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 1   Introduction 

Zadeh [33, 34] introduced the concept of fuzzy set. Jun et al. [7] defined interval-valued fuzzy 

set and discussed its properties. Jun et al. [8] presented the notion of cubic subgroups. Senapati et al. 

[26] generalized the idea of cubic set to subalgebras, ideals and closed ideals of B-algebra. Imai and 

Iseki [5, 6] introduced the two classes of algebra which were BCK algebra and BCI-algebra. Huang 

[4] investigated the BCI-algebra. Jun et al. [10, 11] applied the idea of cubic set to subalgebras, ideals 

and q-ideals in BCK/BCI-algebra. Neggers et al. [13] defined and studied the B-algebra. Cho et al. [3] 

studied the relations of B-algebra with different topics. Park et al. [15] studied quadratic B-algebra 

on field X with a BCI-algebra. Saeid [16] was given the idea of interval valued fuzzy subalgebra in 

B-algebra. Walendziak [32] proved the conditions of B-algebra. Senapati et al. [21, 22, 23, 24, 31] was 

introduced the fuzzy dot subalgebra of BG-algebra, fuzzy dot subalgebra, fuzzy dot ideals, 

interval-valued fuzzy closed ideals and fuzzy subalgebra with respect to t-norm in B-algebra. 

Senapati et. al. [17, 25] was introduced L-fuzzy G-subalgebra of G-algebra and bipolar fuzzy set 

which was related to B-algebra. Khalid et. al. [20] studied the intuitionistic fuzzy translation. Many 

researchers [12, 27, 28, 29, 30] have done a lot of work on BG-algebra which was a generalization of 

B-algebra. Smarandache [18, 19] introduced the concept of neutrosophic set. Jun et al. [9] introduced 

neutrosophic cubic set. Barbhuiya [2] studied the t-intuitionistic fuzzy BG-subalgebra. Takallo et al. 

[37] introduced the MBJ-neutrosophic set, BMBJ-neutrosophic subalgebra, BMBJ-neutrosophic ideal 

and BMBJ-neutrosophic ◦-subalgebra. G. Muhiuddin et al. [38] studied the neutrosophic quadruple 

BCK/BCI-number, neutrosophic quadruple BCK/BCI-algebra, neutrosophic quadruple subalgebra 
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and (positive implicative) neutrosophic quadruple ideal. Park [39] introduced the notion of 

neutrosophic ideal in subtraction algebra and discussed conditions for a neutrosophic set to be a 

neutrosophic ideal. Borzooei et al. [40] introduced the concept of MBJ-neutrosophic set, 

BMBJ-neutrosophic ideal and positive implicative BMBJ-neutrosophic ideal. Jun et al. [41] studied 

the commutative falling neutrosophic ideals in BCK-algebra. Song et al. [42] investigated the interval 

neutrosophic set and applied to ideals in BCK/BCI-algebra. Khalid et al. [43] interestingly 

investigated the neutrosophic soft cubic subalgebra through significant results. Muhiuddin et al. [44] 

was studied neutrosophic quadruple BCK/BCI-number, neutrosophic quadruple BCK/BCI-algebra, 

(regular) neutrosophic quadruple ideal and neutrosophic quadruple q-ideal. Muhiuddin et al. [45] 

investigated the (ϵ, ϵ)-neutrosophic subalgebra, (ϵ, ϵ)-neutrosophic ideal. Akinleye et al. [46] defined 

the neutrosophic quadruple algebraic structures, also studied neutrosophic quadruple rings and 

presented their elementary properties. Basset et al. [47] studied integrated neutrosophic ANP and 

VIKOR method for achieving sustainable supplier selection. Basset et al. [48] studied the type 2 

neutrosophic number, score and accuracy function, multi attribute decision making TOPSIS and 

T2NN-TOPSIS. 

 The purpose of this paper is to introduce the idea of t-neutrosophic cubic set [t-NCS] and to 

investigate this set through the concepts of subalgebra, ideal and closed ideal of BF-algebra. 

Homomorphic image and inverse homomorphic image of t-neutrosophic cubic subalgebra [t-NCSU] 

and t-neutrosophic cubic ideal [t-NCID] are also studied. 

  

2 Preliminaries                                                                 

 In this section, basic definitions are cited that are necessary for this paper. 

Definition 2.1 [32] A nonempty set X  with a constant 0 and a binary operation ∗  is called 

BF-algebra when it fulfills these axioms. 

1. t1 ∗ t1 = 0 

2. t1 ∗ 0 = 0 

3. 0 ∗ (t1 ∗ t2) = t2 ∗ t1 for all t1, t2 ∈ X. 

A BF-algebra is denoted by (X,∗ ,0). 

Definition 2.2 [1] A nonempty subset S of G-algebra X is called a subalgebra of X if t1 ∗ t2 ∈ S ∀ 

t1, t2 ∈ S. 

Definition 2.3 [14] Mapping f|X → Y of B-algebra is called homomorphism if f(t1 ∗ t2) = f(t1) ∗

f(t2) ∀ t1, t2 ∈ X. 

Definition 2.4 [23] A nonempty subset I of B-algebra X is called an ideal if for any t1, t2 ∈ X, (i) 0 

∈ I, (ii) t1 ∗ t2 ∈ I and t2 ∈ I ⇒ t1 ∈ I. 

An ideal I of B-algebra X is called closed if 0 ∗ t2 ∈ I, ∀ t2 ∈ I. 

Definition 2.5 [33] Let X be the set of elements which are denoted generally by t1. Then a fuzzy set 

C in X is defined as C = {< t1, μC(t1) >  |t1 ∈ X}, where μC(t1) is called the existenceship value of 

t1 in C and μC(t1) ∈ [0,1]. 
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 For a family Ci = {< t1, μCi
(t1) >  |t1 ∈ X} of fuzzy sets in X, where i ∈ k and k is index 

set, we define the join (∨) meet (∧) operations as follows:  

 ∨
i∈k

Ci = ( ∨
i∈k

μCi
)(t1) = sup{μCi

|i ∈ k} 

 and  

 ∧
i∈k

Ci = ( ∧
i∈k

μCi
)(t1) = inf{μCi

|i ∈ k} 

 respectively, ∀ t1 ∈ X.  

Definition 2.6 [2] Let two elements D1, D2 ∈ D[0,1]. If D1 = [(t1)1
−, (t1)1

+] and D2 = [(t1)2
−, (t1)2

+], 

then rmax(D1, D2) = [max ((t1)1
−, (t1)2

−), max ((t1)1
+, (t1)2

+)]  which is denoted by D1 ∨r D2  and 

rmin(D1, D2) = [min ((t1)1
−, (t1)2

−), min ((t1)1
+, (t1)2

+)]  which is denoted by D1 ∧r D2 . Thus, if Di =

[((t1)1)i
−, ((t1)2)+] ∈ D[0,1]  for  i = 1,2,3, …,  then we define rsupi(Di) =

[supi(((t1)1)i
−), supi(((t1)1)i

+)], i. e., ∨i
r Di = [∨i ((t1)1)i

−,∨i ( 

(t1)1)i
+]. In the same way we define rinfi(Di) = [infi(((t1)1)i

−), infi(((t1)1)i
+)], i. e., 

∧i
r Di = [∧i ((t1)1)i

−,∧i ((t1)1)i
+]. Now we call D1 ≥ D2 ⇐ (t1)1

− ≥ (t1)2
− and (t1)1

+ ≥ (t1)2
+. Similarly 

the relations D1 ≤ D2 and D1 = D2 are defined.  

Definition 2.7 [1,22] A fuzzy set C = {< t1, μC(t1) > |t1 ∈ X} is called a fuzzy subalgebra of X if 

μC(t1 ∗ t2) ≥ min{μC(t1), μC(t2)} ∀ t1, t2 ∈ X. A fuzzy set C = {< t1, μC(t1) > |t1 ∈ X} in X is called a 

fuzzy ideal of X if it satisfies (i) μC(0) ≥ μC(t1) and (ii) μC(t1) ≥ min{μC(t1 ∗ t2), μA(t2)} ∀ t1, t2 ∈ X.   

Definition 2.8 [33] An IVFS B over X is an object of the form B = {< t1, μB(t1) > |t1 ∈ X} 

Where μB(t1): X → D[0:1], Where D[0,1] is the collection of all subintervals of [0,1]. The interval 

μB(t1) shows the interval of the degree of membership of the element t1  to the set B, Where 

μB(t1) = {μLB(t1), μUB(t1)}, ∀ t1 ∈ X. 

Definition 2.9 [16] A interval valued fuzzy set C = {< t1, μC(t1) > |t1 ∈ X} is called a  interval 

valued fuzzy subalgebra of X if it satisfies μC(t1 ∗ t2) ≥ rmin{μC(t1), μC(t2)} ∀ t1, t2 ∈ X. 

Definition 2.10 [15] A pair �̃�k = (A, Λ) is called NCS where A = {〈t1; AT(t1), AI(t1) , AF(t1)〉 |t1 ∈ Y} 

is an  INS  in Y and Λ = {〈t1; λT(t1), λI(t1), λF(t1)〉| t1 ∈ Y } is a neutrosophic set in Y. 

Definition 2.11 [26] Let C = {〈t1, κ(t1), σ(t1)〉} be a cubic set, where κ(t1) is an interval-valued 

fuzzy set in X, σ(t1) is a fuzzy set in X. Then C is cubic subalgebra under binary operation ∗ if 

following axioms are satisfied: 

C1: κ(t1 ∗ t2) ≥ rmin{κ(t1), κ(t2)}, 

        C2: σ(t1 ∗ t2) ≤ max{σ(t1), σ(t2)} ∀ t1, t2 ∈ X. 

Definition 2.12 [9] Suppose X be a nonempty set. A neutrosophic cubic set in X is pair 𝒞 = (κ, σ) 

where κ = {〈t1; κE(t1), κI(t1), κN(t1)〉 |t1 ∈ X}  is an interval neutrosophic set in X  and σ =

{〈t1; σE(t1), σI(t1), σN(t1)〉 |t1 ∈ X} is a neutrosophic set in X.  

Definition 2.13 [9] For any 𝒞i = (κi, σi) where  

κi = {〈t1; κiE(t1), κiI(t1), κiN(t1)〉 |t1 ∈ X},  

σi = {〈t1; σiE(t1), σiI(t1), σiN(t1)〉 |t1 ∈ X}  for i ∈ k , P-union, P-inersection, R-un  -ion and 

R-intersection are defined respectively by 
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P-union ⋃P
i∈k

𝒞i = (⋃
i∈k

κi, ∨
i∈k

σi), P-intersection ⋂P
i∈k

𝒞i = (⋂
i∈k

κi, ∧
i∈k

σi),  

R-union ⋃R
i∈k

𝒞i = (⋃
i∈k

κi, ∧
i∈k

σi), R-intersection: ⋂R
i∈k

𝒞i = (⋂
i∈k

κi, ∨
i∈k

σi),  

where 

       ⋃
i∈k

κi = {⟨t1; (⋃
i∈k

κiE)(t1), (⋃
i∈k

κiI)(t1), (⋃
i∈k

κiN)(t1)⟩|t1 ∈ X},  

∨
i∈k

σi = {⟨t1; ( ∨
i∈k

σiE)(t1), ( ∨
i∈k

σiI)(t1), ( ∨
i∈k

σiN)(t1)⟩|t1 ∈ X}, 

              ⋂
i∈k

κi = {⟨t1; (⋂
i∈k

κiE)(t1), (⋂
i∈k

κiI)(t1), (⋂
i∈k

κiN)(t1)⟩|t1 ∈ X},  

      ∧
i∈k

σi = {⟨t1; ( ∧
i∈k

σiE)(t1), ( ∧
i∈k

σiI)(t1), ( ∧
i∈k

σiN)(t1)⟩|t1 ∈ X},  

Definition 2.14 [36]  Let C = (μC, νC) be an IFS in BF-algebra X and t ∈ [0,1], then the IFS Ct is 

called the t-intuitionistic fuzzy subset of X w.r.t C and is defined as Ct =

{< t1, μCt(t1), νCt(t1) > |t1 ∈ Y} = < μCt , νCt >  where μCt(t1) = min{μC(t1), t}  and μCt(t1) =

max{νC(t1),1 − t} ∀ t1 ∈ X.    

Definition 2.15 [36] Let Bt = (μBt , νBt) be a t-intuitionistic fuzzy subset of BF-algebra X and t ∈

[0,1] then Bt is called t-intuitionistic fuzzy subalgebra of X if it fulfills these axioms. 

(i) μBt(t1 ∗ t2) ≥ min{μBt(t1), μBt(t2)}, 

(ii) νBt(t1 ∗ t2) ≤ max{νBt(t1), νBt(t2)}, ∀ t1, t2 ∈ X.   

 

3 t-Neutrosophic Cubic Subalgebra of BF-algebra                                          

Let 𝒞 = (κ𝒞, σ𝒞) be a neutrosophic cubic set [NCS] of BF-algebra X, then the NCS 𝒞 is called the 

t-neutrosophic cubic set (t-NCS) of X w.r.t 𝒞 and is defined as 𝒞t = {< t1, κ̂t(t1), σt(t1) > |t1 ∈ X} =

< κ̂t, σt > such that κ̂t(t1) = {< κ̂E
t (t1), κ̂I

t(t1), κ̂N
t (t1) > |t1 ∈ X} and σ(t1) = {< σE

t (t1), σI
t(t1), σN

t (t1) >

|t1 ∈ X}  with two independent components where κ̂t(t1) =

{rmin(κ̂E(t1), t), rmin(κ̂I(t1), t′), rmin(κ̂N(t1),2 − t − t′)}, σt(t1) =

{max(σE(t1), t), max(σI(t1), t′), max(σN(t1), 2 − t − t′)} and ∀ t, t′, 2 − t − t′ ∈ [0,1] and now concept 

of cubic subalgebra can be extended to t-NCSU.  

Definition 3.1 Let 𝒞 = (κ̂, σ) be a cubic set, where X is subalgebra. Then 𝒞 is t-NCSU under binary 

operation ∗ if it satisfies the following conditions:  

N1: 

 κ̂t
E(t1 ∗ t2) ≥ rmin{κ̂E

t (t1), κ̂E
t (t2)}, 

 κ̂t
I(t1 ∗ t2) ≥ rmin{κ̂I

t(t1), κ̂I
t(t2)}, 

 κ̂t
N(t1 ∗ t2) ≥ rmin{κ̂N

t (t1), κ̂N
t (t2)}, 

N2: 

 σt
E(t1 ∗ t2) ≤ max{σE

t (t1), σE
t (t2)} 

 σt
I(t1 ∗ t2) ≤ max{σI

t(t1), σI
t(t2)} 

 σt
N(t1 ∗ t2) ≤ max{σN

t (t1), σN
t (t2)}. 
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Where E means existenceship/membership value, I means indeterminacy existenceship/membership 

value and N means non existenceship/membership value. For our convenience we introduce new 

notation for t-neutrosophic cubic set as  

𝓒 = (�̂�𝐄,𝐈,𝐍
𝐭 , 𝛔𝐄,𝐈,𝐍

𝐭 ) = {〈𝐭𝟏, �̂�𝐄,𝐈,𝐍
𝐭 (𝐭𝟏), 𝛔𝐄,𝐈,𝐍

𝐭 (𝐭𝟏)〉} = {〈𝐭𝟏, �̂�𝚵
𝐭 (𝐭𝟏), 𝛔𝚵

𝐭 (𝐭𝟏)〉} 

and for conditions N1, N2 as  

 N1: κ̂Ξ
t (t1 ∗ t2) ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)}, 

 N2: σΞ
t (t1 ∗ t2) ≤ max{σΞ

t (t1), σΞ
t (t2)}. 

Example 3.2 Let X = {0, t1, t2, t3, t4, t5} be a BF-algebra with the following Cayley table. 

⋇     0 t1 t2 t3 t4 t5 

     0      0 t5 t4 t3 t2 t1 

t1 t1     0 t5 t4 t3 t2 

t2 t2 t1     0 t5 t4 t3 

t3 t3 t2 t1     0 t5 t4 

t4 t4 t3 t2 t1     0 t5 

t5 t5 t4 t3 t2 t1     0 

 

A t-neutrosophic cubic set 𝒞 = (κ̂t
Ξ, σΞ

t ) of X is defined by   

 0 t1 t2 t3 t4 t5 

κ̂t
E   [0.7,0.9]   [0.6,0.8]   [0.7,0.9]   [0.6,0.8]   [0.7,0.9]   [0.6,0.8] 

κ̂t
I   [0.3,0.2]   [0.2,0.1]   [0.3,0.2]   [0.2,0.1]   [0.3,0.2]   [0.2,0.1] 

κ̂t
N   [0.2,0.4]   [0.1,0.4]   [0.2,0.4]   [0.1,0.4]   [0.2,0.4]   [0.1,0.4] 

 

 0 t1 t2 t3 t4 t5 

σt
E 0.1 0.3 0.1 0.3 0.1 0.3 

σt
I 0.3 0.5 0.3 0.5 0.3 0.5 

σt
N 0.5 0.6 0.5 0.6 0.5 0.6 

 

Both the conditions of definition are satisfied by the set 𝒞. Thus 𝒞 = (κ̂t
Ξ, σΞ

t ) is a t-NCSU of X.   

Proposition 3.3 Let 𝒞 = {〈t1, κ̂Ξ
t (t1), σΞ

t (t1)〉} is a t-NCSU of X, then ∀ t1 ∈ X, κ̂Ξ
t (t1) ≥ κ̂Ξ

t (0) and 

σΞ
t (0) ≤ σΞ

t (t1). Thus, κ̂Ξ
t (0) and σΞ

t (0) are the upper bound and lower bound of κ̂Ξ
t (t1) and σΞ

t (t1) 

respectively.   

Proof. ∀ t1 ∈ X, we have κ̂Ξ
t (0) = κ̂t

Ξ(t1 ∗ t1) ≥ rmin{κ̂Ξ
t (t1), κ̂t

Ξ(t1)} = κ̂Ξ
t (t1) ⇒ κ̂Ξ

t (0) ≥ κ̂Ξ
t (t1) and 

σΞ
t (0) = σΞ

t (t1 ∗ t1) ≤ max{σΞ
t (t1), σΞ

t (t1)} = σΞ
t (t1) ⇒ σΞ

t (0) ≤ σΞ
t (t1).  

Theorem 3.4 Let 𝒞={〈t1, κ̂Ξ
t (t1), σΞ

t (t1)〉} be a t-NCSU of X. If there exists a sequence {(t1)n} of X 

such that limn→∞κ̂t
Ξ((t1)n) = [1,1] and limn→∞σΞ

t ((t1)n) = 0.Then κ̂t
Ξ(0) = [1,1] and σΞ

t (0) = 0.   
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Proof. Using above proposition, κ̂Ξ
t (0) ≥ κ̂Ξ

t (t1) ∀ t1 ∈ X, ∴ κ̂Ξ
t (0) ≥ κ̂Ξ

t ((t1)n) for n ∈ Z+. Consider, 

[1,1] ≥ κ̂Ξ
t (0) ≥ limn→∞κ̂Ξ

t ((t1)n) = [1,1]. Hence κ̂Ξ
t (0) = [1,1]. 

Again, using proposition, σΞ
t (0) ≤ σΞ

t (t1) ∀ t1 ∈ X, ∴ σΞ
t (0) ≤ σΞ

t ((t1)n) for n ∈ Z+. Consider, 0 ≤

σΞ
t (0) ≤ limn→∞σΞ

t ((t1)n) = 0. Hence σΞ
t (0) = 0.  

Theorem 3.5 The R-intersection of any set of t-NCSU of X is t-NCSU of X.   

Proof. Let 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} where i ∈ k, is family of sets of t-NCSU of X and t1, t2 ∈ X 

and t ∈ [0,1] Then  

 (⋂ (κ̂t
i)Ξ)(t1 ∗ t2) = rinf(κ̂t

i)Ξ(t1 ∗ t2) 

 ≥ rinf{rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} 

 = rmin{rinf(κ̂t
i)Ξ(t1), rinf(κ̂t

i)Ξ(t2)} 

 = rmin{(⋂ (κ̂t
i)Ξ)(t1), (⋂ (κ̂t

i)Ξ)(t2)} 

 ⇒ (⋂ (κ̂t
i)Ξ)(t1 ∗ t2) ≥ rmin{(⋂ (κ̂t

i)Ξ)(t1), (⋂ (κ̂t
i)Ξ)(t2)} 

 and  

 (∨ (σi
t)Ξ)(t1 ∗ t2) = sup(σi

t)Ξ(t1 ∗ t2) 

 ≤ sup{max{(σi
t)Ξ(t1), (σi

t)Ξ(t2)}} 

 = max{sup(σi
t)Ξ(t1), sup(σi

t)Ξ(t2)} 

 = max{(∨ (σi
t)Ξ)(t1), (∨ (σi

t)Ξ)(t2)} 

 ⇒ (∨ (σi
t)Ξ)(t1 ∗ t2) ≤ max{(∨ (σi

t)Ξ)(t1), (∨ (σi
t)Ξ)(t2)}, 

 which show that R-intersection of 𝒞i
t is t-NCSU of X.  

Remark 3.6 The R-union, P-intersection and P-union of t-NCSU need not to be a t-NCSU which is 

explained through example. 

 let X = {0, t1, t2, t3, t4, t5} be a BF-algebra with the following Caley table.  

  ⋇      0 t1 t2 t3 t4 t5 

0      0 t2 t1 t3 t4 t5 

t1  t1     0 t2 t5 t3 t4 

t2  t2 t1     0 t4 t5 t3 

t3  t3 t4 t5     0 t1 t2 

t4  t4 t5 t3 t2     0 t1 

t5  t5 t3 t4 t1 t2     0 

 

Let 𝒞1
t = ((κ̂t)Ξ

1 , (σt)Ξ
1 ) and 𝒞2

t = ((κ̂t)Ξ
2 , (σt)Ξ

2) are t-neutrosophic cubic sets of X which are defined by 
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     0       t1      t2  t3      t4      t5  

 κ̂1
t E    [0.4,0.5]    [0.2,0.3]    [0.2,0.3]    [0.4,0.5]    [0.2,0.3]    [0.2,0.3]  

 κ̂1
t I    [0.6,0.7]    [0.3,0.4]   [0.3,0.4]    [0.6,0.7]    [0.3,0.4]    [0.3,0.4]  

 κ̂1
t N    [0.7,0.8]    [0.4,0.5]   [0.4,0.5]    [0.7,0.8]    [0.4,0.5]    [0.4,0.5] 

 κ̂2
t E    [0.7,0.8]    [0.3,0.4]    [0.3,0.4]    [0.3,0.4]    [0.7,0.8]    [0.3,0.4]  

 κ̂2
t I    [0.8,0.7]    [0.2,0.3]   [0.2,0.3]    [0.2,0.3]    [0.8,0.7]    [0.2,0.3]  

 κ̂2
t N    [0.7,0.6]    [0.2,0.4]   [0.2,0.4]    [0.2,0.4]    [0.7,0.6]    [0.2,0.4]  

 

  0   t1   t2   t3  t4  t5  

σ1
t E   0.2   0.9  0.9   0.2  0.9  0.9  

σ1
t I   0.3  0.8  0.8  0.3 0.8  0.8  

σ1
t N   0.5  0.7   0.7   0.5   0.7 0.7  

σ2
t E   0.3   0.6  0.6   0.6  0.3  0.6  

σ2
t I   0.4  0.8 0.8  0.8  0.4  0.8  

σ2
t N   0.5  0.8  0.8   0.8   0.3 0.8  

   

(⋃ (κ̂t)Ξ
i )(a3 ∗ a4) = ([0.3,0.4], [0.3,0.4], [0.4,0.5])Ξ ≱ ([0.7,0.8], [0.6,0.7], [0.5,0.6])Ξ =

rmin{(⋃ (κ̂t)Ξ
i )(a3), (⋃ (κ̂t)Ξ

i )(a4)} and (∧ (σt
i)Ξ)(a3 ∗ a4) = (0.5,0.6,0.7)Ξ ≰ (0.3,0.4,0.5)Ξ = max{(∧

(σt
i)Ξ)(a3), (∧ (σi

t)Ξ)(a4)}. 

Theorem 3.7. Let 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} be a collection of sets of t-NCSU of X, where i ∈ k 

and t ∈ [0,1]. If inf {max {(σi
t)Ξ(t1), (σi

t)Ξ(t1)}} = max{inf(σi
t)Ξ(t1) 

, inf(σi
t)Ξ(t1)} ∀ t1 ∈ X, then the P-intersection of 𝒞i

t is also a t-NCSU of X.  

Proof. Suppose that 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} where i ∈ k, be a collection of sets of t-NCSU of 

X such that inf{max{(σi
t)Ξ(t1), (σi

t)Ξ(t1)}} = max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t1)} ∀ a ∈ X. Then for t1, t2 ∈

X and t ∈ [0,1]. Then  

 (⋂ (κ̂t
i)Ξ)(t1 ∗ t2) = rinf{(κ̂t

i)Ξ(t1 ∗ t2)} 

 ≥ rinf{rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} 

 = rmin{rinf(κ̂t
i)Ξ(t1), rinf(κ̂t

i)Ξ(t2)} 

 = rmin{(⋂ (κ̂t
i)Ξ)(t1), (⋂ (κ̂t

i)Ξ)(t2)} 

 ⇒ (⋂ (κ̂t
i)Ξ)(t1 ∗ t2) ≥ rmin{(⋂ (κ̂t

i)Ξ)(t1), (⋂ (κ̂t
i)Ξ)(t2)} 

 and  

 (∧ (σi
t))Ξ)(t1 ∗ t2) = inf(σi

t)Ξ(t1 ∗ t2) 

 ≤ inf{max{(σi
t)Ξ(t1), (σi

t))Ξ(t2)}} 

 = max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t2)} 

 = max{(∧ (σi
t)Ξ)(t1), (∧ (σi

t))Ξ)(t2)} 
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 ⇒ (∧ (σi
t)Ξ)(t1 ∗ t2) ≤ max{(∧ (σi

t)Ξ)(t1), (∧ (σi
t))Ξ)(t2)}, 

 which show that P-intersection of 𝒞i
t is t-NCSU of X.  

Theorem 3.8. Let 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} where i ∈ k, be a collection of sets of t-NCSU of X. If 

sup{rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} = rmin{sup(κ̂t
i)Ξ(t1), sup(κ̂t

i)Ξ(t2)}  and 

inf{max{(σi
t)Ξ(t1), (σi

t)Ξ(t2)}} = max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t2)},  ∀ t1 ∈ X.  Then P -union of 𝒞i
t  is 

t-NCSU of X.  

Proof. Let 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} where i ∈ k, be a collection of sets of t-NCSU of X such 

that sup {rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}}  = rmin{sup(κ̂t
i)Ξ(t1), sup(κ̂t

i)Ξ(t2)} 

∀ t1 ∈ X. Then for t1, t2 ∈ X, and t ∈ [0,1].  

 (⋃ (κ̂t
i)Ξ)(t1 ∗ t2) = rsup(κ̂t

i)Ξ(t1 ∗ t2) 

 ≥ rsup{rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} 

 = rmin{rsup(κ̂t
i)Ξ(t1), rsup(κ̂t

i)Ξ(t2)} 

 = rmin{(⋃ (κ̂t
i)Ξ)(t1), (⋃ (κ̂t

i)Ξ)(t2)} 

 ⇒ (⋃ (κ̂t
i)Ξ)(t1 ∗ t2) ≥ rmin{(⋃ (κ̂t

i)Ξ)(t1), (⋃ (κ̂t
i)Ξ)(t2)} 

 and  

 (∨ (σi
t)Ξ)(t1 ∗ t2) = sup(σi

t)Ξ(t1 ∗ t2) 

 ≤ sup{max{(σi
t)Ξ(t1), (σi

t)Ξ(t2)}} 

 = max{sup(σi
t)Ξ(t1), sup(σi

t)Ξ(t2)} 

 = max{(∨ (σi
t)Ξ)(t1), (∨ (σi

t)Ξ)(t2)} 

 ⇒ (∨ (σi
t)Ξ)(t1 ∗ t2) ≤ max{(∨ (σi

t)Ξ)(t1), (∨ (σi
t)Ξ)(t2)}, 

 which show that P-union of 𝒞i
t is t-NCSU of X.  

Theorem 3.9 Let 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} where i ∈ k, be a collection of sets of t-NCSU of X. If 

inf{max{(σi
t)Ξ(t1), (σi

t)Ξ(t2)}} =  max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t2)}  and sup{rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} 

= rmin{sup(κ̂t
i)Ξ(t1), sup(κ̂t

i)Ξ(t2)} ∀ t1 ∈ X and t ∈ [0,1]. Then R-union of 𝒞i
t is a t-NCSU of X.  

Proof. Let 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} where i ∈ k, and t ∈ [0,1] be collection of sets of t-NCSU 

of X  such that inf {max {(σi
t)Ξ(t1), (σi

t)Ξ(t2)}} =  max {inf (σi
t)Ξ(t1), inf(σi

t)Ξ(t2)}}  and 

sup {rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} = rmin 

{sup(κ̂t
i)Ξ(t1), sup(κ̂t

i)Ξ(t2)} ∀ t1 ∈ X. Then for t1, t2 ∈ X and t ∈ [0,1]  

 (⋃ (κ̂t
i)Ξ)(t1 ∗ t2) = rsup(κ̂t

i)Ξ(t1 ∗ t2) 

 ≥ rsup{rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} 

 = rmin{rsup(κ̂t
i)Ξ(t1), rsup(κ̂t

i)Ξ(t2)} 

 = rmin{(⋃ κ̂t
i)Ξ)(t1), (⋃ κ̂t

i)Ξ)(t2)} 

 ⇒ (⋃ (�̂�𝑡
𝑖)𝛯)(𝑡1 ∗ 𝑡2) ≥ rmin{(⋃ (�̂�𝑡

𝑖)𝛯)(𝑡1), (⋃ (�̂�𝑡
𝑖)𝛯)(𝑡2)} 

 and  

 (∧ (σi
t)Ξ)(t1 ∗ t2) = inf(σi

t)Ξ(t1 ∗ t2) 

 ≤ inf{max{(σi
t)Ξ(t1), (σi

t)Ξ(t2)}} 
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 = max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t2)} 

 = max{(∧ (σi
t)Ξ)(t1), (∧ (σi

t)Ξ)(t2)} 

 ⇒ (∧ (σi
t)Ξ)(t1 ∗ t2) ≤ max{(∧ (σi

t)Ξ)(t1), (∧ (σi
t)Ξ)(t2)}, 

 which show that R-union of 𝒞i
t is t-NCSU of X.  

Theorem 3.10 If t-neutrosophic cubic set 𝒞t = (κ̂t
Ξ, σΞ

t ) of X is subalgebra, then ∀ t1 ∈ X, κ̂t
Ξ(0 ∗

t1) ≥ κ̂t
Ξ(t1) and σΞ

t (0 ∗ t1) ≤ σΞ
t (t1).  

Proof. For all t1 ∈ X , κ̂t
Ξ(0 ∗ t1)  ≥ rmin{κ̂t

Ξ(0), κ̂t
Ξ(t1)}  = rmin{κ̂t

Ξ(t1 ∗ t1), κ̂t
Ξ(t1)}  ≥

rmin{rmin{κ̂t
Ξ(t1), κ̂t

Ξ(t1)}, κ̂t
Ξ(t1)} = κ̂t

Ξ(t1)and similarly σΞ
t (0 ∗ t1) ≤ max{σΞ

t (0), σΞ
t (t1)} = σΞ

t (t1).  

Theorem 3.11  If t-netrosophic cubic set 𝒞t = (κ̂t
Ξ, σΞ

t ) of X is subalgebra then 𝒞t(t1 ∗ t2) = 𝒞t(t1 ∗

(0 ∗ (0 ∗ t2))) ∀ t1, t2 ∈ X.  

Proof. Let X be a BF-algebra and t1, t2 ∈ X. Then we know by above lemma that t2 = 0 ∗ (0 ∗ t2). 

Hence κ̂t
Ξ(t1 ∗ t2) = κ̂t

Ξ(t1 ∗ (0 ∗ (0 ∗ t2)))  and σΞ
t (t1 ∗ t2) = σΞ

t (t1 ∗ (0 ∗ (0 ∗ t2))).  Therefore, 

𝒞Ξ
t (t1 ∗ t2) = 𝒞Ξ

t (t1 ∗ (0 ∗ (0 ∗ t2))). 

Theorem 3.12 If t-neutrosophic cubic set 𝒞t = (κ̂Ξ
t , σΞ

t ) of X is t-NCSU, then ∀ t1, t2 ∈ , κ̂Ξ
t (t1 ∗

(0 ∗ t2)) ≥ rmin{κ̂Ξ
t (t1), κ̂t

Ξ(t2)} and σΞ
t (t1 ∗ (0 ∗ t2)) ≤ max{σΞ

t (t1), σΞ
t (t2)}.  

Proof. Let t1, t2 ∈ X. Then we have κ̂Ξ
t (t1 ∗ (0 ∗ t2)) ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (0 ∗ t2)} ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} 

and σΞ
t (t1 ∗ (0 ∗ t2)) ≤ max{σΞ

t (t1), σΞ
t (0 ∗ t2)} ≤ max {σΞ

t (t1), σΞ
t (t2)} by definition and proposition.  

Theorem 3.13 If a t-neutrosophic cubic set 𝒞t = (κ̂t
Ξ, σΞ

t ) of X satisfies the following conditions, 

then 𝒞 𝓉 refers to a t-NCSU of X:   

    1. κ̂Ξ
t (0 ∗ t1) ≥ κ̂Ξ

t (t1) and σΞ
t (0 ∗ t1) ≤ σΞ

t (t1) ∀ t1 ∈ X  

    2.  κ̂Ξ
t (t1 ∗ (0 ∗ t2))  ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)}  and σΞ

t (t1 ∗ (0 ∗ t2))                                 ≤

max{σΞ
t (t1), σΞ

t (t2)}, ∀ t1, t2 ∈ X and t ∈ [0,1].  

Proof. Assume that the t-neutrosophic cubic set 𝒞t = (κ̂Ξ
t , σΞ

t ) of X satisfies the above conditions (1 

and 2). Then by lemma, we have κ̂Ξ
t (t1 ∗ t2) = κ̂Ξ

t (t1 ∗ (0 ∗ (0 ∗ t2))) ≥ rmin{κ̂Ξ
t (t1), κ̂Ξ

t (0 ∗ t2)} ≥

rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t2)}  and σΞ
t (t1 ∗ t2) = σΞ

t (t1 ∗ (0 ∗ (0 ∗ t2)))  ≤ max{σΞ
t (t1), σΞ

t (0 ∗ t2)}  ≤

max{σΞ
t (t1), σΞ

t (t2)} ∀ t1, t2 ∈ X. Hence 𝒞t is t-NCSU of X.  

Theorem 3.14 A t-neutrosophic cubic set 𝒞t = (κ̂Ξ
t , σΞ

t ) of X is t-NCSU of X ⇐ κ̂Ξ
t−, κ̂Ξ

t+ and σΞ
t  are 

fuzzy subalgebra of X.   

Proof. Let κ̂Ξ
t−, κ̂Ξ

t+  and σΞ
t  are fuzzy subalgebra of X and t1, t2 ∈ X and t ∈ [0,1]. Then κ̂Ξ

t−(t1 ∗

t2) ≥ min{κ̂Ξ
t−(t1), κ̂Ξ

t−(t2)}, κ̂Ξ
t+(t1 ∗ t2) ≥ min{κ̂Ξ

t+(t1), κ̂Ξ
t+(t2)}  and σΞ

t (t1 ∗ t2) ≤

max{σΞ
t (t1), σΞ

t (t2)}. Now, κ̂Ξ
t (t1 ∗ t2) = [κ̂Ξ

t−(t1 ∗ t2), κ̂Ξ
t+(t1 ∗ t2)]  ≥

[min{κ̂Ξ
t−(t1), κ̂Ξ

t−(t2)}, min{κ̂Ξ
t+(t1), κ̂Ξ

t+(t2)}] ≥ rmin{[ κ̂Ξ
t−(t1), κ̂t+

Ξ(t2)], [ κ̂Ξ
t−(t1), κ̂Ξ

t+ 

(t2)]} = rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t2)}. Therefore, 𝒞t is t-NCSU of X. Conversely, assume that 𝒞t is a t-NCSU 

of X . For any t1, t2 ∈ X , [ κ̂Ξ
t−(t1 ∗ t2), κ̂Ξ

t+(t1 ∗ t2)] = κ̂Ξ
t (t1 ∗ t2) ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} =

rmin{[ κ̂Ξ
t−(t1), κ̂t+

Ξ(t1)], [ κ̂Ξ
t−(t2), κ̂Ξ

t+(t2)]} =[min{ κ̂Ξ
t−(t1), κ̂Ξ

t− 

(t2)}, min{κ̂Ξ
t+(t1), κ̂Ξ

t+(t2)}].  Thus, κ̂Ξ
t−(t1 ∗ t2) ≥ min{ κ̂Ξ

t−(t1), κ̂Ξ
t−(t2)} , κ̂Ξ

t+(t1 ∗ t2) ≥ 

min{κ̂Ξ
t+(t1), κ̂Ξ

t+(t2)}  and σΞ
t (t1 ∗ t2) ≤ max{σΞ

t (t1), σΞ
t (t2)} . Hence κ̂Ξ

t+, κ̂Ξ
t−  and σΞ

t  are fuzzy 

subalgebra of X.  
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Theorem 3.15 Let 𝒞t = (κ̂Ξ
t , σΞ

t ) be a t-NCSU of X and n ∈ ℤ+(the set of positive integer). Then   

    1.  κ̂Ξ
t (Лnt1 ∗ t1) ≥ κ̂Ξ

t (t1) for n ∈ 𝕆,  

    2.  σΞ
t (Лnt1 ∗ t1) ≤ σΞ

t (t1) for n ∈ 𝕆,  

    3.  κ̂Ξ
t (Лnt1 ∗ t1) = κ̂Ξ

t (t1) for n ∈ 𝔼,  

    4.  σΞ
t (Лnt1 ∗ t1) = σΞ

t (t1) for n ∈ 𝔼.  

Proof. Let t1 ∈ X and n is odd. Then n = 2q − 1 for some positive integer q. We prove the theorem 

by induction. Now κ̂Ξ
t (t1 ∗ t1) = κ̂Ξ

t (0) ≥ κ̂Ξ
t (t1)  and σΞ

t (t1 ∗ t1) = σΞ
t (0) ≤ σΞ

t (t1) . Suppose that 

κ̂Ξ
t (Л2q−1t1 ∗ t1) ≥ κ̂Ξ

t (t1) and σΞ
t (Л2q−1t1 ∗ t1) ≤ σΞ

t (t1). Then by assumption, κ̂Ξ
t (Л2(q+1)−1t1 ∗ t1) = 

κ̂Ξ
t (Л2q+1t1 ∗ t1)  = κ̂Ξ

t (Л2q−1t1 ∗ (t1 ∗ (t1 ∗ t1)))  = κ̂Ξ
t (Л2q−1t1 ∗ t1) ≥ κ̂t

Ξ(t1)  and σΞ
t (Л2(q+1)−1t1 ∗ t1) 

= σΞ
t (Л2q+1t1 ∗ t1) = σΞ

t (Л2q−1t1 ∗ (t1 ∗ (t1 ∗ t1))) = σΞ
t (Л2q−1t1 ∗ t1) ≤ σΞ

t (t1), which prove (1) and 

(2), similarly we can prove the remaining cases (3) and (4).  

Theorem 3.16 The sets denoted by Iκ̂Ξ
t  and IσΞ

t  are also subalgebras of X , which are defined 

as: Iκ̂Ξ
t ={t1 ∈ X|κ̂Ξ

t (t1) = κ̂Ξ
t (0)} , IσΞ

t ={t1 ∈ X|σΞ
t (t1) = σΞ

t (0)}.  Let 𝒞t = (κ̂Ξ
t , σΞ

t )  be a t-NCSU of X . 

Then the sets Iκ̂Ξ
t  and IσΞ

t  are subalgebras of X.   

Proof. Let t1, t2  ∈  Iκ̂Ξ
t . Then κ̂Ξ

t (t1)  = κ̂Ξ
t (0)  = κ̂Ξ

t (t2)  and κ̂Ξ
t (t1 ∗ t2)  ≥  rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)}  =

κ̂t
Ξ(0). By using Proposition 3.3, we know that κ̂Ξ

t (t1 ∗ t2) = κ̂t
Ξ(0) or equivalently t1 ∗ t2 ∈ Iκ̂t

Ξ
. 

Again let t1, t2 ∈ Iκ̂Ξ
t . Then σΞ

t (t1) = σΞ
t (0) = σΞ

t (t2) and σΞ
t (t1 ∗ t2) ≤ max {σΞ

t (t1), σΞ
t (t2)} =σΞ

t (0). 

Again by using Proposition 3.3, we know that σΞ
t (t1 ∗ t2) = σΞ

t (0) or equivalently t1 ∗ t2  ∈ Iκ̂Ξ
t . 

Hence the sets Iκ̂Ξ
t  and IσΞ

t  are subalgebras of X.  

Theorem 3.17  Let A be a nonempty subset of X and 𝒞t = (κ̂Ξ
t , σΞ

t ) be a t-neutrosophic cubic set of 

X defined by   

 κ̂Ξ
t (t1) = (

[μΞ1
, μΞ2

], if t1 ∈ A

 [νΞ1
, νΞ2

], otherwise,
σΞ

t (t1) = (
ϕΞ, if t1 ∈ A
δΞ, otherwise

 

 , ∀  [μΞ1
, μΞ2

] ,[νΞ1
, νΞ2

]  ∈  D[0,1]  and ϕΞ , δΞ  ∈  [0,1]  with [μΞ1
, μΞ2

]  ≥ [νΞ1
, νΞ2

]  and ϕΞ  ≤  δΞ . 

Then 𝒞t is a t-NCSU of X ⇔ A is a subalgebra of X. Moreover, Iκ̂Ξ
t  =A = IσΞ

t    

Proof. Let 𝒞t  be a t-NCSU of X  and t1, t2  ∈  X  such that t1, t2  ∈  A . Then κ̂Ξ
t (t1 ∗ t2) ≥ 

rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t2)} = rmin{[μΞ1
, μΞ2

], [μΞ1
, μΞ2

]} = [μΞ1
, μΞ2

] and σΞ
t (t1 ∗ t2) ≤ max{σΞ

t (t1), σΞ
t (t2)} =

max{ϕΞ, ϕΞ} = ϕΞ. Therefore t1 ∗ t2 ∈ A. Hence A is a subalgebra of X. 

Conversely, suppose that A is a subalgebra of X and t1, t2 ∈ X. Consider two cases. 

Case 1: If t1, t2 ∈ A then t1 ∗ t2 ∈ A, thus κ̂Ξ
t (t1 ∗ t2) = [μΞ1

, μΞ2
] = rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} 

and σΞ
t (t1 ∗ t2) = ϕΞ = max{σΞ

t (t1), σΞ
t (t2)}. 

Case 2: If t1 ∉ A or t2 ∉ A, then κ̂Ξ
t (t1 ∗ t2) ≥ [νΞ1

, νΞ2
] = rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} and σΞ

t (t1 ∗ t2) ≤ δΞ 

= max{σΞ
t (t1), σΞ

t (t2)}. Hence 𝒞t is a t-NCSU of X. 

Now, Iκ̂Ξ
t ={t1 ∈ X, κ̂Ξ

t (t1) = κ̂Ξ
t (0)}={t1 ∈ X, κ̂Ξ

t (t1) = [αΞ1
, αΞ2

]} = Aand IσΞ
t ={t1 ∈ X, σΞ

t (t1) = σΞ
t (0)} = 

{t1 ∈ X, σΞ
t (t1) = γΞ} = A.  

Definition 3.18 Let 𝒞t = (κ̂t
Ξ, σΞ

t )  be a t-neutrosophic cubic set of X . For 

[sE1
, sE2

], [sI1
, sI2

], [sN1
, sN2

] ∈ D[0,1] and tE1
, tI1

, tN1
∈ [0,1] , the set  U(κ̂t

Ξ|([sE1
 

, sE2
], [sI1

, sI2
], [sN1

, sN2
])) = {t1 ∈ X|κ̂E

t (t1) ≥ [sE1
, sE2

], κ̂I
t(t1) ≥ [sI1

, sI2
], κ̂N

t (t1) ≥ [sN1
, sN2

]}  is called 

upper ([sE1
, sE2

], [sI1
, sI2

], [sN1
, sN2

]) -level of 𝒞t  and L(σΞ
t |(tE1

, tI1
, tN1

))  = {t1 ∈ X|σt
E(t1) ≤

tE1
, σt

I(t1) ≤ tI1
, σt

N(t1) ≤ tN1
} is called lower (tE1

, tI1
, tN1

)-level of 𝒞t. 
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For comfort, we introduce the new notions for upper level and lower level of 𝒞t  as, 

U(κ̂Ξ
t |[sΞ1

, sΞ2
]={t1 ∈ X|κ̂Ξ

t (t1) ≥ [sΞ1
, sΞ2

]} is called upper ([sΞ1
, sΞ2

])-level of 𝒞t and L(σΞ
t |tΞ1

)={t1 ∈

X|σΞ
t (t1) ≤ tΞ1

} is called lower tΞ1
-level of 𝒞t.    

Theorem 3.19 If 𝒞t = (κ̂Ξ
t , σΞ

t ) is t-NCSU of X, then the upper [sΞ1
, sΞ2

]-level and lower tΞ1
-level of 

𝒞t are subalgebras of X.   

Proof. Let t1, t2  ∈ U(κ̂Ξ
t |[sΞ1

, sΞ2
]). Then κ̂Ξ

t (t1) ≥ [sΞ1
, sΞ2

] and κ̂Ξ
t (t2) ≥ [sΞ1

, sΞ2
]. It follows that 

κ̂Ξ
t (t1 ∗ t2) ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} ≥ [sΞ1

, sΞ2
] ⇒ t1 ∗ t2 ∈  U(κ̂Ξ

t |[sΞ1
, sΞ2

]) . Hence, U(κ̂Ξ
t |[sΞ1

, sΞ2
]  is a 

subalgebra of X. Let t1, t2 ∈ L(σΞ
t |tΞ1

). Then σΞ
t (t1) ≤ tΞ1

 and σΞ
t (t2) ≤ tΞ1

. It follows that σΞ
t (t1 ∗

t2) ≤ max{σΞ
t (t1), σΞ

t (t2)} ≤ tΞ1
 ⇒ t1 ∗ t2 ∈ L(σΞ

t |tΞ1
). Hence L(σΞ

t |tΞ1
) is a subalgebra of X.  

Corollary 3.20 Let 𝒞t = (κ̂Ξ
t , σΞ

t ) is t-NCSU of X. Then κ̂Ξ
t ([sΞ1

, sΞ2
]; tΞ1

)= U(κ̂Ξ
t |[sΞ1

, sΞ2
]) ⋂ L(σΞ

t |tΞ1
) 

= {t1 ∈ X|κ̂Ξ
t (t1) ≥ [sΞ1

, sΞ2
], σΞ

t (t1) ≤ tΞ1
} is a subalgebra of X.  

Proof. We can prove it by using above proved Theorem. The converse of above corollary is not valid.   

Theorem 3.21 Every subalgebra of X can be realized as both the upper [sΞ1
, sΞ2

]-level and lower 

tΞ1
-level of some t-NCSU of X.   

Proof. Let 𝒜t be a t-NCSU of X, and t-neutrosophic cubic set 𝒞t on X is defined by  

 κ̂Ξ
t = (

[μΞ1
, μΞ2

]  if t1 ∈ 𝒜t

[0,0]  otherwise .
, σΞ

t = (
νΞ1

 if   t1 ∈ 𝒜t

0  otherwise .
 

 ∀ [μΞ1
, μΞ2

] ∈ D[0,1] and νΞ1
∈ [0,1]. We investigate the following cases. 

 𝐂𝐚𝐬𝐞 𝟏  If ∀  t1, t2 ∈ 𝒜t  then κ̂Ξ
t (t1) = [μΞ1

, μΞ2
] , σΞ

t (t1) = νΞ1
 and κ̂Ξ

t (t2) = [μΞ1
, μΞ2

] , σΞ
t (t2) =

νΞ1
.Thus κ̂Ξ

t (t1 ∗ t2) = [μΞ1
, μΞ2

] = rmin{[μΞ1
, μΞ2

], [μΞ1
, μΞ2

]} = rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t2)} and σΞ
t (t1 ∗ t2) =

νΞ1
= max{νΞ1

, νΞ1
} = max{σΞ

t (t1), σΞ
t  (t2)}. 

𝐂𝐚𝐬𝐞 𝟐 If t1 ∈ 𝒜t  and t2 ∉ 𝒜t, then κ̂Ξ
t (t1) = [μΞ1

, μΞ2
], σΞ

t (t1) = νΞ1
 and κ̂Ξ

t (t2) = [0,0], σΞ
t (t2) =

1. Thus κ̂Ξ
t (t1 ∗ t2) ≥ [0,0] = rmin{[μΞ1

, μΞ2
], [0,0]} = rmin {κ̂Ξ

t (t1)  , κ̂Ξ
t (t2)}  and σΞ

t (t1 ∗ t2) ≤ 1 =

max{νΞ1
, 1} = max{σΞ

t (t1), σΞ
t (t2)}. 

𝐂𝐚𝐬𝐞 𝟑  If t1 ∉ 𝒜t  and t2 ∈ 𝒜t,  then κ̂Ξ
t (t1) = [0,0] , σΞ

t (t1) = 1  and κ̂Ξ
t (t2) = [μΞ1

, μΞ2
] , σΞ

t (t2) =

νΞ1
. Thus κ̂Ξ

t (t1 ∗ t2) ≥ [0,0] = rmin{[0,0], [μΞ1
, νΞ2

]}  = rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t2)}  and σΞ
t (t1 ∗ t2) ≤ 1 =

max{1, νΞ1
} = max{σΞ

t (t1), σΞ
t (t2)}. 

𝐂𝐚𝐬𝐞 𝟒  If t1 ∉ 𝒜t  and t2 ∉ 𝒜t,  then κ̂Ξ
t (t1) = [0,0] , σΞ

t (t1) = 1  and κ̂Ξ
t (t2) = [0,0] , σΞ

t (t2) = 1 . 

Thus κ̂Ξ
t (t1 ∗ t2) ≥ [0,0] = rmin{[0,0], [0,0]} = rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} and σΞ

t (t1 ∗ t2) ≤ 1 = max{1,1} =

max{σΞ
t (t1), σΞ

t (t2)}. Therefore, 𝒞t is a t-NCSU of X.  

Theorem 3.22  Let 𝒜t be a subset of X and 𝒞t be a t-neutrosophic cubic set on X which is given in 

the proof of above theorem. If 𝒞t is realized as lower level subalgebra and upper level subalgebra of 

some t-NCSU of X, then ℬt is a t-neutrosophic cubic one of X.   

Proof. Let 𝒞t  be a t-NCSU of X, and t1, t2 ∈ 𝒞t. Then κ̂Ξ
t (t1) = κ̂Ξ

t (t2) = [αΞ1
, αΞ2

]  and σΞ
t (t1) =

σΞ
t (t2) = βΞ1

. Thus κ̂Ξ
t (t1 ∗ t2) ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} = rmin{[αΞ1

, αΞ2
], 

[αΞ1
, αΞ2

]} = [αΞ1
, αΞ2

] and σΞ
t (t1 ∗ t2) ≤ max{σΞ

t (t1), σΞ
t (t2)} = max{βΞ1

, βΞ1
} = βΞ1

 ⇒  t1 ∗ t2 ∈ 𝒜t. 

Hence proof is completed.  

  

 

4  Image and Pre-image of t-Neutrosophic Cubic Subalgebra 
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In this section, homomorphism of t-neutrosophic cubic subalgebra is defined and some results are 

studied. 

Suppose Γ be a mapping from X into Y and 𝒞t = (κ̂Ξ
t , σΞ

t ) be a t-neutrosophic cubic set in X. Then 

the inverse-image of 𝒞t is defined as Γ−1(𝒞t) = {〈t1, Γ−1(κ̂Ξ
t ), Γ−1(σΞ

t )〉|t1 ∈ X} and Γ−1(κ̂Ξ
t )(t1) =

κ̂Ξ
t (Γ(t1))and Γ−1(σΞ

t )(t1) = σΞ
t (Γ(t1)). It can be shown that Γ−1(𝒞t) is a t-neutrosophic cubic set.   

Theorem 4.1 Suppose that Γ|X → Y be a homomorphism of BF-algebra. If 𝒞t = (κ̂Ξ
t , σΞ

t ) is a t-NCSU 

of Y, then the pre-image Γ−1(𝒞t)={〈t1, Γ−1(κ̂Ξ
t ), Γ−1(σΞ

t )〉|t1 ∈ X} of 𝒞t under Γ is a t-NCSU of X.  

Proof. Assume that 𝒞t = (κ̂Ξ
t , σΞ

t )  is a t-NCSU of Y  and t1, t2 ∈ X . Then Γ−1(κ̂Ξ
t )(t1 ∗ t2) =

κ̂Ξ
t (Γ(t1 ∗ t2)) = κ̂Ξ

t (Γ(t1) ∗ Γ(t2)) ≥ rmin{κ̂Ξ
t (Γ(t1)), κ̂Ξ

t (Γ(t2))} = rmin{Γ−1(κ̂Ξ
t )(t1), Γ−1(κ̂Ξ

t )(t2)} and 

Γ−1(σΞ
t )(t1 ∗ t2) = σΞ

t (Γ(t1 ∗ t2)) = σΞ
t (Γ(t1) ∗ Γ(t2)) ≤ max{σΞ

t (Γ(t1)), σΞ
t (Γ(t2))} =

max{Γ−1(σΞ
t )(t1), Γ−1(σΞ

t )(t2)}. ∴ Γ−1(𝒞t) = {〈t1, Γ−1(κ̂t
Ξ), Γ−1(σΞ

t )〉|t1 ∈ X} is t-NCSU of X.  

Theorem 4.2 Consider Γ|X → Y be a homomorphism of BF-algebra and 𝒞j
t = ((κ̂j

t)Ξ, (σj
t)Ξ) be a 

t-NCSU of Y, where j ∈ k. If inf {max {(σj
t)Ξ(t2), (σj

t)Ξ(t2)}} = max {inf (σj
t)Ξ(t2)  , inf (σj

t)Ξ(t2)} , ∀ 

t2 ∈ Y. Then Γ−1(⋂R
j∈k

𝒞j
t) is t-NCSU of X.  

Proof. Let 𝒞j
t = ((κj

t)Ξ, (σj
t)Ξ) be a t-NCSU of Y where j ∈ ksatisfying inf{max{(σj

t)Ξ(t2), (σj
t)Ξ(t2)}} 

= max{inf(σj
t)Ξ(t2), inf(σj

t)Ξ(t2)}, ∀ t2 ∈ Y. Then by Theorem 3.7 we know, ⋂R
j∈k

𝒞j
t is a t-NCSU of Y. 

Hence Γ−1(⋂R
j∈k

𝒞j
t) is t-NCSU of X.  

Theorem 4.3 Let Γ|X → Y be a homomorphism of BF-algebra. Assume that 𝒞j
t = ((κ̂j

t)Ξ, (σj
t)Ξ) be a 

collection of sets of t-NCSU of Y  where j ∈ k. If rsup{rmin{(κ̂j
t)Ξ(t2), (κ̂j

t)Ξ(t2)}}  = 

rmin{rsup(κ̂j
t)Ξ(t2), rsup(κ̂j

t)Ξ(t2)}, ∀ (t2), (t2)′ ∈ Y. Then Γ−1(⋃R
j∈k

𝒞j
t) is t-NCSU of X.  

Proof. Let 𝒞j
t = ((κ̂j

t)Ξ, (σj
t)Ξ)  be a t-NCSU of Y  where j ∈ k  satisfying 

rsup{rmin{(κ̂j
t)Ξ(t2), (κ̂j

t)Ξ(t2′)} = rmin{rsup(κ̂j
t)Ξ(t2), rsup(κ̂j

t)Ξ(t2′)} ∀ t2, t2′ ∈ Y. Then by Theorem 

3.8 we know, ⋃R
j∈k

𝒞j
t is a t-NCSU of Y. Hence Γ−1(⋃R

j∈k
𝒞j

t) is t-NCSU of X.  

Definition 4.4 A t-neutrosophic cubic set 𝒞t = (κ̂Ξ
t , σΞ

t )  in BF -algebra X  is said to have 

rsup-property and inf-property for any subset P of X, ∃ p0 ∈ T such that κ̂Ξ
t (p0) = rsup

p0∈S
κ̂Ξ

t (p0) and 

σΞ
t (s0) = inf

t0∈T
σΞ

t (t0) respectively.  

Definition 4.5  Let Γ be mapping from X to Y. If 𝒞t = (κ̂Ξ
t , σΞ

t ) is neutrosphic cubic set of X, then 

the image of 𝒞t under Γ is denoted by Γ(𝒞t) and is defined as Γ(𝒞t)={〈t1, Γrsup(κ̂Ξ
t ), Γinf(κ̂Ξ

t )〉|t1 ∈

X}, where  

 Γrsup(κ̂Ξ
t )(t2) = (  

rsup
t1∈Γ−1(t2)

(κ̂Ξ
t )(t1),  if   Γ−1(t2) ≠ ϕ

      [0,0],  otherwise ,
 

 and   

 Γinf(σΞ
t )(t2) = (

inf
t1∈Γ−1(t2)

σΞ
t (t1),  if   Γ−1(t2) ≠ ϕ

             1,  otherwise .
 

 Theorem 4.6 Suppose Γ|X → Y be a homomorphism from a BF-algebra X onto a BF-algebra Y. If 

𝒞t = (κ̂Ξ
t , σΞ

t ) is a t-NCSU of X, then the image Γ(𝒞t) = {〈t1, Γrsup(κ̂Ξ
t ), Γinf(σΞ

t )〉|t1 ∈ X} of 𝒜 under 

Γ is t-NCSU of Y.  
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Proof. Let 𝒞t = (κ̂Ξ
t , σΞ

t ) be a t-NCSU of X and t2, t2
′ ∈ Y. We know that {t1 ∗ t1

′|t1 ∈ Γ−1(t2)     and 

    t1
′ ∈ Γ−1t2

′} ⊆ {t1 ∈ X|t1 ∈ Γ−1(t2 ∗ t2
′)}. Now Γrsup(κ̂Ξ

t )(t2 ∗ t2
′)=rsup{κ̂Ξ

t (t1)|t1 ∈ Γ−1(t2 ∗ t2
′)} ≥ 

rsup{κ̂Ξ
t (t1 ∗ t1

′)|t1 ∈ Γ−1(t2)     and     t1
′ ∈ Γ−1(t2

′)}  ≥  rsup{rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t1
′)}|t1 ∈ Γ−1(t2)     

and     t1
′ ∈ Γ−1(t2

′)} =  rmin{rsup{κ̂Ξ
t (t1)|t1 ∈ Γ−1(t2)}, rsup{κ̂Ξ

t (t1
′)|t1

′ ∈ Γ−1(t2
′)}} = 

rmin{Γrsup(κ̂Ξ
t )(t2), 

Γrsup(κ̂Ξ
t )(t2

′)}  and Γinf(σΞ
t )(t2 ∗ t2

′) = inf {σΞ
t (t1)|t1 ∈ Γ−1(t2 ∗ t2

′)} ≤ inf {σΞ
t (t1 ∗ t1

′)|t1 ∈

Γ−1(t2)    and  t1
′ ∈ Γ−1(t2

′)} ≤ inf {max {σΞ
t (t1), σΞ

t (t1
′)}|t1  ∈ Γ−1(t2) and   t1

′ ∈ Γ−1(t2
′)} =

max {inf {σΞ
t (t1)|t1 ∈ Γ−1(t2)}, inf {σΞ

t (t1
′)|t1

′ ∈ Γ−1(t2
′)}} = max {Γinf(σΞ

t )(t2), Γinf(σΞ
t )(t2

′)}.  Hence 

Γ(𝒞t)={〈t1, Γrsup(κ̂t
Ξ), Γinf(σt

Ξ) 〉|t1 ∈ X} 

is a t-NCSU of Y.  

Theorem 4.7 Assume that Γ|X → Y is a homomorphism of BF-algebra and 𝒞i
t = {(κ̂i

t)Ξ, (σi
t)Ξ} is a 

t-NCSU of X, where i ∈ k. If inf{max{(σi
t)Ξ(t1), (σi

t)Ξ(t1)}} = max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t1)}, ∀ t1 ∈ X. 

Then Γ(⋂P
i∈k

𝒞i
t) is a t-NCSU of Y.   

Proof. Let 𝒞i
t = {(κ̂i

t)Ξ, (σi
t)Ξ}  be a collection of sets of t-NCSU of X,  where i ∈ k  satisfies 

inf{max{(σi
t)Ξ(t1), (σi

t)Ξ(t1)}}  = max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t1)}  ∀  t1 ∈ X . Then by above stated 

theorem, ⋂P
i∈k

𝒞i
t is a t-NCSU of X. Hence Γ(⋂P

i∈k
𝒞j

t) is t-NCSU of Y.  

Theorem 4.8 Suppose Γ|X → Y  be a homomorphism of BF-algebra and 𝒞i
t = {(κ̂i

t)Ξ, (σi
t)Ξ}  be a 

t-NCSU of X  where i ∈ k.If rsup{rmin{(κi
t)Ξ(t1), (κ̂i

t)Ξ(t1)}}  = rmin{rsup (κ̂i
t)Ξ(t1), rsup(κ̂i

t)Ξ(t1
′)}, 

∀  t1, t1
′ ∈ Y. Then Γ(⋃P

i∈k
𝒞i

t) is also a t-NCSU of Y.  

Proof. Let 𝒞i
t = {(κ̂i

t)Ξ, (σi
t)Ξ}  be a collection of sets of t-NCSU of X  where i ∈ k  satisfies 

rsup{rmin{(κ̂i
t)Ξ(t1), (κ̂i

t)Ξ(t1
′)}} = rmin{rsup(κ̂i

t)Ξ(t1), rsup(κ̂i
t)Ξ(t1

′)},  ∀ t1, t1
′ ∈ X.  Then by above 

stated theorem we know that ⋃P
i∈k

𝒞i
t is a t-NCSU of X. Hence Γ(⋃P

i∈k
𝒞i

t) is t-NCSU of Y.  

Theorem 4.9 For a homomorphism Γ|X → Y of BF-algebra, the following results hold:   

    1.  If ∀    i ∈ k, 𝒞i
t is t-NCSU of X, then Γ(⋂R

i∈k
𝒞i

t) is t-NCSU of Y,  

    2.  If ∀ i ∈ k, 𝒟i
t is t-NCSU of Y, then Γ−1(⋂R

i∈k
𝒟i

t) is t-NCSU of X.    

Proof. Straightforward.  

Theorem 4.10 Let Γ be an isomorphism from a BF-algebra X onto a BF-algebra Y. If 𝒞t is a t-NCSU 
of X. Then Γ−1(Γ(𝒞t)) = 𝒞t.   

Proof. For any t1 ∈ X , let Γ(t1) = t2 . Since Γ  is an isomorphism, Γ−1(t2) = {t1} . Thus 

Γ(𝒞t)(Γ(t1)) = Γ(𝒞t)(t2) = ⋃
t1∈Γ−1(t2)

𝒞t(t1) = 𝒞t(t1).For any t2 ∈ Y, Γ is an isomorphism, Γ−1(t2) =

{t1} so that Γ(t1) = t2. Thus Γ−1(𝒞t)(t1) = 𝒞t(Γ(t1)) = 𝒞t(t2). Hence, Γ−1(Γ(𝒞t)) = 𝒞t.  

Corollary 4.11 Consider Γ is an Isomorphism from a BF-algebra X onto a BF-algebra Y. If 𝒞t is a 

t-NCSU of Y. Then Γ(Γ−1(𝒞t)) = 𝒞t.   

Proof. Straightforward.  

Corollary 4.12  Let Γ|X → X be an automorphism. If 𝒞t  is a t-NCSU of X. Then Γ(𝒞t) = 𝒞t  ⇐

Γ−1(𝒞t) = 𝒞t.   
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5 t-Neutrosophic Cubic Closed Ideal of BF-algebra 

In this section, t-neutrosophic cubic ideal and t-neutrosophic cubic closed ideal of BF-algebra are 

defined and investigated through related results. 

Definition 5.1 A t-neutrosophic cubic set 𝒞t = (κ̂Ξ
t , σΞ

t ) of X is called a t-NCID of X if it satisfies 

following axoims: 

N3. κ̂t
Ξ(0) ≥ κ̂Ξ

t (t1) and σΞ
t (0) ≤ σΞ

t (t1), 

N4. κ̂Ξ
t (t1) ≥ rmin{κ̂Ξ

t (t1 ∗ t2), κ̂Ξ
t (t2)}, 

N5. σΞ
t (t1) ≤ max{σΞ

t (t1 ∗ t2), σΞ
t (t2)}, ∀ t1, t2 ∈ X.    

Example 5.2 Consider a BF-algebra X = {0, t1, t2, t3} and binary operation * is defined on X as 

  ⋇   0              𝑡1   𝑡2   𝑡3  

  0         𝑡1   𝑡2   𝑡3  

𝑡1   𝑡1       0  𝑡3   𝑡2  

𝑡2   𝑡2  𝑡3  0   𝑡1  

𝑡3   𝑡3  𝑡2  𝑡1   0  

 

Let 𝒞t = {κ̂t
Ξ, σΞ

t } be a t-neutrosophic cubic set in X is defined as,   

  0   𝑡1   𝑡2   𝑡3  

�̂�𝑡
𝐸  [1,1]    [0.8,0.7]     [1,1]    [0.4,0.6] 

�̂�𝑡
𝐼     [0.8,0.8]    [0.5,0.7]    [0.8,0.8]    [0.6,0.4] 

�̂�𝑡
𝑁     [0.7,0.8]    [0.4,0.5]    [0.7,0.8]    [0.8,0.4] 

and 

   0    𝑡1 𝑡2    𝑡3 

𝜎𝑡
𝐸   0  0.7 0 0.6 

𝜎𝑡
𝐼   0.1  0.5 0.1 0.6 

𝜎𝑡
𝑁   0.2  0.3 0.2 0.4 

Then it can be easy verify that 𝒞t satisfies the conditions N3, N4 and N5. Hence 𝒞t is t-NCID of X.    

Definition 5.3 Let 𝒞t = {κ̂Ξ
t , σΞ

t } be a t-neutrosophic cubic set X then it is called t-neutrosophic cubic 

closed ideal of X if it satisfies N4, N5 and N6. κ̂Ξ
t (0 ∗ t1) ≥ κ̂Ξ

t (t1) and σΞ
t (0 ∗ t1) ≤ σΞ

t (t1), ∀ t1 ∈ X.    

Example 5.4 Let X = {0, t1, t2, t3, t4, t5} be a BF-algebra as in Example 3.2 and 𝒞t = {κ̂Ξ
t , σΞ

t } be a 

t-neutrosophic cubic set in X is defined as  

     0  𝑡1   𝑡2   𝑡3  𝑡4  𝑡5  

κ̂t
E    [0.4,0.7]   [0.3,0.6]    [0.3,0.6]    [0.2,0.4]    [0.2,0.4]    [0.2,0.4]  

κ̂t
I    [0.5,0.8]   [0.4,0.7]   [0.4,0.7]    [0.3,0.6]    [0.3,0.6]    [0.3,0.6]  

κ̂t
N    [0.6,0.9]   [0.5,0.8]   [0.5,0.8]    [0.3,0.4]    [0.3,0.4]    [0.3,0.4]  
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   0   𝑡1           𝑡2         𝑡3          𝑡4 𝑡5  

σt
E   0.3        0.6  0.6 0.8 0.8 0.8  

σt
I   0.4  0.5 0.5 0.7 0.7 0.7  

σt
N   0.5  0.6 0.6 0.9 0.9 0.9  

By calculations it is clear that 𝒞t is a t-neutrosophic cubic closed ideal of X.   

Proposition 5.5 Every t-neutrosophic cubic closed ideal is a t-NCID.  

Proof The converse of proposition 5.5 is not true in general as shown in the given example.  

Example 5.6 Let X = {0, t1, t2, t3, t4, t5} be a BF-algebra as in Example 3.2 and 𝒞t = {κ̂Ξ
t , σΞ

t } be a 

t-neutrosophic cubic set in X is defined as   

   0   𝑡1   𝑡2   𝑡3  𝑡4  𝑡5  

κ̂t
E    [0.5,0.7]    [0.4,0.6]    [0.4,0.6]    [0.3,0.4]    [0.3,0.4]    [0.3,0.4]  

κ̂t
I    [0.6,0.8]    [0.5,0.7]   [0.5,0.7]    [0.4,0.6]    [0.4,0.6]    [0.4,0.6]  

κ̂t
N    [0.7,0.9]    [0.6,0.8]   [0.6,0.8]    [0.5,0.4]    [0.5,0.4]    [0.5,0.4]  

 

   0   𝑡1   𝑡2   𝑡3  𝑡4  𝑡5  

σt
E   0.2   0.5  0.5   0.6  0.6  0.6  

σt
I   0.3  0.4 0.4  0.7  0.7  0.7  

σt
N   0.3  0.5  0.5   0.8   0.8 0.8  

 

By calculations verify that 𝒞t is a t-NCID of X. But it is not a t-neutrosophic cubic closed ideal of X 

since κ̂t
Ξ(0 ∗ t1) ≱ κ̂Ξ

t (t1) and σΞ
t (0 ∗ t1) ≰ σΞ

t (t1), ∀  t1 ∈ X. 

Corollary 5.7 Every t-NCSU which satisfies N4 and N5 becomes a t-neutrosophic cubic closed ideal.  

Theorem 5.8  Every t-neutrosophic cubic closed ideal of a BF-algebra X is also a t-NCSU of X.   

Proof. Suppose 𝒞t = {κ̂Ξ
t , σΞ

t } be a t-neutrosophic cubic closed ideal of X, then for any t1 ∈ X we 

have κ̂Ξ
t (0 ∗ t1) ≥ κ̂Ξ

t (t1) and σΞ
t (0 ∗ t1) ≤ σΞ

t (t1). Now by N4, N6, Proposition 3.3, we know that 

κ̂Ξ
t (t1 ∗ t2) ≥ rmin{κ̂Ξ

t ((t1 ∗ t2) ∗ (0 ∗ t2)), κ̂Ξ
t (0 ∗ t2)}  = rmin{κ̂Ξ

t (t1), κ̂Ξ
t (0 ∗ t2)}  ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} 

and σΞ
t (t1 ∗ t2) ≤ max{σΞ

t ((t1 ∗ t2) ∗ (0 ∗ t2)), σΞ
t (0 ∗ t2)}  = max{σΞ

t (t1), σΞ
t (0 ∗ t2)}  ≤

max{σΞ
t (t1), σΞ

t (t2)}. Hence 𝒞t is a t-neutrosophic cubic subalgeba of X.  

Theorem 5.9  The R-intersection of any set of t-NCIDs of X is a t-NCID of X.   

Proof. Let 𝒞i
t = {(κ̂i

t)Ξ, (σi
t)Ξ} where i ∈ k, be a collection of sets of t-NCID of X and t1, t2 ∈ X. Then  

 (⋂ (κ̂i
t)Ξ)(0) = rinf(κ̂i

t)Ξ(0) 

 ≥ rinf(κ̂i
t)Ξ(t1) 

 = (⋂ (κ̂i
t)Ξ)(t1) 

 ⇒ (⋂ (κ̂i
t)Ξ)(0) ≥ (⋂ (κ̂i

t)Ξ)(t1), 
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 (∨ (σi
t)Ξ)(0) = sup(σi

t)Ξ(0) 

 ≤ (σi
t)Ξ(t1) 

 = (∨ (σi
t)Ξ)(t1) 

 ⇒ (∨ (σi
t)Ξ)(0) ≤ (∨ (σi

t)Ξ)(t1), 

 (⋂ (κ̂i
t)Ξ)(t1) = rinf(κ̂i

t)Ξ(t1) 

 ≥ rinf{rmin{(κ̂i
t)Ξ(t1 ∗ t2), (κ̂i

t)Ξ(t2)}} 

 = rmin{rinf(κ̂i
t)Ξ(t1 ∗ t2), rinf(κ̂i

t)Ξ(t2)} 

 = rmin{(⋂ (κ̂i
t)Ξ)(t1 ∗ t2), (⋂ (κ̂i

t)Ξ)(t2)} 

 ⇒ (⋂ (κ̂i
t)Ξ)(t1) ≥ rmin{(⋂ (κ̂i

t)Ξ)(t1 ∗ t2), (⋂ (κ̂i
t)Ξ)(t2)} 

 and  

 (∨ (σi
t)Ξ)(t1) = sup(σi

t)Ξ(t1) 

 ≤ sup{max{(σi
t)Ξ(t1 ∗ t2), (σi

t)Ξ(t2)}} 

 = max{sup(σi
t)Ξ(t1 ∗ t2), sup(σi

t)Ξ(t2)} 

 = max{(∨ (σi
t)Ξ)(t1 ∗ t2), (∨ (σi

t)Ξ)(t2)} 

 ⇒ (∨ (σi
t)Ξ)(t1) ≤ max{(∨ (σi

t)Ξ)(t1 ∗ t2), (∨ (σi
t)Ξ)(t2)}, 

 which show that R-intersection is a t-NCID of X.  

Theorem 5.10 The R-intersection of any set of t-neutrosophic cubic closed ideals of X is also a 

t-neutrosophic cubic closed ideal of X.   

Proof. It is similar to the proof of Theorem 5.9.  

Theorem 5.11 For a t-neutrosophic cubic ideal 𝒞t = {κ̂Ξ
t , σΞ

t } of X, the following assertions are valid:   

1. if t1 ∗ t2 ≤ z, then κ̂Ξ
t (t1) ≥ rmin{κ̂Ξ

t (t2), κ̂Ξ
t (t3)} and σΞ

t (t1) ≤ max{σΞ
t (t2), σΞ

t (t3)},  

2. if t1 ≤ t2, then κ̂Ξ
t (t1) ≥ κ̂Ξ

t (t2) and σΞ
t (t1) ≤ σΞ

t (t2), ∀ t1, t2, t3 ∈ X.  

Proof. 1. Assume that t1, t2, t3 ∈ X such that t1 ∗ t2 ≤ t3. Then (t1 ∗ t2) ∗ t3 = 0 and thus κ̂Ξ
t (t1) ≥

rmin{κ̂Ξ
t (t1 ∗ t2), κ̂Ξ

t (t2)} ≥ rmin{rmin{κ̂Ξ
t ((t1 ∗ t2) ∗ t3), κ̂Ξ

t (t3)}, κ̂Ξ
t (t2)}  = 

rmin{rmin{κ̂Ξ
t (0), κ̂Ξ

t (t3)}, κ̂Ξ
t (t2)}  = rmin{κ̂Ξ

t (t2), κ̂Ξ
t (t3)}  and σΞ

t (t1)  ≤  max{σΞ
t (t1 ∗ t2), σΞ

t (t2)} ≤

max{max{σΞ
t ((t1 ∗ t2) ∗ t3), σΞ

t (t3)} , σΞ
t (t2)} = max {max {σΞ

t (0), σΞ
t (t3)}, 

σΞ
t (t2)} = max{σΞ

t (b), σΞ
t (t3)}. 

2. Again, take t1, t2 ∈ X  such that t1 ≤ t2 . Then t1 ∗ t2 = 0  and thus κ̂Ξ
t (t1) ≥ rmin{κ̂Ξ

t (t1 ∗

t2), κ̂Ξ
t (t2)}  = rmin{κ̂Ξ

t (0), κ̂Ξ
t (t2)}  = κ̂Ξ

t (t2)  and σΞ
t (t1) ≤ rmin{σΞ

t (t1 ∗ t2), σΞ
t (t2)}  = 

rmin{σΞ
t (0), σΞ

t (t2)} = σΞ
t (t2).  

Theorem 5.12 Let 𝒞t = {κ̂Ξ
t , σΞ

t } is a neutrosophic cubic ideal of X. If t1 ∗ t2 ≤ t1, ∀ t1, t2 ∈ X. Then 

𝒞t is a t-NCSU of X.  

Proof. Assume that 𝒞t = {κ̂Ξ
t , σΞ

t } is a t-neutrosophic cubic ideal of X. Suppose that t1 ∗ t2 ≤ t1 ∀ 

t1, t2 ∈ X. Then  

 κ̂Ξ
t (t1 ∗ t2) ≥ κ̂Ξ

t (t1)    (∵ By    Theorem    5.11) 
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 ≥ rmin{κ̂Ξ
t (t1 ∗ t2), κ̂Ξ

t (t2)}    (∵ By    N4) 

 ≥ rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t2)}    (∵ By    Theorem    5.11) 

 ⇒ κ̂Ξ
t (t1 ∗ t2) ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} 

and  

 σΞ
t (t1 ∗ t2) ≤ σΞ

t (t1)    (∵ By    Theorem    5.11) 

 ≤ max{σΞ
t (t1 ∗ t2), σΞ

t (t2)}    (∵ By    N5) 

 ≤ max{σΞ
t (t1), σΞ

t (t2)}    (∵ By    Theorem    5.11) 

 ⇒ σΞ
t (t1 ∗ t2) ≤ max{σΞ

t (t1), σΞ
t (t2)}. 

 Hence 𝒞t = {κ̂Ξ
t , σΞ

t } is a t-NCSU of X.  

Theorem 5.13 If 𝒞t = {κ̂Ξ
t , σΞ

t } is a t-neutrosophic cubic ideal of X, then (… ((t1 ∗ x1) ∗ x2) ∗ … ) ∗

xn = 0 for any t1, x1, x2, … , xn ∈ X ⇒ κ̂t
Ξ(t1) ≥ rmin{κ̂Ξ

t (x1), κ̂Ξ
t (x2), …, 

κ̂Ξ
t (xn)} and σΞ

t (t1) ≤ max{σΞ
t (x1), σΞ

t (x2), . . . , σΞ
t (xn)}.   

Proof. We can prove this theorem by using induction on n and Theorem 5.11.  

Theorem 5.14 A t-neutrosophic cubic set 𝒞t = (κ̂Ξ
t , σΞ

t ) is a t-neutrosophic cubic closed ideal of X ⇐ 

U(κ̂Ξ
t |[sΞ1

, sΞ2
]) and L(σΞ

t |tΞ1
) are closed ideals of X for every [sΞ1

, sΞ2
] ∈ D[0,1] and tΞ1

∈ [0,1].   

Proof. Assume that 𝒞t = (κ̂Ξ
t , σΞ

t ) is a t-neutrosophic cubic closed ideal of X. For [sΞ1
, sΞ2

] ∈ D[0,1], 

clearly, 0 ∗ t1 ∈ U(κ̂Ξ
t |[sΞ1

, sΞ2
]),  where t1 ∈ X.  Let t1, t2 ∈ X  be such that t1 ∗ t2 ∈ U(κ̂Ξ

t |[sΞ1
, sΞ2

]) 

and t2 ∈ U(κ̂Ξ
t |[sΞ1

, sΞ2
]).  Then κ̂Ξ

t (t1) ≥ rmin{κ̂Ξ
t (t1 ∗ t2), κ̂Ξ

t (t2)} ≥ [sΞ1
, sΞ2

] ⇒ t1 ∈

U(κ̂Ξ
t |[sΞ1

, sΞ2
].  Hence U(κ̂Ξ

t |[sΞ1
, sΞ2

]) is a closed ideal of X. 

For tΞ1
∈ [0,1].  Clearly, 0 ∗ t1 ∈ L(σΞ

t |tΞ1
).  Let t1, t2 ∈ X  be such that t1 ∗ t2 ∈ L(σΞ

t |tΞ1
)  and t2 ∈

L(σΞ
t |tΞ1

).  Then σΞ
t (t1) ≤ max{σΞ

t (t1 ∗ t2), σΞ
t (t2)} ≤ tΞ1

⇒ t1 ∈ L(σΞ
t |tΞ1

).  Hence L(σΞ
t |tΞ1

)  is a 

t-neutrosophic cubic closed ideal of X. 

Conversely, suppose that each nonempty level subset U(κ̂Ξ
t |[sΞ1

, sΞ2
]) and L(σΞ

t |tΞ1
)  are closed 

ideals of X. For any t1 ∈ X, let κ̂Ξ
t (t1) = [sΞ1

, sΞ2
] and σΞ

t (t1) = tΞ1
. Then t1 ∈ U(κ̂Ξ

t |[sΞ1
, sΞ2

]) and 

t1 ∈ L(σΞ
t |tΞ1

).  Since 0 ∗ t1 ∈ U(κ̂Ξ
t |[sΞ1

, sΞ2
]) ⋂ L(σΞ

t |tΞ1
),  it follows that κ̂Ξ

t (0 ∗ t1) ≥ [sΞ1
, sΞ2

] =

κ̂Ξ
t (t1)  and σΞ

t (0 ∗ t1) ≤ tΞ1
= σΞ

t (t1)  ∀  t1 ∈ X.  If there exists αΞ1
, βΞ1

∈ X  such that κ̂Ξ
t (αΞ1

) ≤

rmin{κ̂Ξ
t (αΞ1

∗ βΞ1
), βΞ1

}, then by taking [sΞ1

′ , sΞ2

′ ] =
1

2
[κ̂Ξ

t (αΞ1
∗ βΞ1

) + rmin{κ̂Ξ
t (αΞ1

), κ̂Ξ
t (βΞ1

)}].  

It follows that αΞ1
∗ βΞ1

∈ U(κ̂Ξ
t |[sΞ1

′ , sΞ2

′ ])  and βΞ1
∈ U(κ̂Ξ

t |[sΞ1

′ , sΞ2

′ ]), but αΞ1
∉ U(κ̂Ξ

t |[sΞ1

′ , sΞ2

′ ]), 

which is contradiction. Hence, U(κ̂Ξ
t |[sΞ1

′ , sΞ2

′ ]) is not closed ideal of X. 

Again, if there exists αΞ1
, βΞ1

∈ X such that σΞ
t (αΞ1

) ≥ max{σΞ
t (αΞ1

∗ βΞ1
), σΞ

t (βΞ1
)}, then by taking 

tΞ1

′ =
1

2
[σΞ

t (αΞ1
∗ βΞ1

) + max{σΞ
t (αΞ1

), σΞ
t (βΞ1

)}].  

It follows that αΞ1
∗ βΞ1

∈ L(σΞ
t |tΞ1

′ )  and βΞ1
∈ L(σΞ

t |tΞ1

′ ) , but αΞ1
∉ L(σΞ

t |tΞ1

′ ),  which is 

contradiction. So L(σΞ
t |tΞ1

′ ) is not closed ideal of X. Hence 𝒞t = (κ̂Ξ
t , σΞ

t ) is a t-neutrosophic cubic 

ideal of X because it satisfies N3 and N4. 

 
6 Neutrosophic Cubic Ideals under Homomorphism 

In this section, t-neutrosophic cubic ideals are investigated under homomorphism through some 

results. 
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Theorem 6.1 Suppose that Γ|X → Y is a homomorphism of BF-algebra. If 𝒞t = (κ̂Ξ
t , σΞ

t ) is a t-NCID 

of Y. Then pre-image Γ−1(𝒞t) = (Γ−1(κ̂Ξ
t ), Γ−1(σΞ

t )) of 𝒞t under Γ of X is a t-NCID of X.   

Proof. For all t1 ∈ X, Γ−1(κ̂Ξ
t )(t1) = κ̂Ξ

t (Γ(t1)) ≤ κ̂Ξ
t (0) = κ̂Ξ

t (Γ(0)) = Γ−1(κ̂Ξ
t )(0) and Γ−1(σΞ

t )(t1) =

σΞ
t (Γ(t1)) ≥ σΞ

t (0) = σΞ
t (Γ(0)) = Γ−1(σΞ

t )(0). Let t1, t2 ∈ X, Γ−1(κ̂Ξ
t )  (t1) = κ̂Ξ

t (Γ(t1)) ≥

rmin{κ̂Ξ
t (Γ(t1) ∗ Γ(t2)), κ̂Ξ

t (Γ(t2))} =  rmin{κ̂Ξ
t (Γ(t1 ∗ t2)), κ̂Ξ

t (Γ(t2))} = rmin{Γ−1(κ̂Ξ
t )(t1 ∗

t2), Γ−1(κ̂Ξ
t )(t2)}  and Γ−1(σΞ

t )(a) = σΞ
t (Γ(t1)) ≤ max{σΞ

t (Γ(t1) ∗ Γ(t2)), σΞ
t (Γ(t2))} = max{σΞ

t (Γ(t1 ∗

t2)), σΞ
t (Γ(t2))} = max{Γ−1(σΞ

t )(t1 ∗ t2), Γ−1(σΞ
t )(t2)}.  Hence Γ−1(𝒞t) = (Γ−1(κ̂Ξ

t ), Γ−1(σΞ
t ))  is a 

t-NCID of X.  

Corollary 6.2 A homomorphic pre-image of a t-neutrosophic cubic closed ideal is a t-NCID.   

Proof. Using Proposition 5.5 and Theorem 6.1, we can prove this corollary .  

Corollary 6.3 A homomorphic preimage of a t-neutrosophic cubic closed ideal is also a t-NCSU.   

Proof. Using Theorem 5.8 and Theorem 6.1, we can prove this corollary.  

Corollary 6.4  Let Γ|X → Y be a homomorphism of BF-algebra. If 𝒞i
t = ((κ̂i

t)Ξ, (σi
t)Ξ) is a t-NCID of 

Y where i ∈ k then the pre image Γ−1(⋂
i∈kR

(𝒞i
t)Ξ) = (Γ−1(⋂

i∈kR
(κ̂i

t)Ξ), 

Γ−1(⋂
i∈kR

(σi
t)Ξ)) is a t-NCID of X.   

Proof. Using Theorem 5.9 and Theorem 6.1, we can prove this corollary.  

Corollary 6.5  Let Γ|X → Y  be a homomorphism of BF -algebra. If 𝒞i
t = ((κ̂i

t)Ξ, (σi
t)Ξ)  is a 

t-neutrosophic cubic closed ideals of Y  where i ∈ k  then the pre-image Γ−1(⋂
i∈kR

(𝒞i
t)Ξ)  =

(Γ−1(⋂
i∈kR

(κ̂i
t)Ξ), Γ−1(⋂

i∈kR
(σi

t)Ξ)) is a t-neutrosophic cubic closed ideal of X.   

Proof. Straightforward, using Theorem 5.10 and Theorem 6.1.  

Theorem 6.6 Suppose that Γ|X → Y  is an epimorphism of BF -algebra. Then 𝒞t = (κ̂Ξ
t , σΞ

t )  is a 

t-NCID of Y, if Γ−1(𝒞t) = (Γ−1(κ̂Ξ
t ), Γ−1(σΞ

t )) of 𝒞t under Γ of X is a t-NCID of X.   

Proof. For any t2 ∈ Y, ∃  t1 ∈ X  such that t2 = Γ(t1) . Then κ̂Ξ
t (t2) = κ̂Ξ

t (Γ(t1))  = Γ−1(κ̂Ξ
t )(t1) ≤

Γ−1(κ̂Ξ
t )(0) = κ̂Ξ

t (Γ(0)) = κ̂t
Ξ(0) and σΞ

t (t2) = σΞ
t (Γ(t1)) = Γ−1(σΞ

t ) 

(t1) ≥ Γ−1(σΞ
t )(0) = σΞ

t (Γ(0)) = σΞ
t (0). 

Suppose (t2)1, (t2)2 ∈ Y. Then Γ((t1)1) = (t2)1  and Γ((t1)2) = (t2)2  for some (t1)1, (t1)2 ∈

 X.  Thus κ̂Ξ
t ((t2)1) = κ̂Ξ

t (Γ((t1)1)) = Γ−1(κ̂Ξ
t )((t1)1) ≥ rmin{Γ−1(κ̂Ξ

t ) 

((t1)1 ∗ (t1)2), Γ−1(κ̂Ξ
t )((t1)2)} = rmin{κ̂Ξ

t (Γ((t1)1 ∗ (t1)2)), κ̂Ξ
t (Γ((t1)2))} =  rmin{κ̂Ξ

t  

(Γ((t1)1) ∗ Γ((t1)2)), κ̂Ξ
t (Γ((t1)2))} = rmin{κ̂Ξ

t ((t2)1 ∗ (t2)2), κ̂Ξ
t ((t2)2)} and 

σΞ
t ((t2)1) = σΞ

t (Γ((t1)1)) = Γ−1(σΞ
t )((t1)1) ≤ max{Γ−1(σΞ

t )((t1)1 ∗ (t1)2), Γ−1(σΞ
t )((t1)2)}

= max{σΞ
t (Γ((t1)1 ∗ (t1)2)), σΞ

t (Γ((t1)2))} = max{σΞ
t (Γ((t1)1) ∗ Γ((t1)2)), σΞ

t (Γ((t1)2))}
= max{σΞ

t ((t2)1 ∗ (t2)2), σΞ
t ((t2)2)}. 

Hence 𝒞t = (κ̂t
Ξ, σΞ

t ) is a t-NCID of Y. 

 

7 Conclusion  

In this paper, the concept of t-neutrosophic cubic set was defined and investigated it on BF-algebra 

through several useful results. For future work this study will provide base for t-neutrosophic soft 

cubic set, t-neutrosophic soft cubic (M-subalgebra, normal ideals) and different algebras like 

G-algebra and B-algebra. 
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