]. Unfortunately, however, in the latter paper the two classes

concerning neutrosophic sets are described incompletely and summarily than those concerning

neutrosophic numbers. Version 0.0.5 of this software that we consulted does not appear to

provide adequate functionality even for the main neutrosophic operations and in any case the

related repository on GitHub of the source code mentioned in the article does not appear to

be available. Furthermore, other Python-based software solutions for handling neutrosophic

numbers and matrices have been proposed by Topal et al. [29] and Sleem [26]. However, the

authors are not aware of any other Python software specifically designed for the manipulation

of neutrosophic sets is currently known.

This underscores the ongoing requirement for a set of well-structured Python classes, ideally

available under an Open Source license, that enable automated and interactive manipulation

of symbolic representations of neutrosophic sets, along with their associated mappings. Addi-

tionally, there is a need for comprehensive documentation and user-friendly design to facilitate

straightforward integration for future implementations.

For this reason, we intended to design and develop a modern framework that extends and

generalizes the above software solutions overcoming some of their limitations and offering

greater flexibility in their use, including interactive, aimed at the manipulation of neutro-

sophic sets and functions. The structure of the entire framework has been carefully described

by means of of Unified Modeling Language (UML for short), a modeling and specification

description language very popular in Software Engineering. The underlying given structures

as well as the most significant methods of each of the classes of which the the framework have

been explained in detail in order to allow for further future refinements of both a theoretical

and applicative nature.

We are confident that the necessity mentioned has been effectively tackled through the

Python framework outlined in this paper. The complete source code for this framework has

been released under the Open Source GNU General Public License version 3.0 (or GPL-3.0)

and is freely accessible at the url github.com/giorgionordo/pythonNeutrosophicSets.

In particular, Section 2 describes the general structure of the framework, the dependency

relationships among the various classes that comprise it as well as the reasons that suggested

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 200

https://github.com/giorgionordo/pythonNeutrosophicSets

the use of the Puython language and the decision to release the entire code produced under

an Open Source license.

Section 3 introduces some useful notations for extending some data structures typical of

Python in order to create a flexible substandard for describing neutrosophic sets and functions

between them. In addition, some utility functions are briefly called that later will be invoked

by some classes in the framework.

Section 4 contains a description of the properties and methods of the class NSuniverse

used to represent the universe sets on which the neutrosophic sets will be defined.

Section 5 describes in great detail the properties and methods that make up the NSset

class, the main class of the framework, used for the representation of neutrosophic sets and, in

addition, numerous examples of practical use are also provided both in both traditional and

interactive environments.

Section 6 is devoted to the description of the class NSmapping by which functions between

two neutrosophic sets are represented. The properties and methods of this class are described

in detail and illustrated with several practical examples.

Finally, some final remarks are made in Section 7, highlighting the strengths of the frame-

work presented in this paper and inviting other researchers to continue, extend and improve

the development of the code described here.

2. The framework PYNS

The PYthon Neutrosophic Sets framework (PYNS for short) described in the present paper

consists of three classes designed to manage respectively universe sets (the NSuniverse class),

neutrosophic sets (the NSset class) and functions between them (the NSmapping class. As

is natural, the class NSset depends on (i.e. uses) the class NSuniverse class) while the

NSmapping class uses the other two as described in the following UML diagram of classes.

NSuniverse

NSsetNSmapping

where the dashed arrow means ”uses”.

These three classes are respectively contained in the Python files ns_universe.py,

ns_set.py and ns_mapping.py which are located in the package directory pyns. The

same directory contains also the file ns_util.py where are defined some utility functions

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 201

external to the classes but employed by them. The structure of the package is described by

the following diagram.

/pyns

ns universe.py................(contains the NSuniverse class)

ns set.py............................. (contains the NSset class)

ns mapping.py...................(contains the NSmapping class)

ns util.py...................(contains common utility functions)

The choice of programming language is a crucial aspect in the development of a scientific

framework, since it determines the performance, flexibility and ease of use of the entire system.

In the specific case of our framework, the choice to implement it using the Python language

is based on several factors:

• Clear and expressive syntax: Python is known for its simple and readable syntax,

which makes the code more intuitive to write and understand. This feature is especially

relevant for a scientific framework, as it facilitates the creation and manipulation of

complex data structures such as neutrosophic sets and mappings between them.

• Extensive standard library: Python offers an extensive standard library covering mul-

tiple scientific and mathematical domains. This allows developers to easily use existing

functions and tools to implement complex algorithms and optimize the performance of

the framework.

• Easy integration with other technologies: Python is known for its ability to integrate

with other programming languages and external libraries. This is particularly useful

in a scientific context, where it may be necessary to use specialized libraries or existing

computational tools.

• Quick learning: Python is often considered one of the most accessible languages even

for programming novices. Its relatively smooth learning curve allows students, re-

searchers and less experienced developers to tackle the framework with greater ease,

thus encouraging its dissemination and adoption in the scientific domain.

In summary, the choice of Python as the main language for the PYNS framework was crucial

in making the entire system more accessible, flexible, and powerful. It allowed developers to

focus more on scientific challenges and mathematics specifics, rather than the complexities of

the programming language, thus accelerating the development and adoption of this important

research tool.

Just as the Python language is released under an open source license approved by the

Open Source Initiative (OSI), the framework described in this paper is also made available as

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 202

open code. This offers numerous benefits and incentives for both developers and the scientific

community as a whole, including:

• Knowledge sharing: The release of the framework under an open source license pro-

motes the sharing of knowledge and scientific discoveries. By allowing anyone to access

the source code, developers and researchers can learn from others, build on others’

work, and contribute improvements and new ideas.

• Collaboration: The open source license encourages collaboration among experts and

researchers from from different academic institutions, organizations and countries. This

synergy can lead to faster developments, new discoveries, and innovative solutions to

complex problems.

• Transparency and verifiability: The availability of source code allows for greater trans-

parency in the implementation of the framework. The scientific community can verify

and validate the results obtained, increasing confidence towards the framework and

the results obtained through it.

• Adaptability and customization: Users can adapt the framework to their own specifics

and customize it to address unique problems. This flexibility results in a greater

number of possible applications and uses of the framework in various scientific contexts.

• Cost reduction: Releasing the framework as open source eliminates the costs associated

of purchasing licenses or copyrights. This allows academic institutions and organiza-

tions with limited resources to free access to advanced scientific analysis tools and

uncertain data.

• Community growth: The adoption of the open source license attracts a community

of developers, researchers and enthusiasts interested in the field of neutrosophic sets

that can contribute to the evolution of the framework by providing feedback, reporting

bugs, and participating in the development of new features.

• Continuity and longevity: The open source model can ensure greater longevity of the

framework, as it is not dependent on a single developer or institution. The community

can take care of the project over time, ensuring that it is always updated and supported,

even if there are changes in the original organization.

In particular, our framework PYNS is available under GNU General Public License version

3.0 (or GPL-3.0), a generic software license developed by the Free Software Foundation (FSF)

that provides users with a set of rights and freedoms to use, modify, and distribute the software

covered by the license. More specifically, GPL-3.0 allows:

• Freedom of Use: the software may be used for any purpose, whether personal or

commercial.

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 203

• Freedom to Study and Modify: you can analyze and study the source code of the

software to understand how it works and make changes to it according to your own

needs.

• Freedom of Distribution: you can distribute copies of modified or unmodified software

to anyone, while complying with the requirements of GPL-3.0.

• Sharing of Changes: if you distribute modified software, you have an obligation to

make available the source code of your changes as well.

• Compatibility with Derivative Works (copyleft): any derivative work based on software

covered by GPL-3.0 must also be released under GPL-3.0 or a compatible license.

In conclusion, from the evaluation of all these aspects, it follows that releasing the PYNS

framework under GPL-3.0 license represents a strategic choice that promotes innovation, col-

laboration and the dissemination of knowledge in the field of neutrosophic theory, thus pro-

moting the advancement of scientific research in this area.

3. Conventions and utility functions

In the following we will make extensive use of Python’s dict (dictionary) data structure

both for the internal representation of neutrosophic sets and for the definition of functions

between universe sets. To make it even easier and more streamlined to use such structures

both in interactive mode as well as in writing client code based on such classes, it was chosen

to also allow their representation as a string and in free format, i.e., leaving the user free to:

• indifferently use not only the usual symbol : (colon) but also alternatively the strings

-> (arrow) and |-> (maps-to) as separators between keys and values

• indifferently use not only the usual symbol , (comma) but also ; (semicolon) as sep-

arators of the value-key pairs

in any combination thereof, and we will refer to this type of representation by the name

extended dictionary. In other words, while a classical Python dictionary has a form like:

{key1 : value1, key2 : value2, . . . keyn : valuen} ,

an extended dictionary can be expressed as strings of the type:

"key1->value1,key2|->value2; . . . keyn->valuen" .

The already mentioned file NS_util.py contains some general utility functions that will

be used repeatedly in the classes we will describe later. More specifically, these functions are:

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 204

• NSreplace(text,sostituz) which performs a series of substitutions on the string text

by replacing each key in the sostituz dictionary with its corresponding value; in par-

ticular, if that value is the null string "" the effect will be to remove all occurrences

of the key,

• NSstringToTriplesList(text) which converts the string text containing a list of

triples into the corresponding data structure by using the function findall contained

in the module re (regular expression) and the function literal_eval contained in

the module ast (Abstract Syntax Trees) which allows interpreting data expressions

contained in a string,

• NSisExtDict(obj) that checks whether the object obj passed as parameter is a string

representing an extended dictionary and returns the Boolean value True if it is,

• NSstringToDict(text) which converts the string text containing an extended dic-

tionary in a real Python dictionary,

• NSsplitText(text,max length) which returns the string text splitted into multiple

lines of length not exceeding the value max length.

The complete code for these functions is given in the following listing.

1 from re import findall
2 from ast import literal_eval

4 def NSreplace(text, sostituz):
5 for k in sostituz:
6 text = text.replace(k, sostituz[k])
7 return text

9 def NSstringToTriplesList(text):
10 pattern = r’\[.*?\]|\(.*?\)’
11 str_list = findall(pattern, text)
12 tpl_list = [tuple(literal_eval(s)) for s in str_list]
13 return tpl_list

15 def NSisExtDict(obj):
16 result = False
17 if type(obj) == str:
18 result = (":" in obj) or ("->" in obj)

20 def NSstringToDict(text):
21 sostituz = {"’": "", ’"’: "", "(": "", ")": "", "[": "", "]": "",
22 "{": "", "}": "", " ": ",", ";": ",", ",,": ",",
23 "|->": ":", "->": ’:’}
24 text = NSreplace(text, sostituz)
25 listcouples = text.split(’,’)
26 diz = dict()
27 for couple in listcouples:
28 key, value = couple.split(’:’)
29 diz[key] = value
30 return diz

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 205

32 def NSsplitText(text, max_length):
33 words = text.split()
34 lines = []
35 current_line = ""
36 for word in words:
37 if len(current_line) + len(word) <= max_length:
38 current_line += word + " "
39 else:
40 lines.append(current_line.strip())
41 current_line = word + " "
42 lines.append(current_line.strip())
43 result = "\n".join(lines)
44 return result

4. The NSuniverse class

The universe set is the fundamental notion on which the definition of a neutrosophic set is

founded on. We have chosen to represent it by means of a list of strings.

The corresponding class which implements such a notion is shortly described in the following

UML class diagram.

NSuniverse

universe : list of strings

init (*args) : constructor with generic argument
get() : returns the list of elements of the universe set
cardinality() : returns the number of elements of the current universe set
isSubset(unv) : checks if the current universe set is contained in another one
eq () : checks if two universe sets are equal overloading the == operator
ne () : checks if two universe sets are different overloading the ! = operator
iter () : initializes iterator on elements of the current universe set
next () : returns the iterated element of the current universe set
str () : returns the current universe set in string format
format (spec) : returns the formatted string of the universe respect to a specifer
repr () : returns a detailed representation of the universe set

In order to ensure maximum usability and versatility in the use of this class, the con-

structor method accepts string, lists, tuples, lists of elements of any length or another object

NSuniverse and proceeds to transform them into strings and store them in a list. The basic

steps of this method, expressed in pseudo-code, are described in the following algorithm.

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 206

Constructor method of the class NSuniverse
Function init (args):

Get the length of args
if length = 0 then

Raise an Exception

else if length = 1 then
if args is a list, a tuple or an object of the class then

Converts args appropriately and stores it in universe

else if args is a string then
Removes parentheses, commas and semicolons from args, splits and gets a
list of strings to store in universe

else if args is a set then
Raise an Exception

else
Converts args to string and creates a list with only this element to be stored
in universe

else
Converts args to a list of strings to be stored in universe

if universe has repeated elements then
Raise an Exception

Stores universe in the property universe

The corresponding Python code of the constructor method of the NSuniverse class is

given below.

1 from .ns_util import NSreplace

3 class NSuniverse:

5 def init (self, *args):
6 universe = list()
7 length = len(args)
8 if length == 0:
9 raise IndexError("the universe set must contain at least an

element")
10 elif length == 1:
11 elem = args[0]
12 if type(elem) in [list, tuple]:
13 universe = [str(e) for e in elem]
14 elif type(elem) == NSuniverse:
15 universe = elem.get()
16 elif type(elem) == str:
17 sostituz = { "{":"", "}":"", "[":"", "]":"", "(":"", ")":"",
18 ",":" ", ";":" " }
19 universe = NSreplace(elem, sostituz).split()
20 elif type(elem) == set:
21 raise ValueError("type set is not suitable because the

elements of the universe set must be assigned in a specific order")
22 else:
23 universe = [str(elem)]
24 else:

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 207

25 for i in range(length):
26 universe.append(str(args[i]))
27 univset = set(universe)
28 if len(universe) != len(univset):
29 raise ValueError("the universe set cannot contain repeated

elements")
30 self. universe = universe

The constructor method also intercepts potential error situations in the definition of universe

sets such as attempting to define an empty set by calling it without any parameters or that of

inserting repeated elements (which conflicts with the usual set definition) and in each of these

cases raises an appropriate exception.

Let us observe that the flexibliity of the constructor method allows us to define a universe

set using various formats such as lists, tuples, strings, or simple enumerations of elements

without worrying about maintaining a rigid or uniform notation, which is particularly useful

to facilitate usability in interactive use. For example, the universe set U = {1, 2, 3, 4, 5} can be

defined as an object of the class NSuniverse in any of the following ways mutually equivalent:

• U=NSuniverse([1,2,3,4,5]) as a list,

• U=NSuniverse((1,2,3,4,5)) as a tuple,

• U=NSuniverse("1,2,3,4,5") as a string of elements comma separated,

• U=NSuniverse("1;2;3;4;5") as a string of elements separated by semicolon,

• U=NSuniverse("1 2 3 4 5") as a string of elements separated by spaces,

• U=NSuniverse("1,2 3 4;5") as a string of elements separated in various ways,

• U=NSuniverse("{1,2,3,4,5}") as a string representing a set,

• U=NSuniverse("[1,2,3,4,5]") as a string representing a list,

• U=NSuniverse("(1,2,3,4,5)") as a string representing a tuple,

• U=NSuniverse("(1;2;3;4;5)") using semicolon as separator,

• U=NSuniverse(1,2,3,4,5) as a listing of numerical values only,

• U=NSuniverse("1",2,"3",4,"5") in a mixed form,

as well as in different combinations of them.

However, it is not allowed to define a universe set by means of the set type of the Python

language (i.e., expressions such as NSuniverse({1,2,3,4,5}) are not accepted) since it

is an unordered data collection and for a precise design choice the elements must be listed in a

specific order, feature this will prove valuable in simplifying and making consistent definitions

of both neutrosophic sets and mappings between them.

The class NSuniverse is equipped with very few basic methods, that is get() which

returns the list of strings corresponding to the instance of the universe set exactly as it is

stored internally in the class and cardinality() which returns the number of elements

present in the object instantiated by the class.

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 208

1 def get(self):
2 return self. universe

4 def cardinality(self):
5 return len(self. universe)

The method isSubset() checks whether the current universe set is contained in a second

universe set passed as parameter and returns the Boolean value True in the positive case.

1 def isSubset(self, unv):
2 setself = set(self.get())
3 setunv = set(unv.get())
4 result = setself.issubset(setunv)
5 return result

To facilitate the comparison of two objects of type NSuniverse, the equality == and

diversity != operators have been overloaded using their corresponding special methods.

1 def eq (self, unv):
2 equal = (self.get() == unv.get())
3 return equal

5 def ne (self, unv):
6 different = not (self == unv)
7 return different

In order to be able to easily print on the screen objects of type NSuniverse in text

format and to provide a complete representation of them, the special methods str () and

repr () were defined as follows by using the overloading.

1 def str (self):
2 list_string_elements = [str(e) for e in self. universe]
3 s = "{ " + ", ".join(list_string_elements) + " }"
4 return s

6 def repr (self):
7 return f"Universe set: {str(self)}"

As an example, we show how the methods and operators described above can be used not

only in a client code, but also in the interactive mode by means of the Python console:

>>> from pyns.ns_universe import NSuniverse
>>> U = NSuniverse("1", 2, 3, "4")
>>> print(U)
{ 1, 2, 3, 4 }
>>> print(U != NSuniverse([1,3,5]))
True
>>> V = NSuniverse(" (a b c , d ; e)")
>>> print(V.cardinality())
5
>>> print(V.get())
[’a’, ’b’, ’c’, ’d’, ’e’]
>>> print(V)
{ a, b, c, d, e }

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 209

Since in the following we will also need to make formatted prints of objects of the universe

set type according to a certain format specifier, it is also necessary to redefine by overloading

the special method format ().

1 def format (self, spec):
2 unvstr = str(self)
3 result = f"{unvstr:{spec}}"
4 return result

Finally, to simplify the code of other classes devoted to neutrosophic sets and mappings,

it is useful to establish an iterator over the objects of the NSuniverse class. This iterator

should sequentially provide all and only the elements within a given universe set. This is

achieved by introducing a new property, self. i, to serve as the internal index for the current

element and redefining by overloading the special methods iter () and next () which

are respectively intended to initialize the index of the iterator and yield the element associated

with the current index.

1 def iter (self):
2 self. i = 0
3 return self

5 def next (self):
6 if self. i < len(self. universe):
7 elem = self. universe[self. i]
8 self. i +=1
9 return elem

10 raise StopIteration

Thanks to the introduction of the iterator on the class NSuniverse it will be, for example,

possible to handle loops directly on objects of type universe set, exactly as happens with other

standard Python types such as lists and tuples. This approach will contribute to make the

syntax of our code leaner and more understandable, as highlighted in the following example.

1 from pyns.ns_universe import NSuniverse

3 U = NSuniverse(" (a b c , d ; e)")
4 for i, u in enumerate(U):
5 print(f"- the {i}-th element is {u}")

which produces output of the type:

- the 0-th element is a
- the 1-th element is b
- the 2-th element is c
- the 3-th element is d
- the 4-th element is e

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 210

5. The NSset class

The representation of neutrosophic sets on a given universe set is done by means of the

NSset class which, obviously, uses the NSuniverse class.

The original definition of neutrosophic set, given in 1999 by Smarandache [27], refers to

the interval]0−, 1+[of the nonstandard real numbers and although it is consistent from a

philosophical point of view, unfortunately, it is not suitable to be used for approaching real-

world problems. For such a reason, in 2010, the same author, jointly with Wang, Zhang and

Sunderraman [30], also introduced the notion of single valued neutrosophic set which, referring

instead to the unit interval [0, 1] of the usual set of real numbers R, can be usefully used in

scientific and engineering applications. In the following we will refer exclusively to single valued

neutrosophic sets.

Definition 5.1. [30] Let U be an universe set and A ⊆ U, a single valued neutrosophic set

over U (SVN-set for short), denoted by Ã = ⟨U, µA, σA, ωA⟩, is a set of the form:

Ã = {(u, µA (u) , σA (u) , ωA (u)) : u ∈ U}

where µA : U→ I, σA : U→ I and ωA : U→ I are themembership function, the indeterminacy

function and the non-membership function of A, respectively and I = [0, 1] be the unit interval

of the real numbers. For every u ∈ U, µA (u), σA (u) and ωA (u) are said the degree of

membership, the degree of indeterminacy and the degree of non-membership of u, respectively.

Definition 5.2. [27, 30] Let Ã = ⟨U, µA, σA, ωA⟩ and B̃ = ⟨U, µB, σB, ωB⟩ be two SVN-sets

over the universe set U, we say that Ã is a neutrosophic subset (or simply a subset) of B̃

and we write Ã ⋐ B̃ if, for every u ∈ U, it results µA (u) ≤ µB (u), σA (u) ≤ σB (u) and

ωA (u) ≥ ωB (u). We also say that Ã is contained in B̃ or that B̃ contains Ã and we write

B̃ ⋑ Ã to denote that B̃ is a neutrosophic superset of Ã.

Definition 5.3. [27, 30] Let Ã = ⟨U, µA, σA, ωA⟩ and B̃ = ⟨U, µB, σB, ωB⟩ be two SVN-sets

over the universe set U. We say that Ã is a neutrosophically equal (or simply equal) to B̃ and

we write Ã = B̃ if Ã ⋐ B̃ and B̃ ⋐ Ã.

Notation 1. Let U be a set, I = [0, 1] the unit interval of the real numbers, for every r ∈ I,

with r we denote the constant mapping r : U→ I defined by r(u) = r, for every u ∈ U.

Definition 5.4. [30] The SVN-set ⟨U, 0, 0, 1⟩ is said to be the neutrosophic empty set over

U and it is denoted by ∅̃, or more precisely by ∅̃U in case it is necessary to specify the

corresponding universe set.

Definition 5.5. [30] The SVN-set ⟨U, 1, 1, 0⟩ is said to be the neutrosophic absolute set over

U and it is denoted by Ũ.

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 211

In our class, the data structure used to represent a SVN-set is a dictionary (also called

associative array) which uses the elements of the universe set as keys and associates them with

a list of three floating-point numbers corresponding to the degrees of membership, indetermi-

nacy and non-membership respectively. This dictionary, referred as the neutrosophicset

property, is stored in conjunction with the universe set, referred as the universe property,

to which it is inseparably linked. Indeed, it is no coincidence that the class NSuniverse

does not provide any method for allowing modifications (such as insertions or removals) of the

elements of an object of type universe set since such operations could disrupt the consistency

of the SVN-sets defined on it. The NSset class is described by the following UML diagram.

NSset

universe : object of the class NSuniverse
neutrosophicset : dictionary of lists

init (*args) : constructor with generic arguments
setDegree(u,i,r) : assigns r to the i-th degree of element u

setMembership(u, mu) : assigns the membership degree to u
setIndeterminacy(u, sigma) : assigns the indeterminacy degree to u
setNonMembership(u, omega) : assigns the non-membership degree to u
setElement(u, triple) : assigns simultaneously the three degrees to u
getUniverse() : returns the universe of the SVN-set
get() : returns the dictionary containing the degrees of each element
getElement(u) : returns the triple the degrees of the element u
getDegree(u,i) : returns the i-th degree of element u

getMembership(u) : returns the membership degree of u
getIndeterminacy(u) : returns the indeterminacy degree of u
getNonMembership(u) : returns the non-membership degree of u
setEmpty() : makes equal to the neutrosophic empty set
setAbsolute() : makes equal to the absolute SVN-set
cardinality() : returns the number of elements of the SVN-set
isNSsubset(nset) : checks if is a neutrosophic subset of another one
isNSsuperset(nset) : checks if is a neutrosophic superset of another one
NSunion(nset) : returns the neutrosophic union with another one
NSintersection(nset) : returns the neutrosophic intersection with another one
isNSdisjoint(nset) : checks if is neutrosophically disjoint with another one
NScomplement() : returns the neutrosophic complement
NSdifference(nset) : returns the neutrosophic difference with another one
eq () : checks if two SVN-sets are equal overloading the == operator
ne () : checks if two SVN-sets are different overloading the ! = operator
add (nset) : neutrosophic union overloading the + operator
and (nset) : neutrosophic intersection overloading the & operator
invert () : neutrosophic complement overloading the ∼ operator
sub (nset) : neutrosophic difference overloading the − operator
le (nset) : neutrosophic subset overloading the <= operator
ge (nset) : neutrosophic superset overloading the >= operator
str () : returns the SVN-set in string format
format (spec) : returns the formatted string of the SVN-set respect to a specifer
repr () : returns a detailed representation of the SVN-set

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 212

The constructor method of this class accepts one or two parameters and allows us to define

a SVN-set in several different ways:

• in the form NSset(universe set) assigning to it as its only parameter the universe

set (expressed as a list, tuple, or string) over which it is defined and thus creating an

empty SVN-set ∅̃,
• in the form NSset(universe set, values) passing two parameters, the first of which is

a universe set and the second an enumeration (expressed as a list, tuple, or string)

of triples of real values representing the degree of membership, indeterminacy and

non-membership of all the elements of the universe set, or

• in the form NSset(neutrosophic set) by copying another object of the type NSset.

The basic steps of this method, expressed in pseudo-code, are described in the following

algorithm.

Constructor method of the class NSset
Function init (args):

Create a dictionary neutrosophicset
Get the length of args
if length = 1 then

if args is a list, a tuple, a string or an object of the class NSuniverse then
Create universe from args and set neutrosophicset empty

else if args is an object of the class NSset then
Get universe and neutrosophicset from args

else
Raise an Exception

else if length = 2 then
Use the same constructor with the first parameter of args to obtain an object of
type NSset from which to derive universe and set the list values equal to the
second parameter of args

if values is a list or a tuple then
if length of values is different from the length of universe then

Raise an Exception

Assigns to each element of universe the values of the corresponding triple of
values

else if args is a string then
Converts args to a list of triples and uses the same constructor with universe
and such a list to obtain an object of type NSset from which to take
neutrosophicset

else
Raise an Exception

else
Raise an Exception

Stores universe and neutrosophicset in the properties universe and
neutrosophicset respectively

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 213

Note how every possible error condition – such as, for example, attempting to pass a variable

of type other than NSuniverse or a list of values not consisting of triples of real numbers in-

cluded in the [0, 1] interval or, again, using it with fewer than one or more than two parameters

– is intercepted in the code and reported to the client by raising an appropriate exception.

The Python code corresponding to the constructor method of the NS_set class is given

below.

1 from .ns_universe import NSuniverse
2 from .ns_util import NSreplace, NSstringtoTriplesList, NSsplitText

4 class NSset:

6 degreename = ["membership", "indeterminacy", "non-membership"]
7 reprmaxlength = 64

9 def init (self, *args):
10 neutrosophicset = dict()
11 length = len(args)
12 if length == 1:
13 element = args[0]
14 if type(element) in [list, tuple, str, NSuniverse]:
15 universe = NSuniverse(element)
16 for e in universe.get():
17 neutrosophicset[e] = [0,0,1]
18 elif type(element) == NSset:
19 universe = element.getUniverse()
20 for e in universe:
21 neutrosophicset[e] = element.getElement(e)
22 else:
23 raise ValueError("value not compatible with the type universe

set")
24 elif length == 2:
25 nset = NSset(args[0])
26 universe = nset.getUniverse()
27 values = args[1]
28 if type(values) in [list ,tuple]:
29 if len(values) != len(universe):
30 raise IndexError("the number of value triples does not

correspond with the number of elements")
31 for i in range(len(universe)):
32 elem = universe[i]
33 t = values[i]
34 if type(t) not in [tuple,list] or len(t) !=3:
35 raise IndexError("the second parameter of the

constructor method must contain only triple")
36 t = [float(t[j]) for j in range(3)]
37 for j in range(3):
38 if not 0 <= t[j] <= 1:
39 raise ValueError(f"incompatible {self.degreename[j

]} degree value")
40 neutrosophicset[elem] = t
41 elif type(values) == str:
42 tpl_list = NSstringtoTriplesList(values)
43 nset = NSset(universe, tpl_list)

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 214

44 neutrosophicset = nset.get()
45 else:
46 raise ValueError("the second parameter of the constructor

method must contain a list of triples of real numbers")
47 else:
48 raise IndexError("the number of parameters do not match those of

the constructor method")
49 self. universe = NSuniverse(universe)
50 self. neutrosophicset = neutrosophicset

Let us observe that to enable the parsing of strings containing triples with the values of

membership degrees, indeterminacy and non-membership, variously expressed, were used the

function NSstringToTriplesList contained in the utility file NS_util.py.

Similar to what we have seen previously for objects of type universe set, the constructor

method of the class NSset also allows for a multiplicity of expressions thanks to which we

can define neutrosophic sets with a direct and informal notation by means of lists, tuples or

strings of elements separated indifferently by commas or semicolons.

For example, the SVN-set ⟨U, µA, σA, ωA⟩ over the universe set U = {a, b, c} defined by:〈
a

(0.5, 0.3, 0.2)
,

b

(0.6, 0.2, 0.3)
,

c

(0.4, 0.2, 0.7)

〉
can be defined as an object of the class NSset in any of the following ways mutually equivalent:

• A=NSset("a,b,c",[(0.5,0.3,0.2),(0.6,0.2,0.3),(0.4,0.2,0.7)]) as

a list of tuples,

• A=NSset("a,b,c",[[0.5,0.3,0.2],[0.6,0.2,0.3],[0.4,0.2,0.7]]) as

a list of lists,

• A=NSset("a,b,c",[[0.5,0.3,0.2],(0.6,0.2,0.3),[0.4,0.2,0.7]]) as

a mixed list of lists and tuples,

• A=NSset("a,b,c",([0.5,0.3,0.2],[0.6,0.2,0.3],[0.4,0.2,0.7])) as

a tuple of lists,

• A=NSset("a,b,c",((0.5,0.3,0.2),(0.6,0.2,0.3),(0.4,0.2,0.7))) as

a tuple of tuples,

• A=NSset("a,b,c",((0.5,0.3,0.2),[0.6,0.2,0.3],(0.4,0.2,0.7))) as

a mixed tuple of tuples and lists,

• A=NSset("a,b,c","[0.5,0.3,0.2],(0.6,0.2,0.3);[0.4,0.2,0.7]") as

a string containing lists and tuples

where the universe set can also be expressed in any equivalent form as U=NSuniverse("{

a,b,c}"), U=NSuniverse("[a,b;c]") or U=NSuniverse("(a;b,c)") so that it can

be used later in the definition of the SVN-set in the form:

• A=NSset(U,"[0.5,0.3,0.2],(0.6,0.2,0.3);[0.4,0.2,0.7]")

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 215

A SVN-set ⟨U, µA, σA, ωA⟩ already defined over a universe set U can be subsequently modi-

fied by assigning to each of its generic elements u ∈ U its degrees of membership mu = µA (u),

indeterminacy sigma = σA (u) and non-membership omega = ωA (u)) separately through the

methods:

• setMembership(self,u,mu)

• setIndeterminacy(self,u,sigma), and

• setNonMembership(self,u,omega)

or by assigning in one shot the entire triple = (µA (u) , σA (u) , ωA (u)) of values using the

method:

• setElement(self,u,triple)

all of which are based on the private method setDegree(self,u,i,v) that assigns the

value v to the i-th degree (for i = 0, 1, 2, which correspond in the order to membership,

indeterminacy and non-membership degree) of a given element u of the current SVN-set.

Obviously, in the latter method we take into account the fact that the element u must belong

to the corresponding universe set and that the membership degrees must be real values included

in the unit interval I and if not, appropriate exceptions will be raised.

1 def setDegree(self, u, i, r):
2 u = str(u)
3 if u not in self.getUniverse():
4 raise IndexError(’non-existent element’)
5 r = float(r)
6 if not (0 <= r <= 1):
7 raise ValueError(f"incompatible {self.degreename[i]} degree value"

)
8 self. neutrosophicset[u][i] = r

10 def setMembership(self, u, mu):
11 self. setDegree(u, 0, mu)

13 def setIndeterminacy(self, u, sigma):
14 self. setDegree(u, 1, sigma)

16 def setNonMembership(self, u, omega):
17 self. setDegree(u, 2, omega)

19 def setElement(self, u, triple):
20 if type(triple) == str:
21 sostituz = { "(":"", ")":"", ",":" ", ";":" " }
22 triple = NSreplace(triple, sostituz).split()
23 else:
24 triple = list(triple)
25 if len(triple) != 3:
26 raise ValueError(’error in the number of parameters passed’)
27 triple = [float(e) for e in triple]
28 for i in range(3):
29 self. setDegree(u, i, triple[i])

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 216

Three basic methods called getUniverse(), get() and getElement(u) respectively

return to us the universe set of a given SVN-set as a string list of its elements, the neutrosophic

set itself as a dictionary having for keys the elements of the universe and for values the triples

of the degrees of membership, indeterminacy and non-membership as well as the triple of the

degrees of a given element u ∈ U.

1 def getUniverse(self):
2 return self. universe.get()

4 def get(self):
5 return self. neutrosophicset

7 def getElement(self, u):
8 u = str(u)
9 if u not in self.getUniverse():

10 raise IndexError(’non-existent element’)
11 return self. neutrosophicset[u]

Given a SVN-set ⟨U, µA, σA, ωA⟩ over a universe set U, The values of the degrees of mem-

bership µA (u), indeterminacy σA (u) and non-membership ωA (u) of a generic element u ∈ U
can be obtained by the methods:

• getMembership(u),

• getIndeterminacy(u), and

• getNonMembership(u)

which are all based on the private method getDegree(self,u,i) that returns the value

of the i-th degree (for i = 0, 1, 2, which correspond in the order to membership, indeterminacy

and non-membership degree) of a given element u of the current SVN-set. Let us note that

in the latter method, we consider the prerequisite that the element u must belong to the

corresponding universe set and if this condition is not satisfied a suitable exception will be

raised.

1 def getDegree(self, u, i):
2 u = str(u)
3 if u not in self.getUniverse():
4 raise IndexError(’non-existent element’)
5 return self. neutrosophicset[u][i]

7 def getMembership(self, u):
8 return self. getDegree(u, 0)

10 def getIndeterminacy(self, u):
11 return self. getDegree(u, 1)

13 def getNonMembership(self, u):
14 return self. getDegree(u, 2)

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 217

In case we need the empty neutrosophic set ∅̃ or the neutrosophic absolute set Ũ over an

universe set U we can refer to the methods setEmpty() and setAbsolute(), respectively.

1 def setEmpty(self):
2 for e in self. universe.get():
3 self. neutrosophicset[e] = [0, 0, 1]

5 def setAbsolute(self):
6 for e in self. universe.get():
7 self. neutrosophicset[e] = [1, 1, 0]

The on-screen printing in text format of objects of type NSset as well as their complete

representation is achieved by overloading the special methods str and repr as follows.

1 def str (self, tabularFormat=False):
2 if tabularFormat == True:
3 (dashes, elemwidth, valwidth) = ("-"*64, 10, 14)
4 s = "\n | membership | indeterminacy | non-

membership |\n" + dashes + "\n"
5 for e in self.getUniverse():
6 (mu, sigma, omega) = self.getElement(e)
7 s += f" {str(e):{elemwidth}} | {mu:{valwidth}} | {sigma:{

valwidth}} | {omega:{valwidth}} |\n"
8 s += dashes + "\n"
9 else:

10 elems = []
11 for e in self.getUniverse():
12 (mu, sigma, omega) = self.getElement(e)
13 elems.append(f"{e}/({mu},{sigma},{omega})")
14 s = "< " + ", ".join(elems) + " >"
15 s = NSsplitText(s, self.reprmaxlength)
16 return s

18 def repr (self):
19 return f"Neutrosophic set: {str(self)}"

In particular, the special method str allow us to print on the screen a SVN-set in

both the simplified representation (which is the default option) and in the clearer and more

extensive tabular representation.

Furthermore, in order to be able to choose to print a SVN-set in the simplified representation

or in the tabular one even in interactive use or writing client code, it was chosen to redefine

the special method format so that it recognizes the new custom format specifier t that

corresponds to printing in tabular format objects of type NSset.

1 def format (self, spec):
2 if spec == "t":
3 result = self. str (tabularFormat=True)
4 else:
5 result = self. str (tabularFormat=False)
6 return result

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 218

Thanks to the redefinition by overloading of the special methods eq and ne we can

use the operators of equality == and diversity != directly to objects of type NSset.

1 def eq (self, nset):
2 if self.getUniverse() != nset.getUniverse():
3 raise ValueError("the two neutrosophic sets cannot be defined on

different universe sets")
4 equal = self.isNSsubset(nset) and nset.isNSsubset(self)
5 return equal

7 def ne (self, nset):
8 if self.getUniverse() != nset.getUniverse():
9 raise ValueError("the two neutrosophic sets cannot be defined on

different universe sets")
10 different = not (self == nset)
11 return different

In order to better illustrate how the above methods are used, let us consider the following

example of code executed interactively in the Python console.

>>> from pyns.ns_universe import NSuniverse
>>> from pyns.ns_set import NSset
>>> U = NSuniverse("a,b,c")
>>> A = NSset(U)
>>> A.setElement(’a’, (0.8,0.2,0.1))
>>> A.setElement(’c’, (0.3,0.2,0.4))
>>> A.getMembership(’a’)
0.8
>>> A.getNonMembership(’c’)
0.4
>>> print(A.getElement(c))
[0.3, 0.2, 0.4]
>>> A.setIndeterminacy(’b’,0.9)
>>> print(A)
< a/(0.8,0.2,0.1), b/(0.0,0.9,1.0), c/(0.3,0.2,0.4) >
>>> print(f"{A:t}")

| membership | indeterminacy | non-membership |
--
a | 0.8 | 0.2 | 0.1 |
b | 0 | 0.9 | 1 |
c | 0.3 | 0.2 | 0.4 |

--
>>> A.setAbsolute()
>>> print(A)
< a/(1,1,0), b/(1,1,0), c/(1,1,0) >

From the example above, one might assume that creating universe sets and SVN-sets requires

manual definition. However, the open structure of our framework actually enables us to define

objects of type NSuniverse and NSset dynamically within the code, commonly referred to

as defining them ’on the fly’. This dynamic approach is especially advantageous when dealing

with SVN-sets of considerable cardinality, as illustrated in the following Python code.

1 from pyns.ns_universe import NSuniverse
2 from pyns.ns_set import NSset
3 from random import random

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 219

5 lst = [(i,j) for i in range(1,6) for j in range(1,4)]

7 U = NSuniverse(lst)
8 A = NSset(U)

10 for u in U.get():
11 triple = [round(random(), 2) for k in range(3)]
12 A.setElement(u, triple)

14 print(f"The following SVNS-set has cardinality {A.cardinality()}: {A:t}")

which produces output of the type:

The following SVNS-set has cardinality 15:
| membership | indeterminacy | non-membership |

--
(1, 1) | 0.55 | 0.1 | 0.5 |
(1, 2) | 0.39 | 0.92 | 0.09 |
(1, 3) | 0.33 | 0.29 | 0.25 |
(2, 1) | 0.16 | 0.9 | 0.43 |
(2, 2) | 0.71 | 0.52 | 0.33 |
(2, 3) | 0.65 | 0.38 | 0.04 |
(3, 1) | 0.95 | 0.14 | 0.94 |
(3, 2) | 0.74 | 0.02 | 0.01 |
(3, 3) | 0.77 | 0.63 | 0.19 |
(4, 1) | 0.18 | 0.75 | 0.15 |
(4, 2) | 0.49 | 0.92 | 0.75 |
(4, 3) | 0.34 | 0.17 | 0.88 |
(5, 1) | 0.88 | 0.6 | 0.83 |
(5, 2) | 0.5 | 0.56 | 0.8 |
(5, 3) | 0.38 | 0.47 | 0.2 |

--

To verify that a SVN-set expressed as an object of type NSset is neutrosophically contained

in another SVN-set, we may resort to the method isNSsubset(nset) which, similarly to the

built-in issubset() method available for objects of type set, returns the Boolean value

True if the current SVN-set is neutrosophically contained in the second SVN-set nset passed

as a parameter or the value False otherwise.

1 def isNSsubset(self, nset):
2 if self.getUniverse() != nset.getUniverse():
3 raise ValueError("the two neutrosophic sets cannot be defined on

different universe sets")
4 if self.getUniverse() != nset.getUniverse():
5 return False
6 else:
7 result = True
8 for e in self.getUniverse():
9 (muA, sigmaA, omegaA) = self.getElement(e)

10 (muB, sigmaB, omegaB) = nset.getElement(e)
11 if (muA > muB) or (sigmaA > sigmaB) or (omegaA < omegaB):
12 result = False
13 break
14 return result

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 220

Based on isNSsubset, it is then immediate to define the method isNSsuperset(nset)

(analogous to the built-in issuperset method) which returns True if the current SVN-set

neutrosophically contains the second SVN-set nset passed as a parameter or False otherwise.

1 def isNSsuperset(self, nset):
2 if self.getUniverse() != nset.getUniverse():
3 raise ValueError("the two neutrosophic sets cannot be defined on

different universe sets")
4 return nset.isNSsubset(self)

In both cases, it is preliminarily verified that the two SVN-sets are defined on the same

universe set and if not an appropriate exception is raised.

The following code executed in interactive mode in the Python console illustrates the use

of the methods just described.

>>> from pyns.ns_universe import NSuniverse
>>> from pyns.ns_set import NSset
>>> A = NSset("a, b, c", "(0.3,0,0.5), (0.7,0.2,0.2), (0.1,0.5,0.4)")
>>> print(A)
< a/(0.3,0.0,0.5), b/(0.7,0.2,0.2), c/(0.1,0.5,0.4) >
>>> B = NSset("a, b, c", "(0.4,0.2,0.3), (0.8,0.3,0.1), (0.2,0.5,0.2)")
>>> print(B)
< a/(0.4,0.2,0.3), b/(0.8,0.3,0.1), c/(0.2,0.5,0.2) >
>>> print(A.isNSsubset(B))
True
>>> print(A.isNSsuperset(B))
False

Definition 5.6. [19] The neutrosophic union of two SVN-sets Ã = ⟨U, µA, σA, ωA⟩
and B̃ = ⟨U, µB, σB, ωB⟩, denoted by Ã ⋓ B̃, is the neutrosophic set defined by

⟨U, µA ∨ µB, σA ∨ σB, ωA ∧ ωB⟩.

Definition 5.7. [19] The neutrosophic intersection of two SVN-sets Ã = ⟨U, µA, σA, ωA⟩
and B̃ = ⟨U, µB, σB, ωB⟩, denoted by Ã ⋒ B̃, is the neutrosophic set defined by

⟨U, µA ∧ µB, σA ∧ σB, ωA ∨ ωB⟩.

Definition 5.8. [30] Let Ã = ⟨U, µA, σA, ωA⟩ and B̃ = ⟨U, µB, σB, ωB⟩ be two SVN-sets over

U. We say that Ã and B̃ are neutrosophically disjoint if Ã ⋒ B̃ = ∅̃. On the contrary, if

Ã ⋒ B̃ ̸= ∅̃ we say that Ã neutrosophically meets B̃ (or that Ã and B̃ neutrosophically meet

each other).

Within our NSset class, the neutrosophic union and neutrosophic intersection were im-

plemented through the methods NSunion() and NSintersection(), respectively. These

methods mirror the built-in Python methods union e intersection for objects of type

set and they are both based on the private method NSoperation(self,nset,fm,fs,fo)

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 221

corresponding to a generic operation and that returns the neutrosophic set obtained from the

current SVN-set and the second SVN-set nset by applying the three functions fm, fs, fo passed

as parameters to their membership, indeterminacy and non-membership degrees respectively.

1 def NSoperation(self, nset, fm, fs, fo):
2 if self.getUniverse() != nset.getUniverse():
3 raise ValueError("the two neutrosophic sets cannot be defined on

different universe sets")
4 if callable(fm) == False or callable(fs) == False or callable(fo) ==

False:
5 raise ValueError("the last three parameters must be functions")
6 C = NSset(self. universe)
7 for e in self.getUniverse():
8 (muA, sigmaA, omegaA) = self.getElement(e)
9 (muB, sigmaB, omegaB) = nset.getElement(e)

10 triple = [fm(muA, muB), fs(sigmaA, sigmaB), fo(omegaA, omegaB)]
11 C.setElement(e, triple)
12 return C

14 def NSunion(self, nset):
15 C = self. NSoperation(nset, max, max, min)
16 return C

18 def NSintersection(self, nset):
19 C = self. NSoperation(nset, min, min, max)
20 return C

We illustrate the above methods with an example of code executed interactively in the

Python console.

>>> from pyns.ns_universe import NSuniverse
>>> from pyns.ns_set import NSset
>>> U = NSuniverse("a, b, c")
>>> A = NSset(U,"(0.3,0,0.5), (0.7,0.2,0.2), (0.1,0.5,0.4)")
>>> print(A)
< a/(0.3,0.0,0.5), b/(0.7,0.2,0.2), c/(0.1,0.5,0.4) >
>>> B = NSset(U,"(0.4,0.2,0.3), (0.8,0.3,0.1), (0.2,0.5,0.2)")
>>> print(B)
a/(0.4,0.2,0.3), b/(0.8,0.3,0.1), c/(0.2,0.5,0.2) >
>>> C = A.NSunion(B)
>>> print(C)
< a/(0.4,0.2,0.3), b/(0.8,0.3,0.1), c/(0.2,0.5,0.2) >
>>> D = A.NSintersection(B)
>>> print(D)
< a/(0.3,0.0,0.5), b/(0.7,0.2,0.2), c/(0.1,0.5,0.4) >

The method isNSdisjoint(nset) returns the Boolean value True if the current SVN-

set is neutrosophically disjoint from the second SVN-set passed as parameter or the value

False otherwise.

1 def isNSdisjoint(self, nset):
2 nsempty = NSset(self. universe)
3 disjoint = self.NSintersection(nset) == nsempty
4 return disjoint

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 222

An example of the use of this method is provided in the following code executed in the

console Python interactive.

>>> from pyns.ns_universe import NSuniverse
>>> from pyns.ns_set import NSset
>>> A = NSset("a, b, c", "(0.3,0,0.5), (0.7,0,1), (0,0.5,1)")
>>> B = NSset("a, b, c", "(0,0.8,1), (0,0.1,0.2), (0.1,0.0,0.4)")
>>> print(A.isNSdisjoint(B))
True

Definition 5.9. [27, 30] Let Ã = ⟨U, µA, σA, ωA⟩ be a SVN-set over the universe set U, the

neutrosophic complement (or, simply, the complement) of Ã, denoted by Ã∁, is the SVN-set

Ã∁= ⟨U, ωA, 1− σA, µA⟩ that is Ã∁= {(u, ωA (u) , 1− σA (u) , µA (u)) : u ∈ U}.

Although the neutrosophic difference of two SVN-sets Ã and B̃ can be defined (in analogy

with ordinary sets) as the neutrosophic intersection of the first set with the neutrosophic

complement of the second set, that is, as Ã ⋒ B̃∁, for our purposes it is preferable to provide

an explicit and operational definition.

Definition 5.10. The neutrosophic difference of two SVN-sets Ã = ⟨U, µA, σA, ωA⟩
and B̃ = ⟨U, µB, σB, ωB⟩, denoted by Ã \\B̃, is the neutrosophic set defined by

⟨U, µA ∧ ωB, σA ∧ (1− σB), ωA ∨ µB⟩.

The latter operations have also been implemented in the class NSset through the methods

NScomplement() and NSdifference().

1 def NScomplement(self):
2 C = NSset(self. universe)
3 for e in self.getUniverse():
4 (muA, sigmaA, omegaA) = self.getElement(e)
5 triple = [omegaA, 1 - sigmaA, muA]
6 C.setElement(e, triple)
7 return C

9 def NSdifference(self, nset):
10 if self.getUniverse() != nset.getUniverse():
11 raise ValueError("the two neutrosophic sets cannot be defined on

different universe sets")
12 C = NSset(self. universe)
13 for e in self.getUniverse():
14 (muA, sigmaA, omegaA) = self.getElement(e)
15 (muB, sigmaB, omegaB) = nset.getElement(e)
16 triple = [min(muA,omegaB), min(sigmaA,1-sigmaB), max(omegaA,muB)]
17 C.setElement(e, triple)
18 return C

The following code example executed interactively in the Python console illustrates the use

of the two methods that have been just described.

>>> from pyns.ns_universe import NSuniverse
>>> from pyns.ns_set import NSset
>>> U = NSuniverse(’a’,’b’,’c’)

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 223

>>> A = NSset(U, "(0.5,0.3,0.2), (0.6,0.2,0.3), (0.4,0.2,0.7)")
>>> print(A)
< a/(0.5,0.3,0.2), b/(0.6,0.2,0.3), c/(0.4,0.2,0.7) >
>>> B = NSset(U, "(0.2,0.2,0.2), (0.4,0.1,0.6), (0.8,0.3,0.1)")
>>> print(B)
< a/(0.2,0.2,0.2), b/(0.4,0.1,0.6), c/(0.8,0.3,0.1) >
>>> C = A.NScomplement()
>>> print(C)
< a/(0.2,0.7,0.5), b/(0.3,0.8,0.6), c/(0.7,0.8,0.4) >
>>> D = A.NSdifference(B)
>>> print(D)
< a/(0.2,0.3,0.2), b/(0.6,0.2,0.4), c/(0.1,0.2,0.8) >

To facilitate even more streamlined and intuitive use of neutrosophic set operations, espe-

cially in the interactive use of the framework, overloading was then used to redefine the special

methods add , and , invert , sub , le , and ge , respectively referred to the

operators +, &, ∼, −, <=, and>= for use with objects of type NSset by making them coincide

with the methods NSunion(), NSintersection(), NScomplement(), NSdifference

(), isNSsubset() and isNSsuperset(), thus obtaining the correspondence summarized

in the following table.

class method symbol operator
neutrosophic union NSunion() ⋓ +
neutrosophic intersection NSintersection() ⋒ &

neutrosophic complement NScomplement() ∁ ∼
neutrosophic difference NSdifference() \\ −
neutrosophic subset isNSsubset() ⋐ <=
neutrosophic superset isNSsuperset() ⋑ >=

The following example illustrates how the methods and operators defined above can be

easily and profitably used in the interactive mode by means of the Python console.

>>> from pyns.ns_universe import NSuniverse
>>> from pyns.ns_set import NSset
>>> U = NSuniverse(’a’,’b’,’c’)
>>> A = NSset(U, "(0.5,0.3,0.2), (0.6,0.2,0.3), (0.4,0.2,0.7)")
>>> print(A)
< a/(0.5,0.3,0.2), b/(0.6,0.2,0.3), c/(0.4,0.2,0.7) >
>>> B = NSset(U, "(0.2,0.2,0.2), (0.4,0.1,0.6), (0.8,0.3,0.1)")
>>> print(B)
< a/(0.2,0.2,0.2), b/(0.4,0.1,0.6), c/(0.8,0.3,0.1) >
>>> print(A + B)
< a/(0.5,0.3,0.2), b/(0.6,0.2,0.3), c/(0.8,0.3,0.1) >
>>> print(A & B)
< a/(0.2,0.2,0.2), b/(0.4,0.1,0.6), c/(0.4,0.2,0.7) >
>>> print(˜A)
< a/(0.2,0.7,0.5), b/(0.3,0.8,0.6), c/(0.7,0.8,0.4) >
>>> F = A - B
>>> print(F)
< a/(0.2,0.3,0.2), b/(0.6,0.2,0.4), c/(0.1,0.2,0.8) >
>>> print(F <= A)
True
>>> print(F == A & ˜B)
True

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 224

6. The NSmapping class

The mappings between two universe sets and the main operations involving them are repre-

sented and handled through the NSmapping class that uses both the NSuniverse class and

the NSset class.

For every mapping f : U→ V, the class stores the domain U and the codomain V as objects

of type NSuniverse in the properties domain and codomain respectively, as well as the

correspondence between each generic element u ∈ U and its value f(u) ∈ V by a dictionary

corresponding to the property map = {u: f(u) for u in U}.

The class is briefly described in the following UML diagram.

NSmapping

domain : object of the class NSuniverse
codomain : object of the class NSuniverse
map : dictionary with keys in domain and values in codomain

init (*args) : constructor with generic arguments
getDomain() : returns the universe set corresponding to the domain
getCodomain() : returns the universe set corresponding to the codomain
getMap() : returns the dictionary containing the element-value pairs
setValue(u,v) : assigns the value v to the element u
getValue(u) : returns the value of the element u by the mapping
getFibre(v) : returns the fibre of v as a list of elements of the domain
NSimage(nset) : returns the neutrosophic image of a SVN-set by the mapping
NScounterimage(nset) : returns the neutrosophic inverse image of a SVN-set
eq () : checks if two mappings are equal overloading the == operator
ne () : checks if two mappings are different overloading the ! = operator
str () : returns the mapping in string format
repr () : returns a detailed representation of the mapping

The constructor method accepts one or three arguments and allows us to define a mapping

in several different ways:

• in the form NSmapping(domain,codomain,values) where domain and codomain are

both universe sets expressed in any of the ways already seen above, namely as tuples,

lists, strings, or instances of the class NSuniverse, while values is an enumeration

of codomain values neatly corresponding to domain values which can be expressed

indifferently as a tuple, list, string, dictionary or extended dictionary,

• in the form NSmapping(values) where values is either a regular Python dictionary

or an extended dictionary; in this case the universe sets related to the domain and

codomain will be created automatically by collecting respectively the keys and values

of the dictionary passed as parameter, without repeating their values and checking

that no error condition occurs,

• in the form NSmapping(mapping) by copying another object of the type NSmapping.

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 225

The basic steps of this method are described in the following algorithm.

Constructor method of the class NSmapping

Function init (args):
Create a dictionary map
Get the length of args
if length = 0 then

Raise an Exception

else if length = 1 then
if args is an object of type NSmapping then

Copies the properties in the current object

else if args is a dictionary then
Copy args to map and gets domain and codomain as keys and values of args,
respectively

else if args is an extended dictionary then
Gets the dictionary from the string and passes it to the same constructor to
obtain an object of type NSmapping from which to derive domain,
codomain and the dictionary of correspondence map

else if length = 3 then
Attempts to take the first three parameters of args to assign them respectively
to the universe sets domain, codomain and the object values
if values is a dictionary or an extended dictionary then

Passes values to the same constructor to obtain an object of type
NSmapping and, if its domain and codomain are compatible with those
passed as parameters, derive the dictionary of correspondences map

else if values is a list, a tuple or a string then
if values is a list or a tuple then

Converts values to a list of strings;

else
Split values and turns it into a string list;

if the length of values ̸= cardinality of the domain then
Raise an Exception

if the set of values is not contained in the codomain then
Raise an Exception

Neatly stores the elements of values as values of the map dictionary whose
keys are the elements of the domain

else
Raise an Exception

else
Raise an Exception

Stores domain, domain and map in the properties domain, codomain and map
respectively

Let us note how every possible error condition – such as recalling it with only one parameter

that is not an object NSmapping, with a number of parameters other than one and three or,

again, passing parameters that are not the two universe sets and a list of values however

expressed – is intercepted in the code and reported to the client by raising an appropriate

exception.

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 226

The Python code corresponding to the constructor method of this class is given below.

1 from .ns_universe import NSuniverse
2 from .ns_set import NSset
3 from .ns_util import NSreplace, NSstringToDict, NSisExtDict

5 class NSmapping:

7 def init (self, *args):
8 map = dict()
9 length = len(args)

10 if length == 0:
11 raise ValueError("constructor method must have at least one

parameter")
12 elif length == 1:
13 if type(args[0]) == NSmapping:
14 domain = args[0].getDomain()
15 codomain = args[0].getDomain()
16 map = args[0].getMap()
17 elif type(args[0]) == dict:
18 map = args[0]
19 domain = NSuniverse(list(map.keys()))
20 codomain = NSuniverse(list(set(map.values())))
21 elif type(args[0]) == str:
22 try:
23 map_dict = NSstringToDict(args[0])
24 except:
25 raise ValueError("invalid parameter")
26 nsmap = NSmapping(map_dict)
27 domain = nsmap.getDomain()
28 codomain = nsmap.getCodomain()
29 map = nsmap.getMap()
30 else:
31 raise ValueError("the type of the parameter do not match those

of the constructor method")
32 elif length == 3:
33 try:
34 domain = NSuniverse(args[0])
35 except:
36 raise ValueError("the first parameter of the constructor

method must be a universe set")
37 try:
38 codomain = NSuniverse(args[1])
39 except:
40 raise ValueError("the second parameter of the constructor

method must be a universe set")
41 values = args[2]
42 card_domain = domain.cardinality()
43 if type(values)==dict or NSisExtDict(values)==True:
44 nsmap = NSmapping(values)
45 if set(nsmap.getDomain()) != set(domain):
46 raise ValueError("the indicated domain is incompatible

with the definition of the mapping")
47 if nsmap.getCodomain().isSubset(codomain) == False:
48 raise ValueError("the indicated codomain is incompatible

with the definition of the mapping")
49 map = nsmap.getMap()

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 227

50 elif type(values) in [list, tuple, str]:
51 if type(values) in [list, tuple]:
52 values = [str(e) for e in values]
53 else:
54 sostituz = {"[": "", "]": "", "(": "", ")": "",
55 ",": " ", ";": " "}
56 values = NSreplace(values, sostituz).split()
57 if len(values) != card_domain:
58 raise IndexError("the number of values passed does not

coincide with the cardinality of the declared domain")
59 values_set = set(values)
60 codomain_set = set(codomain.get())
61 if not values_set.issubset(codomain_set):
62 raise ValueError("one or more values do not belong to the

declared codomain")
63 for i in range(card_domain):
64 map[domain.get()[i]] = values[i]
65 else:
66 raise ValueError("the third parameter of the constructor

method must express a obj match")
67 else:
68 raise IndexError("the number of parameters do not match those of

the constructor method")
69 self. domain = domain
70 self. codomain = codomain
71 self. map = map

Note that, as in the case of the definition of the universe set constructor method, it is

excluded that the third parameter, corresponding to the enumeration of values can be an

object of type set since by its nature as an unordered collection of data would provide an

ambiguous formulation of the mapping.

As in the case of the objects NSuniverse and NSset, for the mappings represented by

objects of the type NSmapping much attention was paid to the usability and flexibility of the

syntax which allows us to define mappings between universe sets in a variety of possible forms.

For example, the mappings f : U→ V between the universe sets U = {a, b, c} and V = {1, 2}
and such that f(a) = f(c) = 2 and f(b) = 1 can be defined as an object of the class NSmapping

in any of the following ways mutually equivalent:

• NSmapping([’a’,’b’,’c’], [1,2], [2,1,2]) by using lists,

• NSmapping((’a’,’b’,’c’), (1,2), (2,1,2)) by using tuples,

• NSmapping("a,b,c", "1;2", "2,1,2") by using strings,

• NSmapping("(a,b,c)", "{1,2}", "(2;1;2)") by using strings containing

lists or tuples,

• NSmapping([’a’,’b’,’c’], (1,2), "2,1,2")) in a mixed form of lists, tu-

ples and strings,

• NSmapping({’a’:2, ’b’:1, ’c’:2}) by using dictionaries,

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 228

• NSmapping("’a’:2, ’b’:1, ’c’:2") by using a string that contains a matching

of values in a dictionary format,

• NSmapping("a->2, b->1, c->2") by using an extended dictionary with the ar-

row notation,

• NSmapping("a|->2, b|->1, c|->2") by using an extended dictionary with the

the ”maps to” notation,

• NSmapping("’a’->2, b|->1; (c->2)") by using an extended dictionary in a

mixed form,

• NSmapping("a,b,c", "1,2", "a->2, b->1, c->2") by declaring domain

and codomain and using an extended dictionary,

• NSmapping("a,b,c", "1,2", "c->2, a|->2; b|->1") by declaring domain

and codomain and using an extended dictionary in a mixed form and without a precise

order,

as well as in different combinations of them or, again, by preliminarily defining one or

both of the universe sets in any of the forms already seen above, by setting, for example,

U=NSuniverse("{a,b,c}") and V=NSuniverse((1,2)"), so that they can be used

later in the definition of the mapping in the form like:

• NSmapping(U, V, [2,1,2]), or

• NSmapping(U, V, "a->2, b->1, c->2").

Three basic methods called getDomain(), getCodomain() and getMap() respectively

return us the domain and codomain of the mapping as objects of type NSuniverse as well

as the dictionary containing all the element-value pairs that define the mapping.

1 def getDomain(self):
2 return self. domain.get()

4 def getCodomain(self):
5 return self. codomain.get()

7 def getMap(self):
8 return self. map

The method setValue(u,v) assigns a single value v by the current mapping to a specific

element u of the domain.

1 def setValue(self, u, v):
2 u = str(u)
3 v = str(v)
4 if u not in self. domain.get():
5 raise IndexError(’non-existent element in the domain of the

mapping’)
6 if v not in self. codomain.get():

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 229

7 raise IndexError(’non-existent element in the codomain of the
mapping’)

8 self. map[u] = v

Instead, the method getValue(u) returns the value corresponding to an element u of the

domain by the current mapping.

1 def getValue(self, u):
2 u = str(u)
3 if u not in self. domain.get():
4 raise IndexError(’non-existent element in the domain of the

mapping’)
5 return self. map[u]

In order to be able to easily print on the screen objects of type NSmapping in text format

and to provide a complete representation of them, the special methods str and repr

were overloaded as follows.

1 def str (self):
2 unvwidth = 28
3 totwidth = unvwidth*2 + 8
4 s = f"\n {str(self. domain):>{unvwidth}} -> {str(self. codomain)

:<{unvwidth}}\n"+"-"*totwidth+"\n"
5 for e in self. domain:
6 s += f" {e:>{unvwidth}} |-> {self. map[e]:<{unvwidth}}\n"
7 return s

9 def repr (self):
10 return f"Neutrosophic mapping: {str(self)}"

Thanks to the redefinition by overloading of the special methods eq and ne we can

apply the operators of equality == and diversity != directly to objects of type NSmapping.

1 def eq (self, g):
2 if self.getDomain() != g.getDomain() or self.getCodomain() != g.

getCodomain():
3 return False
4 else:
5 equal = True
6 for e in self.getDomain():
7 if self.getValue(e) != g.getValue(e):
8 equal = False
9 break

10 return equal

12 def ne (self, g):
13 different = not (self == g)
14 return different

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 230

The following code executed in interactive mode in the Python console illustrates the use

of the methods just described.

>>> from pyns.ns_universe import NSuniverse
>>> from pyns.ns_set import NSset
>>> from pyns.ns_mapping import NSmapping
>>> U = NSuniverse("a,b,c")
>>> V = NSuniverse(1,2)
>>> f = NSmapping(U,V, (2,1,2))
>>> print(f)

{ a, b, c } -> { 1, 2 }
--

a |-> 2
b |-> 1
c |-> 2

>>> print(f.getValue(’a’))
2
>>> g = NSmapping("a->2 b->1 c->2")
>>> print(f==g)
True
>>> print(g)

{ a, b, c } -> { 1, 2 }
--

a |-> 2
b |-> 1
c |-> 2

>>> print(h.getDomain())
{ a, b, c }
>>> print(h.getCodomain())
{ 1, 2 }
>>> print(f.getMap())
{’a’: ’2’, ’b’: ’1’, ’c’: ’2’}
>>> h = NSmapping("a,b,c", "1,2", "a->2 b->1 c->2")
>>> print(f==h)
True

The method getFibre(v) returns the fibre of an element v of the codomain by the current

mapping f : U → V , that is, the set of all elements of the domain whose value is v, i.e.

f−1 ({v}) = {u ∈ U : f(u) = v}. The corresponding code is given below.

1 def getFibre(v):
2 v = str(v)
3 if v not in self. codomain.get():
4 raise IndexError(’non-existent element in the codomain of the

mapping’)
5 fibre = list()
6 for e in self. map:
7 if self. map[e] == v:
8 fibre.append(e)
9 return fibre

Definition 6.1. [11, 22] Let f : U → V be a mapping between two universe sets U and V,

and Ã = ⟨U, µA, σA, ωA⟩ be a SVN-set over U. The neutrosophic image of Ã by f , denoted by

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 231

f̃
(
Ã
)
, is the SVN-set over V defined by:

f̃
(
Ã
)
=

〈
V, µf(A), σf(A), ωf(A)

〉
where the mappings µf(A) : V → I, σf(A) : V → I and ωf(A) : V → I are defined respectively

by:

µf(A)(v) =


sup

u∈f−1({v})
µA (u) if f−1 ({v}) ̸= ∅

1 otherwise

,

σf(A)(v) =


sup

u∈f−1({v})
σA (u) if f−1 ({v}) ̸= ∅

1 otherwise

,

ωf(A)(v) =


inf

u∈f−1({v})
ωA (u) if f−1 ({v}) ̸= ∅

0 otherwise

for every v ∈ V.

The method NSimage(self,nset) returns the image of a SVN-set nset over the domain

by the current mapping. The corresponding code is given below.

1 def NSimage(self, nset):
2 result = NSset(self. codomain)
3 for v in self.getCodomain():
4 fibre = self.getFibre(v)
5 if fibre == []:
6 triple = [1,1,0]
7 else:
8 mu_values = list()
9 sigma_values = list()

10 omega_values = list()
11 for u in fibre:
12 mu_values.append(nset.getMembership(u))
13 sigma_values.append(nset.getIndeterminacy(u))
14 omega_values.append(nset.getNonMembership(u))
15 triple = [max(mu_values),max(sigma_values),min(omega_values)]
16 result.setElement(v, triple)
17 return result

Definition 6.2. [11, 22] Let f : U → V be a mapping between two universe sets U and V,

and B̃ = ⟨V, µB, σB, ωB⟩ be a SVN-set over V. The neutrosophic inverse image of B̃ by f ,

denoted by f̃−1
(
B̃
)
, is the SVN-set over U defined by:

f̃−1
(
B̃
)
=

〈
U, µf−1(B), σf−1(B), ωf−1(B)

〉
Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 232

where the mappings µf−1(B) : U → I, σf−1(B) : U → I and ωf−1(B) : U → I are defined

respectively by:

µf−1(B)) = µB ◦ f, σf−1(B) = σB ◦ f, and ωf−1(B) = ωB ◦ f .

The method NScounterimage(self,nset) returns the counter image of a SVN-set nset

over the codomain by the current mapping. The corresponding code is provided below.

1 def NScounterimage(self, nset):
2 result = NSset(self. domain)
3 for u in self.getDomain():
4 value = self.getValue(u)
5 triple = nset.getElement(value)
6 result.setElement(u, triple)
7 return result

The following code executed in interactive mode in the Python console summarizes and

explicates the use of the methods just described along with those already seen in the other

two classes.

>>> U = NSuniverse("a,b,c,d,e")
>>> V = NSuniverse(1,2,3,4)
>>> f = NSmapping(U, V, (1,3,1,2,1))
>>> print(f)

{ a, b, c, d, e } -> { 1, 2, 3, 4 }
--

a |-> 1
b |-> 3
c |-> 1
d |-> 2
e |-> 1

>>> A = NSset(U, "(0.7,0.3,0.1), (0.4,0.6,0.9), (0,0,1), (0.1,0.4,0.5), (0.2,0.2
,0.3)")

>>> print(f"{A:t}")
| membership | indeterminacy | non-membership |

--
a | 0.7 | 0.3 | 0.1 |
b | 0.4 | 0.6 | 0.9 |
c | 0.0 | 0.0 | 1.0 |
d | 0.1 | 0.4 | 0.5 |
e | 0.2 | 0.2 | 0.3 |

--
>>> B = f.NSimage(A)
>>> print(B)
< 1/(0.7,0.3,0.1), 2/(0.1,0.4,0.5), 3/(0.4,0.6,0.9),
4/(1.0,1.0,0.0) >
>>> C = f.NScounterimage(B)
< a/(0.7,0.3,0.1), b/(0.4,0.6,0.9), c/(0.7,0.3,0.1),
d/(0.1,0.4,0.5), e/(0.7,0.3,0.1) >
>>> print(A.isNSsubset(C))
True

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 233

7. Conclusions

In this paper we have presented PYNS, an open source framework developed in Python and

consisting of three distinct classes designed to manipulate in a simple and intuitive way sym-

bolic representations of neutrosophic sets over universes of various types as well as mappings

between them.

The codebase of this framework, currently comprising approximately 1200 lines of code,

empowers us with the capability to seamlessly define, represent, and manipulate universe

sets, neutrosophic sets, and functions operating between neutrosophic sets. This is facilitated

through a comprehensive set of operations, including neutrosophic union, neutrosophic inter-

section, neutrosophic difference, as well as the computation of image and back-image of a

neutrosophic set by means of a function, among others. These operations operate at various

levels, impacting the values of the membership, indeterminacy and non-membership degree of

each individual element.

The capabilities offered by this framework extend and generalize previous attempts to pro-

vide software solutions for the manipulation of neutrosophic sets already undertaken in recent

years by several authors such as. Salama et al. [21], Saranya et al. [23], El-Ghareeb [7], Topal

et al. [29] and Sleem [26].

Furthermore, the modular structure of PYNS not only facilitates interactive usage for exper-

imentation and counterexample searches within the neutrosophic domain, making efficient use

of a simple and intuitive notation, but also enables easy integration into more complex Python

projects that can take advantage of robust and extensively tested methods for operations on

neutrosophic sets that this framework provides.

Both the code and the underlying data structures of the three classes NSuniverse, NSset

and NSmapping with particular regard to their properties and methods have been explained

in detail in the previous sections and also concrete examples of using the introduced objects

and methods have been given.

The attention given to the usability of these classes and the extensive documentation pro-

vided with a rich assortment of examples and use cases, gives us confidence that, in addition to

being used for the exploration of uncertain data and practical applications, it can be the sub-

ject of further study and expansion opening up new research perspectives in various scientific

and applied disciplines that use the tools of neutrosophic set theory. In particular, the authors

believe that interesting developments in the medical field may come from the application and

extension of this framework to neutrosophic hypersoft mappings that have proven to be useful

in the diagnosis of hepatitis [17] or its eventual adaptation to fuzzy hypersoft mappings [2]

which have proven to be useful in the diagnosis of HIV and tuberculosis [3, 18].

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 234

The complete Python framework PYNS including the source code of all the classes described

in this paper as well as a selection of example programs that use them are available at the url

github.com/giorgionordo/pythonNeutrosophicSets.

Acknowledgment

This research was supported by Gruppo Nazionale per le Strutture Algebriche, Geometriche

e le loro Applicazioni (G.N.S.A.G.A.) of Istituto Nazionale di Alta Matematica (INdAM)

”F. Severi”, Italy.

References

1. Abobala M., Hatip A. An Algebraic Approach to Neutrosophic Euclidean Geometry. Neutrosophic Sets and

Systems 43 (1), pp. 114-123, 2021.

2. Ahsan M., Saeed M., Rahman A.U. A Theoretical and Analytical Approach for Fundamental Framework

of Composite mappings on Fuzzy Hypersoft Classes. Neutrosophic Sets and Systems 45, pp. 268-285, 2021.

3. Ahsan M., Saeed M., Mehmood A., Saeed M.H., Asad J. The Study of HIV Diagnosis Using Complex Fuzzy

Hypersoft Mapping and Proposing Appropriate Treatment. IEEE Access, 9, pp. 104405-104417, 2021.

4. Atanassov K.T. Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20 (1), pp. 87-96, 1986.

5. Broumi S., Talea M., Bakali A., Smarandache F. Single valued neutrosophic graphs. Journal of New theory

10, pp. 86-101, 2016.

6. Broumi S., Dhar M., Bakhouyi A., Bakali A., Talea M. Medical Diagnosis Problems Based on Neutrosophic

Sets and Their Hybrid Structures: A Survey. Neutrosophic Sets and Systems 49 (1), pp. 1-18, 2022.

7. El-Ghareeb H.A. Novel Open Source Python Neutrosophic Package. Neutrosophic Sets and Systems 25, pp.

136-160, 2019.

8. Elhassouny A., Idbrahim S., Smarandache F. Machine learning in Neutrosophic Environment: A Survey.

Neutrosophic Sets and Systems 28 (1), pp. 58–68, 2019.

9. Guo Y., Cheng H.D. New neutrosophic approach to image segmentation. Pattern Recognition 42, pp.

587-595, 2009.

10. Kunwar D., Singh J., Smarandache F. Neutrosophic statistical techniques to find migration pattern in

Jaipur. Octogon Mathematical Magazine 26 (2), pp. 583-592, 2018.

11. Latreche A., Barkat O., Milles S., Ismail F. Single valued neutrosophic mappings defined by single valued

neutrosophic relations with applications. Neutrosophic Sets and Systems 32, pp. 203-220, 2020.

12. Mehmood A., Nadeem F., Nordo G., Zamir M., Park C.,Kalsoom H., Jabeen S., Khan M.Y. Generalized

neutrosophic separation axioms in neutrosophic soft topological spaces. Neutrosophic Sets and Systems 32

(1), pp. 38–51, 2020.

13. Mehmood A., Nadeem F., Park C., Nordo G., Kalsoom H., Rahim Khan M., Abbas N. Neutrosophic soft

alpha-open set in neutrosophic soft topological spaces. Journal of Algorithms and Computation 52, pp.

37–66, 2020.

14. Mondal K, Pramanik S. Neutrosophic Decision Making Model of School Choice. Neutrosophic Sets and

Systems 7 (1), pp. 62-68, 2015.

15. Nordo G., Mehmood A., Broumi S. Single Valued Neutrosophic Filters. International Journal of Neutro-

sophic Science 6, pp. 8-21, 2020.

16. Saber Y., Alsharari F., Smarandache F. On Single-Valued Neutrosophic Ideals in Şostak Sense. Symmetry

12 (2):193, 2020.

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 235

https://github.com/giorgionordo/pythonNeutrosophicSets

17. Saeed M., Ahsan M., Saeed M.H., Mehmood A., Abdeljawad T. An Application of Neutrosophic Hypersoft

Mapping to Diagnose Hepatitis and Propose Appropriate Treatment. IEEE Access, 9, pp. 70455-70471,

2021.

18. Saeed M., Ahsan M., Saeed M.H., Rahman A.U., Mazin A.M., Nedoma J., Martinek R. An algebraic

modeling for tuberculosis disease prognosis and proposed potential treatment methods using fuzzy hypersoft

mappings. Biomedical Signal Processing and Control, 80 (1), 104267, 2023.

19. Salama A.A., Alagamy H. Neutrosophic Filters. International Journal of Computer Science Engineering

and Information Technologt Research 3 (1), pp. 307-312, 2013.

20. Salama A., El-Ghareeb H.A.. Manie A.M., Smarandache F. Introduction to develop some software programs

for dealing with neutrosophic sets. Neutrosophic Sets and Systems 3, pp. 51-52, 2019.

21. Salama A., Abd el-Fattah M., El-Ghareeb H.A.. Manie A.M. Design and Implementation of Neutrosophic

Data Operations Using Object Oriented Programming. International Journal of Computer Application 4

(5), pp. 163-175, 2014.

22. Salama A.A., Smarandache F., Kromov V. Neutrosophic Closed Set and Neutrosophic Continuous Func-

tions. Neutrosophic Sets and Systems 4, pp. 4-8, 2014.

23. Saranya S., Vigneshwaran M., Jafari S. C# Application to Deal with Neutrosophic gα-Closed Sets In

Neutrosophic Topology. Application and Applied Mathematics 15 (1), pp. 226-239, 2020.

24. Schweizer P. Uncertainty: two probabilities for the three states of neutrosophy. International Journal of

Neutrosophic Science 2 (1), pp. 18-26, 2020.

25. Sharma M., Kandasamy I., Vasantha W.B. Comparison of neutrosophic approach to various deep learning

models for sentiment analysis. Knowledge-Based Systems 223, pp. 1-14, 2021.

26. Sleem A., Abdel-Baset M., El-henawy I. PyIVNS: A python based tool for Interval-valued neutrosophic

operations and normalization. SoftwareX 12, pp. 1-7, 2020.

27. Smarandache F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic. Re-

hoboth: American Research Press, 1999.

28. Smarandache F. Introduction to Neutrosophic Statistics. USA: Sitech & Education Publishing, 2014.

29. Topal S., Broumi S., Bakali A., Talea M., Smarandache F. A Python Tool for Implementations on Bipolar

Neutrosophic Matrices. Neutrosophic Sets and Systems 28, pp. 138-161, 2019.

30. Wang H., Smarandache F., Zhang Y.Q., Sunderraman R. Single Valued Neutrosophic Sets. Technical Sci-

ences and Applied Mathematics, pp. 10-14, 2012.

31. Zadeh L.A. Fuzzy Sets, Information and Control 8 (3), pp. 338-353, 1965.

32. Zhang M., Zhang L. Cheng H.D. A neutrosophic approach to image segmentation based on watershed

method. Signal Processing 90, pp. 1510-1517, 2010.

Nordo G., Jafari S., Mehmood A., Basumatary B., A Python Framework for Neutrosophic Sets and Mappings

Neutrosophic Sets and Systems, Vol. 65, 2024 236

Received: 12 Dec, 2023 Accepted: 16 Mar, 2024

	1. Introduction
	2. The framework [style=stilePythoncomando]!PYNS!
	3. Conventions and utility functions
	4. The [style=stilePythoncomando]!NSuniverse! class
	5. The [style=stilePythoncomando]!NSset! class
	6. The [style=stilePythoncomando]!NSmapping! class
	7. Conclusions
	Acknowledgment
	References

