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Abstract:  

The core of operations research activity focuses on creating and using models. These 

models may be linear models, non-linear models, dynamic models, and others. Linear 

models are considered one of the most important and most widely used operations research 

models due to the availability of appropriate algorithms through which we can obtain the 

optimal solution, which prompts us to benefit from the nature of the topic under study and 

the information available to us about the variables in it to transform it into linear models. In 

classical logic, many nonlinear programming problems have been processed and 

transformed into linear programming problems. In this research, we present a study of the 

issue of planning hydroelectric systems, where the general policy for operating this system 

specifies two prices for selling the produced electricity, which makes this issue a non-linear 

programming issue. We will turn it into a linear programming problem using linear 

programming concepts, and then we will use Boolean concepts. Neutrosophic studies of 

linear programming and non-linear programming are presented to provide a neutrosophic 

formulation of the issue of planning hydroelectric systems, through which we obtain a 

neutrosophic linear model whose optimal solution fits all the conditions that the system’s 

operating environment may experience during the operating period. During the two 

operating periods. 
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1.  Introduction: 

Mathematical programming problems are generally concerned with allocating scarce 

resources of labor, machinery, and capital and using them in the best possible way, such 

that costs are reduced to their minimum or profits are maximized, by choosing the optimal 

solution from a set of possible solutions, and in doing so it depends on transforming the 

problem under study into a model. Mathematical and appropriate techniques are used for 

this type of model to reach the optimal solution. Linear programming problems are among 

the most widely used problems in most fields, and the reason for this is the availability of 

many appropriate techniques to find the optimal solution. Therefore, we find that students 

and researchers in the field of operations research always seek to Converting realistic 

problems into linear models if the data of the problem allow it. In this research, we present 

a study of one of the important issues, which is the issue of generating electrical power 

through the flow of water to power plants, where we described a hydroelectric system that 

operates in two periods and produces an amount of electricity that is sold at two different 

prices. This depends on the quantity produced, and because of this difference in price for 

the quantities produced, we find that the mathematical model that we will obtain is a non-

linear model, based on the information contained in reference [1]. In this research, we will 

present the issue using classical logic in a detailed manner through which we explain how 

to address some Nonlinear programming issues using linear programming concepts, and in 
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order to obtain accurate results that take into account all conditions and factors that can 

affect the amount of water used in the process of generating electrical power, we will use 

the concepts of neutrosophic logic, the logic whose studies and research, whose concepts 

have been used in most fields, have provided more results. Accuracy of the results that we 

were obtaining using the concepts of classical logic see [2-12], using previous studies that 

we presented using the concepts of neutrosophic logic for the topics of linear programming 

and nonlinear programming [13-24], and the result of this study will be to transform a 

neutrosophic nonlinear programming problem into A neutrosophic linear programming 

problem. The studies presented in the papers [17-20] can be used to find the optimal 

solution. 

2. Discussion: 

Based on the study mentioned in Reference [1], we present the following example 

through which we present the classic formulation of the issue of planning 

hydroelectric energy systems: 

The administration controls the operation of a system consisting of two water tanks, each 

equipped with two electrical power plants, as shown in the following figure: 

Figure No. (1) Hydroelectric system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This system works by sending a quantity of water to power plants to generate electrical 

power. The experts provided the following information: 

 Information about the power plants during the two periods: 

1- A volume of water of 1 Kilo-Acre-Foot (KAF), can generate 400 Megawatt-hour 

(MWh) of electricity in power plant 𝐴 and 200 MWh in power plant 𝐵. 

2- The maximum power that can be generated in power plant 𝐴 is 60000 MWh, and in 

power plant 𝐵 the maximum power that can be generated is 35000 MWh. 

3- An amount of electricity amounting to 50000 MWh, can be sold at a price of 20$ 

MWh, while the excess quantity is sold at a price of 14$ MWh. 

 Information about the tanks during the two periods:  

1- The maximum capacity of reservoir 𝐴 is 2000 KAF and the maximum capacity of 

reservoir  𝐵 is 1500 KAF. 

2- The level of reservoir 𝐴 at the beginning of the first period is 1900 KAF and the 

level of reservoir 𝐵 is 850 KAF. 

3- The minimum level allowed in tank 𝐴 is 1200 KAF and in tank 𝐵 is 800 KAF. 
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4- The flow to tank 𝐴 during the first period is 200 KAF and to tank 𝐵 is 40 KAF. 

5- The flow to tank 𝐴 during the second period is 130 KAF and to tank 𝐵 is 15 KAF. 

we should be noted here: 

 Power plant 𝐴 is supplied from tank A and power plant 𝐵 from tank 𝐵. 

 When the tanks are completely full, some of the water is drained through the 

drainage channels so that flooding does not occur. 

 For tank 𝐵, water is supplied from the following sources: 

 The aforementioned outflow. 

 From power plant 𝐴, the water that is supplied to the power plant after its 

use goes out to tank 𝐵. 

 Water drained from tank 𝐴 so that flooding does not occur. 

What is required is to build a mathematical model of the functioning of this system so 

that it achieves the maximum profit from the process of selling electricity. We know 

that to formulate a mathematical programming program, we follow the following 

three steps: 

 First step: We identify the unknowns in the problem (decision variables) and express them  

                    in algebraic symbols. 

Second step: We define all constraints and express them with equations or inequalities that  

                       are mathematical functions of the unknown variables. 

Step Three: We define the objective function and represent it as a linear function of the  

                      unknown variables. It should be made as large or as small as possible. 

According to the text of the issue, in order to obtain the required mathematical model, the 

issue must be studied according to the data for each period and the necessary relationships 

determined. Here we find that a study must be presented for the first and second steps, 

specific to each period separately. 

 The study for the first period: 

based on the previous information, we organize the following tables: 

Information about the power plants of the first period: 

Table No. (1) Information about power plants A and B during the first period 

power plant B 

 

power plant A 

 

power plants 

                  Information 

unknown unknown Water supplied to the power 

plant during the first period 

35000 60000 Maximum generating capacity 

during the first period 

200 
 

400 
 

The power it can generate for a 

volume of water of 1 KAF 

Information about tanks during the first period: 

Table No. (2) Information about reservoirs A and B during the first period 

Tank B 

 

Tank A 

 

Tanks 

Information 

1500 
 

2000 
 

Maximum capacity 

800 
 

1200 
 

Minimum permissible level 

850 
 

1900 
 

The ratio at the beginning of 

the first period 

unknown unknown Excess water drained from the 

tank to prevent flooding 

40 200 Flow during the first period 
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unknown unknown Reservoir level at the end of the 

first period 
 

The first step regarding this issue during the first period of work, we find that the 

unknowns  

1- The amount of power produced is divided into two parts: a quantity that is sold for 

20$ MWh, and a quantity that is sold for 14$ MWh. 

2- The amount of water that must be supplied to power plant 𝐴 will be denote 𝑥1. 

3- The amount of water supplied to power plant 𝐵 will be denoted 𝑥2. 

4- The amount of water that must be drained from tank 𝐴 so that flooding does not 

occur. We will denote it 𝑥3. 

5- The amount of water that must be drained from tank 𝐵 so that flooding does not 

occur. We will denote it 𝑥4. 

6- Tank 𝐴 level at the end of the first period. We will denote it 𝑥5. 

7- Tank 𝐵 level at the end of the first period. We will denote it 𝑥6. 

The second step regarding this issue during the first period of work we find the 

following restrictions: 

1- We assume that the amount of power sold during the first period at a price of 20$ 

MWh, is 𝑋1 and the amount of power sold at a price of 14$ MWh, is 𝑋2. The amount 

of power produced during the first period is: 

𝑋 = 𝑋1 + 𝑋2 

Electrical power constraint: Since every 1 KAF generates electrical power of 400 MWh, 

in power plant 𝐴 when supplying this plant with the quantity 𝑥1KAF, the power 

produced during the first period of this plant will be 400 𝑥1 .The same situation applies 

to power plant 𝐵, the amount of power produced is 200𝑥2, and therefore the amount of 

power produced during the first period of the two plants is: 

400𝑥1 + 200𝑥2 
The amount of power produced during the first period must equal the amount of power 

sold during this period, meaning we get the following restriction: 

400𝑥1 + 200𝑥2 = 𝑋1 + 𝑋2      (1) 

2- Constraint on the amount of water that must be supplied to Power Plant 𝐴: Since the 

maximum power that this plant can produce during the first period is 60000 MWh, 

and every 1 KAF of water in this plant produces 400 MWh, we get the following 

constraint: 
60000

400
= 150 ⟹ 

𝑥1 ≤ 150     (2) 

Restricting the amount of water that must be supplied to power plant 𝐵: Since the 

maximum power that this plant can produce during the first period is 35000 MWh, 

and every 1 KAF of water in this plant produces 200 MWh, we get the following 

restriction: 
35000

200
= 175 ⟹ 

𝑥2 ≤ 175     (3) 

3- Maintaining the amount of water in tank 𝐴: 

The level of tank 𝐴 at the beginning of the first period, plus the amount of flow into 

this tank, must equal the amount of water supplied to power plant 𝐴 from tank 𝐴 + 

the amount of water that must be drained so that a flood does not occur + the tank 

level at the end of the first period, i.e.: 

1900 + 200 = 𝑥1 + 𝑥3 +  𝑥5   ⟹ 
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𝑥1 + 𝑥3 + 𝑥5 = 2100     (4) 

Since the minimum level allowed in this tank is 1200 and the maximum capacity of 

this tank is 2000, the level of tank 𝐴 at the end of the first period must be limited 

between the values 1200 and 2000 and thus we obtain the following double 

restriction: 

1200 ≤ 𝑥5 ≤ 2000      (5) 

4- Maintaining the amount of water in tank 𝐵: 

The water supplied to power plant 𝐵+ the water drained from tank 𝐵 so that there is 

no flooding + the level of  tank 𝐵 at the end of the first period must equal the 

amount of water supplied to tank 𝐵 from power plant 𝐴 (it is the same amount of 

water that was supplied to power plant 𝐴 from the tank 𝐴) + the amount of water 

that must be drained from tank 𝐴 so that a flood does not occur + the level of tank 𝐵 

at the beginning of the first period + the amount of flow into tank 𝐵 in the first 

period, i.e.: 

𝑥2 + 𝑥4 + 𝑥6 = 𝑥1 + 𝑥3 + 850 + 40 ⟹ 

𝑥2 + 𝑥4 + 𝑥6 − 𝑥1 − 𝑥3 = 890     (6) 

Since the minimum level allowed in this tank is 800 and the maximum capacity of 

this tank is 1500, the level of tank 𝐵at the end of the first period must be limited 

between the values 800 and 1500, and thus we obtain the following double 

restriction: 

800 ≤ 𝑥6 ≤ 1500      (7) 

 The study for the second period: 

Information about the power plants of the second period: 

Table No. (1) Information about power plants A and B during the second period 

power plant B 
 

power plant A 
 

power plants 
                  Information 

Unknown 

 

Unknown 

 

Water supplied to the power 

plant during the second period 

35000 60000 Maximum generating capacity 
during the second period 

200 
 

400 
 

The power it can generate for a 

volume of water of 1 KAF 

Information about tanks during the first period: 
Table No. (2) Information about reservoirs A and B during the second period 

Tank B 

 

Tank A 

 

Tanks 

Information 

1500 
 

2000 
 

Maximum capacity 

800 
 

1200 
 

Minimum permissible level 

 
Unknown 

 

 

 
Unknown 

 

The ratio at the beginning of 
the second period is the same 

as the ratio at the end of the 

first period 

Unknown 
 

Unknown 
 

Excess water drained from the 
tank to prevent flooding 

15 130 Flow during the second period 

Unknown 
 

Unknown 
 

Reservoir level at the end of 
the second period 

The first step regarding this issue during the second period of work, we find that the 

unknowns are: 
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1- The amount of power produced is divided into two parts: a quantity that is sold for 

20$ MWh, and a quantity that is sold for 14$ MWh. 

2- The amount of water that must be supplied to power plant 𝐴 will be denoted 𝑦1. 

3- The amount of water supplied to power plant 𝐵 will be denoted 𝑦2. 

4- The amount of water that must be drained from tank 𝐴 so that flooding does not 

occur. We will denote it 𝑦3. 

5- The amount of water that must be drained from tank 𝐵 so that flooding does not 

occur. We will denote it 𝑦4. 

6- Tank 𝐴 level at the end of the second period. We will denote it 𝑦5. 

7- Tank 𝐵 level at the end of the second period. We will denote it 𝑦6. 

The second step regarding this issue during the second period of work we find the 

following restrictions: 

1- We assume that the amount of power sold during the first period at a price of 

20$ per megawatt-hour is 𝑌1 and the amount of power sold at a price of 14$ per 

megawatt-hour is 𝑌2. The amount of power produced during the first period is: 

𝑌 = 𝑌1 + 𝑌2 

Electrical power constraint: Since every 1 KAF generates electrical power of 400 

MWh, in power plant 𝐴, when supplying this plant with the quantity 𝑦1 KAF, the 

power produced during the second period of this plant will be 400 𝑦1 . The same 

situation is for power plant 𝐵, the amount of power produced is 200𝑦2, and 

therefore the amount of power produced during the second period of the two 

plants is: 

400𝑦1 + 200𝑦2 

                 The amount of power produced during the second period must equal the amount  

                  of power sold during this period, meaning we get the restriction:        

400𝑦1 + 200𝑦2 = 𝑌1 + 𝑌2      (8) 

2- Constraint on the amount of water that must be supplied to power Plant 𝐴: Since 

the maximum power that this plant can produce during the second period is 

60000 MWh, and every 1 KAF of water in this plant produces 400 MWh, we get 

the following constraint: 
60000

400
= 150 ⟹ 

𝑦1 ≤ 150     (9) 

Restricting the amount of water that must be supplied to power plant 𝐵: Since the 

maximum power that this plant can produce during the second period is 35000 

MWh, and every 1 KAF of water in this plant produces 200 MWh, we get the 

following restriction: 
35000

200
= 175 ⟹ 

𝑦2 ≤ 175     (10) 

3- Maintaining the amount of water in tank 𝐴: 

 The level of tank 𝐴 at the beginning of the second period, plus the amount 

flowing into this tank, must equal the amount of water supplied to it Power factor 

𝐴 of tank 𝐴 + the amount of water that must be drained so that there is no 

flooding + the tank level at the end the first period, i.e.: 

𝑥5 + 130 = 𝑦1 + 𝑦3 + 𝑦5  ⟹ 

𝑦1 + 𝑦3 +  𝑦5 − 𝑥5 = 130     (11) 

Since the minimum level allowed in this tank is 1200 and the maximum capacity 

of this tank is 2000, the level of tank 𝐴 at the end of the first period must be 
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limited between the values 1200 and 2000 and thus we obtain the following double 

restriction: 

1200 ≤ 𝑦5 ≤ 2000      (12) 

4- Maintaining the amount of water in tank 𝐵: 

The water supplied to power plant 𝐵 + the water drained from tank 𝐵 so that 

there is no flooding + the level of tank 𝐵 at the end of the second period must 

equal the amount of water supplied to tank 𝐵 from power plant 𝐴 (it is the same 

amount of water that was supplied to power plant 𝐴 from the tank 𝐴) + the 

amount of water that must be drained from tank 𝐴 so that a flood does not occur 

+ the level of tank 𝐵 at the beginning of the second period + the amount of flow 

into tank 𝐵 in the first period, i.e.: 

𝑦2 + 𝑦4 + 𝑦6 = 𝑥1 + 𝑦3 + 𝑥6 + 15 ⟹ 

𝑦2 + 𝑦4 + 𝑦6 − 𝑥1 − 𝑦3 − 𝑥6 = 15     (13) 

            Since the minimum level allowed in this tank is 800 and the maximum capacity of  

             this tank is 1500, the level tank 𝐵 at the end of the second period must be confined   

             between the values 800 and 1500, and thus we obtain the double entry. 

800 ≤ 𝑦6 ≤ 1500      (14) 

The third step: In the problem, determine the objective function relation: 

From the data of the issue, we found that the department responsible for the 

workflow set two prices for selling the electrical power produced during the two 

periods, according to the quantity sold, and then they are: 

The amount of power produced during the first period is given by the following 

relation: 

𝑋 = 𝑋1 + 𝑋2 

Where 𝑋1 is the amount of power sold during this period at a price of 20$ MWh, and 

𝑋2 is the amount of power sold during this period is at a price of 14$ MWh, the 

amount of power produced during the second period is given by the following 

relation: 

𝑌 = 𝑌1 + 𝑌2 

Where 𝑌1 is the amount of power sold during this period at a price of 20$ MWh, and 

𝑌2 is the amount of power sold during this period is at a price of 14$ MWh, in the 

following figure we show the maximum revenue and the quantities sold of power 

corresponding to the price of 20$ MWh, and the smallest revenue that we can obtain 

from power and the quantities sold of power corresponding to the price of 14$ 

MWh. 
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  The objective function can be represented as follows: 

Figure No. (2): Electricity sales estimated in megawatt hours (MWh) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the previous figure, we notice that the objective function is a discrete linear 

function. It is linear in the fields [0,50000] and ]50000, ∞[. Therefore, the quantity 

of electricity sold can be divided into two parts: the part sold at a price of 20$/ MWh, 

and the part sold at a price: 14$/ MWh, and the following figure shows the quantities 

produced and the maximum revenue for power sold at a price of 20$ and the 

quantities produced and the smallest revenue we can get from power sold at a price of 

14$. 

Figure No. (3) Maximum revenue, minimum revenue, and quantities sold 

according to price 
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From the above, we can represent the objective function with a linear function as 

follows: 

𝑍 = 20(𝑋1 + 𝑌1) + 14( 𝑋2 + 𝑌2)      (15) 

Mathematical model: 

Find: 

𝑍 = 20(𝑋1 + 𝑌1) + 14( 𝑋2 + 𝑌2)   ⟶ 𝑀𝑎𝑥 

Within the conditions: 

400𝑥1 + 200𝑥2 = 𝑋1 + 𝑋2    
𝑥1 ≤ 150   
𝑥2 ≤ 175   

𝑥1 + 𝑥3 +  𝑥5 = 2100   
𝑥5 ≤ 2000 

𝑥5 ≥ 1200 

𝑥2 + 𝑥4 + 𝑥6 − 𝑥1 − 𝑥3 = 890  
𝑥6 ≤ 1500 

𝑥6 ≥ 800 

400𝑦1 + 200𝑦2 = 𝑌1 + 𝑌2  
𝑦1 ≤ 150   
𝑦2 ≤ 175   

𝑦1 + 𝑦3 +  𝑦5 − 𝑥5 = 130    
𝑦5 ≤ 2000 

𝑦5 ≥ 1200 

𝑦2 + 𝑦4 + 𝑦6 − 𝑥1 − 𝑦3 − 𝑥6 = 15 

𝑦6 ≤ 1500 

𝑦6 ≥ 800 

𝑥𝑗 ≥ 0 , 𝑦𝑗 ≥ 0 ; 𝑗 = 1,2, … ,6  𝑎𝑛𝑑( 𝑋1, 𝑋2, 𝑌1, 𝑌2) ≥ 0 

It is a linear model in which the direct Simplex algorithm and its modifications can be 

used to find the optimal solution through which we achieve the maximum profit, but 

this solution will be a classic value, a specific value, appropriate to the data that was 

used, and any change in the conditions of the work environment will affect this data, 

and therefore the solution we obtain will be inappropriate. It may cause the 

organization to suffer significant losses, so we suggest that this issue be studied using 

the concepts of neutrosophic logic by taking data that is subject to change in 

neutrosophic values, as in the following generalized study: 

 The general neutrosophical formulation of the issue of planning hydroelectric 

power systems: 
In this section, we present a general neutrosophic formulation of the issue of planning 

hydroelectric systems, because, as we know, some data in the text of the issue are 

subject to change during the course of work in the system due to many natural and other 

factors. In order to obtain a more accurate and appropriate study for all circumstances, 

we will take these data as neutrosophic values. 

Relying on the information contained in references [3,14,21], we present the following 

neutrosophic study: 

Neutrosophic numbers [2]: 

The neutrosophic number is given by the following formula: 𝑎 ± 𝑏𝐼, where 𝑎 𝑎𝑛𝑑 𝑏 are 

real or complex coefficients, and 𝐼 is the indeterminacy. It can be any domain, set, or 

any neighborhood of real values. Therefore, in order to obtain the neutrosophic 

mathematical model for the problem of planning hydroelectric systems, we will take the 

data that Affected by the factors and conditions surrounding the system's operating 
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environment, neutrosophic numbers are any of the form 𝑁𝑏𝑖 and 𝑁𝑎𝑖𝑗, indefinite values. 

Completely determined, they can be any neighborhood of the real numbers 𝑎𝑖𝑗 and 𝑏𝑖 

written in one of the forms:   

  𝑁𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 𝜀𝑖𝑗 and 𝑁𝑏𝑖 = 𝑏𝑖 + 𝜇𝑖 where 𝜀𝑖𝑗 ∈ [𝜆1𝑖𝑗 , 𝜆2𝑖𝑗] or 𝜀𝑖𝑗 ∈ {𝜆1𝑖𝑗 , 𝜆2𝑖𝑗}. 

Neutrosophic Mathematical Model [21]: 

  In case of examples in which the goal and constraints are in the form of neutrosophic 

mathematical functions, then the neutrosophic mathematical model is written in the 

following form: 

𝑁𝑓 = 𝑁𝑓(𝑥1 , 𝑥2, −−, 𝑥𝑛) → (𝑀𝑎𝑥 )𝑜𝑟 (𝑀𝑖𝑛) 

    Subject to the following restrictions: 

𝑁𝑔𝑖(𝑥1 , 𝑥2, −−, 𝑥𝑛) (
≤
≥
=

) 𝑁𝑏𝑖   ; 𝑖 = 1,2, − − −, 𝑚 

𝑥1 , 𝑥2, −−, 𝑥𝑛 ≥ 0 

The general form of the neutrosophic linear model [14]: 

The general neutrosophic form of the linear mathematical model is given in short form 

as follows: 

𝑁𝑓 = ∑(𝑐𝑗 ± 𝜀𝑗)𝑥𝑗

𝑛

𝑗=1

→ (𝑀𝑎𝑥 )𝑜𝑟 (𝑀𝑖𝑛) 

Within the restrictions: 

∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

(
≤
≥
=

) 𝑏𝑖 ± 𝛿𝑖    ; 𝑖 = 1,2, … , 𝑚 

𝑥𝑗 ≥ 0 

Then we get the following neutrosophic formulation: 

A department controls the operation of a system consisting of two water tanks, each 

equipped with a plant to generate electrical power. This system works by sending a 

quantity of water to power plants to generate electrical power. The experts provided the 

following information: 

 Information about the power plants during the two periods: 

1- A volume of water of 1 KAF, can generate 𝑝𝐴 MWh, of electricity in power plant 𝐴 

and 𝑝𝐵 MWh, in power plant 𝐵. 

2- The maximum power that can be generated in power plant 𝐴 is 𝑁𝑃𝐴 MWh, and in 

power plant 𝐵 the maximum power that can be generated is 𝑁𝑃𝐵 MWh. 

3- An amount of electricity amounting to 𝐾 MWh, can be sold at a price of 𝐶𝑁1$ MWh, 

while the excess quantity is sold at a price of 𝐶𝑁2$ MWh. 

 Information about the tanks during the two periods:  

1- The maximum capacity of reservoir 𝐴 is 𝑆𝐴 KAF and the maximum capacity of 

reservoir 𝐵 is 𝑆𝐵 KAF. 

2- The level of reservoir 𝐴 at the beginning of the first period is 𝑁𝑀𝐴1 KAF and the level 

of reservoir 𝐵 is 𝑁𝑀𝐵1 KAF. 

3- The minimum level allowed in tank 𝐴 is 𝑁𝐿𝐴 KAF and in tank 𝐵 is 𝑁𝐿𝐵 KAF. 

4- The flow to tank 𝐴 during the first period is 𝑇𝐴𝑁1 KAF and to tank 𝐵 is 𝑇𝐵𝑁1 KAF. 

5- The flow to tank 𝐴 during the second period is 𝑇𝐴𝑁2 KAF and to tank 𝐵 is 𝑇𝐵𝑁2 KAF. 

We should be noted here: 

 Power plant 𝐴 is supplied from tank 𝐴 and power plant 𝐵 from tank 𝐵. 

 When the tanks are completely full, some of the water is drained through the 

drainage channels so that flooding does not occur. 
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 For tank 𝐵, water is supplied from the following sources: 

 The aforementioned outflow. 

 From power plant 𝐴, the water that is supplied to the power plant after its 

use goes out to tank 𝐵. 

 Water drained from tank 𝐴 so that flooding does not occur. 

What is required is to build a mathematical model of the functioning of this system so 

that it achieves the maximum profit from the process of selling electricity. We know 

that to formulate a mathematical programming program, we follow the following 

three steps: 

First step: We identify the unknowns in the problem (decision variables) and express them  

                   in algebraic symbols. 

Second step: We define all constraints and express them with equations or inequalities that  

                       are mathematical functions of the unknown variables. 

Step Three: We define the objective function and represent it as a linear function of the  

                      unknown variables. It should be made as large or as small as possible. 

According to the text of the issue, in order to obtain the required mathematical 

model, the issue must be studied according to the data for each period and the 

necessary relationships determined. Here we find that a study must be 

presented for the first and second steps, specific to each period separately. 

 The study for the first period: 

Based on the previous information, we organize the following tables: 

Information about the power plants of the first period: 

 
Table No. (1) Information about power plants A and B during the first period 

power plant B 

 

power plant A 

 

power plants 

                  Information 

Unknown 
 

Unknown 
 

Water supplied to the power 
plant during the first period 

𝑁𝑃𝐵 𝑁𝑃𝐴 Maximum generating capacity 

during the first period 

𝑝𝐵 
 

𝑝𝐴 
 

The power it can generate for a 
volume of water of 1 KAF 

Information about tanks during the first period: 

Table No. (2) Information about reservoirs A and B during the first period 

Tank B 
 

Tank A 
 

Tanks 
Information 

𝑆𝐵  
 

𝑆𝐴 
 

Maximum capacity 

𝑁𝐿𝐵  
 

𝑁𝐿𝐴 
 

Minimum permissible level 

𝑁𝑀𝐵1 
 

𝑁𝑀𝐴1 
 

The ratio at the beginning of 

the first period 

Unknown 
 

Unknown 
 

Excess water drained from the 
tank to prevent flooding 

𝑇𝐵𝑁1 𝑇𝐴𝑁1 Flow during the first period 

Unknown 
 

Unknown 
 

Reservoir level at the end of 
the first period 

The first step regarding this issue during the first period of work, we find that the 

unknowns: 
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1- The amount of power produced is divided into two parts: a quantity that is sold 

for  𝐶𝑁1$ MWh, and a quantity that is sold for  𝐶𝑁2$ MWh. 

2- The amount of water that must be supplied to power plant 𝐴 will be denoted 𝑥1. 

3- The amount of water supplied to power plant 𝐵 will be denoted 𝑥2. 

4- The amount of water that must be drained from tank 𝐴 so that flooding does not 

occur. We will denote it 𝑥3. 

5- The amount of water that must be drained from tank 𝐵 so that flooding does not 

occur. We will denote it 𝑥4. 

6- Tank 𝐴 level at the end of the first period. We will denote it 𝑥5. 

7- Tank 𝐵 level at the end of the first period. We will denote it 𝑥6. 

The second step regarding this issue during the first period of work we find the 

following restrictions: 

1- We assume that the amount of power sold during the first period at a price of 𝐶𝑁1$ 

MWh, is 𝑋1 and the amount of power sold at a price of 𝐶𝑁2$ MWh, is 𝑋2. The 

amount of power produced during the first period is: 

𝑋 = 𝑋1 + 𝑋2 
Electrical power constraint: Since every 1 KAF generates electrical power of 400 

MWh, in power plant 𝐴 when supplying this plant with the quantity 𝑥1KAF, the power 

produced during the first period of this plant will be 𝑝𝐴1 𝑥1 .The same situation 

applies to power plant 𝐵, the amount of power produced is 𝑝𝐵𝑥2 , and therefore the 

amount of power produced during the first period of the two plants is: 

𝑝𝐴𝑥1 + 𝑝𝐵𝑥2 

The amount of power produced during the first period must equal the amount of 

power sold during this period, meaning we get the following restriction: 

𝑝𝐴𝑥1 + 𝑝𝐵𝑥2 = 𝑋1 + 𝑋2      (1) 

2- Constraint on the amount of water that must be supplied to power plant 𝐴: Since the 

maximum power that this plant can produce during the first period is 𝑁𝑃𝐴  MWh, 

and every 1 KAF of water in this plant produces 𝑝𝐴 MWh, we get the following 

constraint: 
𝑁𝑃𝐴

𝑝𝐴
 ⟹ 𝑥1 ≤  

𝑁𝑃𝐴

𝑝𝐴
    (2) 

Restricting the amount of water that must be supplied to power plant 𝐵: Since the 

maximum power that this plant can produce during the first period is 𝑁𝑃𝐵 megawatt-

hours, and every 1 KAF of water in this plant produces 𝑝𝐵 MWh, we get the following 

restriction: 
𝑁𝑃𝐵

𝑝𝐵
⟹ 𝑥2 ≤

𝑁𝑃𝐵

𝑝𝐵
     (3) 

3- Maintaining the amount of water in tank 𝐴: 

        The level of tank 𝐴 at the beginning of the first period, plus the amount of flow into 

this tank, must equal the amount of water supplied to power plant 𝐴 from tank 𝐴 + the 

amount of water that must be drained so that a flood does not occur + the tank level at 

the end of the first period, i.e.: 

𝑁𝑀𝐴1 + 𝑇𝐴𝑁1 = 𝑥1 + 𝑥3 +  𝑥5   ⟹ 

𝑥1 + 𝑥3 +  𝑥5 = 𝑁𝑀𝐴1 + 𝑇𝐴𝑁1    (4) 

       Since the minimum level allowed in this tank is 𝑆𝐴 and the maximum capacity of this 

tank is 𝑁𝐿𝐴, the level of tank 𝐴 at the end of the first period must be limited between 

the values 𝑁𝐿𝐴 and  𝑆𝐴 thus we obtain the following double restriction:  

𝑁𝐿𝐴 ≤ 𝑥5 ≤ 𝑆𝐴      (5) 

4- Maintaining the amount of water in tank 𝐵: 
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The water supplied to power plant 𝐵+ the water drained from tank 𝐵 so that there is no 

flooding + the level of tank 𝐵 at the end of the first period must equal the amount of 

water supplied to tank 𝐵 from power plant 𝐴 (it is the same amount of water that was 

supplied to power plant 𝐴 from the tank 𝐴) + the amount of water that must be drained 

from tank 𝐴 so that a flood does not occur + the level of tank 𝐵 at the beginning of the 

first period + the amount of flow into tank 𝐵 in the first period, i.e.: 

𝑥2 + 𝑥4 + 𝑥6 = 𝑥1 + 𝑥3 + 𝑁𝑀𝐵1 + 𝑇𝐵𝑁1 ⟹ 

𝑥2 + 𝑥4 + 𝑥6 − 𝑥1 − 𝑥3 = 𝑁𝑀𝐵1 + 𝑇𝐵𝑁1     (6) 

Since the minimum level allowed in this tank is 𝑁𝐿𝐵 and the maximum capacity of this 

tank is 𝑆𝐵, the level of tank 𝐵at the end of the first period must be limited between the 

values 𝑁𝐿𝐵 and 𝑆𝐵, thus we obtain the following double restriction: 

𝑁𝐿𝐵 ≤ 𝑥6 ≤ 𝑆𝐵     (7) 

 The study for the second period: 

Information about the power plants of the second period: 
Table No. (1) Information about power plants A and B during the second period 

power plant B 

 

power plant A 

 

power plants 

                  Information 

Unknown 
 

Unknown 
 

Water supplied to the power 
plant during the second period 

𝑁𝑃𝐵 𝑁𝑃𝐴 Maximum generating capacity 

during the second period 

𝑝𝐵 
 

𝑝𝐴 
 

The power it can generate for a 
volume of water of 1 KAF 

 

 

Information about tanks during the first period: 

Table No. (2) Information about reservoirs A and B during the second period 

Tank B 

 

Tank A 

 

Tanks 

Information 

𝑆𝐵  
 

𝑆𝐴 
 

Maximum capacity 

𝑁𝐿𝐵  
 

𝑁𝐿𝐴 
 

Minimum permissible level 

 

Unknown 
 

 

Unknown 
 

The ratio at the beginning of 

the second period is the same 
as the ratio at the end of the 

first period 

Unknown 

 

Unknown 

 

Excess water drained from the 

tank to prevent flooding 

𝑇𝐵𝑁2 𝑇𝐴𝑁2 Flow during the second period 

Unknown 

 

Unknown 

 

Reservoir level at the end of 

the second period 

The first step regarding this issue during the second period of work, we find that the 

unknowns are: 

1- The amount of power produced is divided into two parts: a quantity that is sold for 

𝐶𝑁1$ MWh, and a quantity that is sold for 𝐶𝑁2$ MWh. 

2- The amount of water that must be supplied to power plant 𝐴 will be denoted 𝑦1. 

3- The amount of water supplied to power plant 𝐵 will be denoted 𝑦2. 

4- The amount of water that must be drained from tank 𝐴 so that flooding does not 

occur. We will denote it 𝑦3. 
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5- The amount of water that must be drained from tank 𝐵 so that flooding does not 

occur. We will denote it 𝑦4. 

6- Tank 𝐴 level at the end of the second period. We will denote it 𝑦5. 

7- Tank 𝐵 level at the end of the second period. We will denote it 𝑦6. 

The second step regarding this issue during the second period of work we find the 

following restrictions: 

1- We assume that the amount of power sold during the first period at a price of 

𝐶𝑁1$ MWh, is 𝑌1 and the amount of power sold at a price of 𝐶𝑁2$ MWh, is 𝑌2. 

The amount of power produced during the first period is: 

𝑌 = 𝑌1 + 𝑌2 

Electrical power constraint: Since every 1 KAF generates electrical power of 𝑝𝐴 

MWh, in power plant 𝐴, when supplying this plant with the quantity 𝑦1 KAF, the 

power produced during the second period of this plant will be 𝑝𝐴 𝑦1 . The same 

situation is for power plant 𝐵, the amount of power produced is 𝑝𝐵𝑦2, and therefore 

the amount of power produced during the second period of the two plants is: 

𝑝𝐴𝑦1 + 𝑝𝐵𝑦2 

           The amount of power produced during the second period must equal the amount of  

            power sold during this period, meaning we get the restriction:        

𝑝𝐴𝑦1 + 𝑝𝐵𝑦2 = 𝑌1 + 𝑌2      (8) 

2- Constraint on the amount of water that must be supplied to power plant 𝐴: Since 

the maximum power that this plant can produce during the second period is 𝑁𝑃𝐴 

MWh, and every 1 KAF of water in this plant produces 𝑝𝐴 MWh, we get the 

following constraint: 
𝑁𝑃𝐴

𝑝𝐴
 ⟹ 𝑦1 ≤  

𝑁𝑃𝐴

𝑝𝐴
    (9) 

Restricting the amount of water that must be supplied to power plant 𝐵: Since the 

maximum power that this plant can produce during the second period is 𝑁𝑃𝐵 MWh, 

and every 1 KAF of water in this plant produces 𝑝𝐵 MWh, we get the following 

restriction: 
𝑁𝑃𝐵

𝑝𝐵
⟹ 𝑦2 ≤

𝑁𝑃𝐵

𝑝𝐵
     (10) 

3- Maintaining the amount of water in tank 𝐴: 

 The level of tank 𝐴 at the beginning of the second period, plus the amount flowing 

into this tank, must equal the amount of water supplied to it Power factor 𝐴 of tank 

𝐴 + the amount of water that must be drained so that there is no flooding + the tank 

level at the end the first period, i.e.: 

𝑥5 + 𝑇𝐴2 = 𝑦1 + 𝑦3 + 𝑦5  ⟹ 

𝑦1 + 𝑦3 +  𝑦5 − 𝑥5 = 𝑇𝐴2     (11) 

Since the minimum level allowed in this tank is 𝑁𝐿𝐴 and the maximum capacity of 

this tank is 𝑆𝐴, the level of tank 𝐴 at the end of the first period must be limited 

between the values 𝑁𝐿𝐴 and 𝑆𝐴  thus we obtain the following double restriction:   

𝑁𝐿𝐴 ≤ 𝑦5 ≤ 𝑆𝐴      (12) 

4- Maintaining the amount of water in tank 𝐵: 

The water supplied to power plant 𝐵 + the water drained from tank 𝐵 so that there is 

no flooding + the level of tank 𝐵 at the end of the second period must equal the 

amount of water supplied to tank 𝐵 from power plant 𝐴 (it is the same amount of 

water that was supplied to power plant 𝐴 from the tank 𝐴) + the amount of water 

that must be drained from tank 𝐴 so that a flood does not occur + the level of tank 𝐵 
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at the beginning of the second period + the amount of flow into tank 𝐵 in the first 

period, i.e.: 

𝑦2 + 𝑦4 + 𝑦6 = 𝑥1 + 𝑦3 + 𝑥6 + 𝑇𝐵𝑁2 ⟹ 

𝑦2 + 𝑦4 + 𝑦6 − 𝑥1 − 𝑦3 − 𝑥6 = 𝑇𝐵𝑁2     (13) 

  Since the minimum level allowed in this tank is 𝑁𝐿𝐵 and the maximum capacity 

of this tank is 𝑆𝐵, the level tank 𝐵 at the end of the second period must be 

confined between the values 𝑁𝐿𝐵 and 𝑆𝐵, and thus we obtain the double entry.  

𝑁𝐿𝐵 ≤ 𝑦6 ≤ 𝑆𝐵     (14) 

The third step: In the problem, determine the objective function relation: 

From the data of the issue, we found that the department responsible for the 

workflow set two prices for selling the electrical power produced during the two 

periods, according to the quantity sold, and then they are: 

The amount of power produced during the first period is given by the following 

relation: 

𝑋 = 𝑋1 + 𝑋2 

Where 𝑋1 is the amount of power sold during this period at a price of 𝐶𝑁1$  MWh, 

and 𝑋2 is the amount of power sold during this period is at a price of 𝐶𝑁2$  MWh, 

the amount of power produced during the second period is given by the following 

relation:  

𝑌 = 𝑌1 + 𝑌2 

Where 𝑌1 is the amount of power sold during this period at a price of 𝐶𝑁1$ MWh, 

and 𝑌2 is the amount of power sold during this period is at a price of 𝐶𝑁2$  MWh, 

in the following figure we show the maximum revenue and the quantities sold of 

power corresponding to the price of 𝐶𝑁1$ MWh, and the smallest revenue that we 

can obtain from power and the quantities sold of power corresponding to the price 

of 𝐶𝑁2$ MWh. 

From the previous figure, we notice that the objective function is a discrete linear 

function. It is linear in the fields [0,50000] and ]50000, ∞[. Therefore, the 

quantity of electricity sold can be divided into two parts: the part sold at a price of 

𝐶𝑁1$/MWh, and the part sold at a price: 𝐶𝑁2$/MWh, and the following figure 

shows the quantities produced and the maximum revenue for power sold at a price 

of 𝐶𝑁1$ and the quantities produced and the smallest revenue we can get from 

power sold at a price of 𝐶𝑁2$ MWh.  

From the above, we can represent the objective function with a linear function as 

follows: 

𝑍 = 𝐶𝑁1(𝑋1 + 𝑌1) + 𝐶𝑁2( 𝑋2 + 𝑌2)      (15) 

Mathematical model: 

Find: 

𝑍 = 𝐶𝑁1(𝑋1 + 𝑌1) + 𝐶𝑁2( 𝑋2 + 𝑌2)   ⟶ 𝑀𝑎𝑥 

Within the conditions: 

𝑝𝐴𝑥1 + 𝑝𝐵𝑥2 = 𝑋1 + 𝑋2   

𝑥1 ≤  
𝑁𝑃𝐴

𝑝𝐴
   

𝑥2 ≤
𝑁𝑃𝐵

𝑝𝐵
      

𝑥1 + 𝑥3 +  𝑥5 = 𝑁𝑀𝐴1 + 𝑇𝐴𝑁1   
𝑦5 ≥ 𝑁𝐿𝐴  
𝑦5 ≤ 𝑆𝐴   

𝑥2 + 𝑥4 + 𝑥6 − 𝑥1 − 𝑥3 = 𝑁𝑀𝐵1 + 𝑇𝐵𝑁1  
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𝑥6 ≤ 𝑆𝐵  
𝑥6 ≥ 𝑁𝐿𝐵 

𝑝𝐴𝑦1 + 𝑝𝐵𝑦2 = 𝑌1 + 𝑌2   

𝑦1 ≤  
𝑁𝑃𝐴

𝑝𝐴
  

𝑦2 ≤
𝑁𝑃𝐵

𝑝𝐵
   

𝑦1 + 𝑦3 +  𝑦5 − 𝑥5 = 𝑇𝐴𝑁2   
𝑦5 ≤ 𝑆𝐴   
𝑦5 ≥ 𝑁𝐿𝐴 

𝑦2 + 𝑦4 + 𝑦6 − 𝑥1 − 𝑦3 − 𝑥6 = 𝑇𝐵𝑁2  
𝑦6 ≤ 𝑆𝐵   
𝑦6 ≥ 𝑁𝐿𝐵 

𝑥𝑗 ≥ 0 , 𝑦𝑗 ≥ 0 ; 𝑗 = 1,2, … ,6  𝑎𝑛𝑑( 𝑋1, 𝑋2, 𝑌1, 𝑌2) ≥ 0 

 Example text using neutrosophic values: 

              A department controls the operation of a system consisting of two water tanks, 

each equipped with a plant to generate electrical energy. This system works by 

sending a quantity of water to power plants to generate electrical energy. The 

experts provided the following information: 

       Information about the power plants during the two periods: 

1- A volume of water of 1 KAF, can generate 400 MWh, of electricity in power 

plant 𝐴 and 200 MWh, in power plant 𝐵. 

2- The maximum power that can be generated in power plant 𝐴 is [50000,70000] 
MWh, and in power plant 𝐵 the maximum power that can be generated is 
[30000,40000] MWh. 

3- An amount of electricity amounting to 50000 MWh, can be sold at a price of 
{15,20,25}$ MWh, while the excess quantity is sold at a price of {10,14,15}$ 

MWh. 

     Information about the tanks during the two periods:  

1- The maximum capacity of reservoir 𝐴 is 2000 KAF and the maximum capacity of 

reservoir 𝐵 is 1500 KAF. 

2- The level of reservoir 𝐴 at the beginning of the first period is [1700,1900] KAF 

and the level of reservoir 𝐵 is [650,850] KAF. 

3- The minimum level allowed in tank 𝐴 is [1000,1200] KAF and in tank 𝐵 is 
[600,800] KAF. 

4- The flow to tank 𝐴 during the first period is [150,250] KAF and to tank 𝐵 is 
[30,50] KAF. 

5- The flow to tank 𝐴 during the second period is [80,180] KAF and to tank 𝐵 is 
[10,20] KAF. 

    It should be noted here: 

 Power plant 𝐴 is supplied from tank A and power plant 𝐵 from tank 𝐵. 

 When the tanks are completely full, some of the water is drained through the 

drainage channels so that flooding does not occur. 

 For tank 𝐵, water is supplied from the following sources: 

 The aforementioned outflow. 

 From power plant 𝐴, the water that is supplied to the power plant after its 

use goes out to tank 𝐵. 

 Water drained from tank 𝐴 so that flooding does not occur. 
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What is required is to build a mathematical model of the functioning of this 

system so that it achieves the maximum profit from the process of selling 

electricity, we know that to formulate a mathematical programming program, 

we follow the following three steps: 

 First step: We identify the unknowns in the problem (decision variables) and  

                    express them in algebraic symbols. 

Second step: We define all constraints and express them with equations or  

                      inequalities that are mathematical functions of the unknown variables. 

Step Three: We define the objective function and represent it as a linear function of  

                the unknown variables. It should be made as large or as small as possible. 

According to the text of the issue: 

                  In order to obtain the required mathematical model, the issue must be  

                 studied according to the data for each period and the necessary  

                 relationships determined.    

 Here we find that a study must be presented for the first and second steps, specific  

                to each period separately. 

 The study for the first period: 

Based on the previous information, we organize the following tables: 

Information about the power plants of the first period: 
Table No. (1) Information about power plants A and B during the first period 

power plant B 

 

power plant A 

 

power plants 

                  Information 

Unknown 
 

Unknown 
 

Water supplied to the power 
plant during the first period 

[30000,40000] [50000,70000] Maximum generating capacity 

during the first period 

200 
 

400 
 

The power it can generate for a 
volume of water of 1 KAF 

 

Information about tanks during the first period: 

Table No. (2) Information about reservoirs A and B during the first period 

Tank B 
 

Tank A 
 

Tanks 
Information 

1500 
 

2000 
 

Maximum capacity 

[600,800] 
 

[1000,1200] 
 

Minimum permissible level 

[650,850] 
 

[1700,1900] 
 

The ratio at the beginning of 

the first period 

Unknown 

 

Unknown 

 

Excess water drained from the 

tank to prevent flooding 

[30,50] [150,250] Flow during the first period 

Unknown 

 

Unknown 

 

Reservoir level at the end of 

the first period 

The first step regarding this issue during the first period of work, we find that the 

unknowns: 

1- The amount of power produced is divided into two parts: a quantity that is sold 

for {15,20,25}$ MWh, and a quantity that is sold for {10,14,15}$ MWh. 

2- The amount of water that must be supplied to power plant 𝐴 will be denoted 𝑥1. 

3- The amount of water supplied to power plant 𝐵 will be denoted 𝑥2. 
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4- The amount of water that must be drained from tank 𝐴 so that flooding does not 

occur. We will denote it 𝑥3. 

5- The amount of water that must be drained from tank 𝐵 so that flooding does not 

occur. We will denote it 𝑥4. 

6- Tank 𝐴 level at the end of the first period. We will denote it 𝑥5. 

7- Tank 𝐵 level at the end of the first period. We will denote it 𝑥6. 

The second step regarding this issue during the first period of work we find the 

following restrictions: 

1- We assume that the amount of power sold during the first period at a price of 
{15,20,25}$ MWh, is 𝑋1 and the amount of power sold at a price of {10,14,15}$ 

MWh, is 𝑋2. The amount of power produced during the first period is: 

𝑋 = 𝑋1 + 𝑋2 

Electrical power constraint: Since every 1 KAF generates electrical power of 400 

MWh, in power plant 𝐴 when supplying this plant with the quantity 𝑥1KAF, the 

power produced during the first period of this plant will be 400 𝑥1 .The same 

situation applies to power plant 𝐵, the amount of power produced is 200𝑥2, and 

therefore the amount of power produced during the first period of the two plants 

is: 

400𝑥1 + 200𝑥2 

The amount of power produced during the first period must equal the amount of 

power sold during this period, meaning we get the following restriction: 

400𝑥1 + 200𝑥2 = 𝑋1 + 𝑋2      (1) 

2- Constraint on the amount of water that must be supplied to Power Plant 𝐴: Since 

the maximum power that this plant can produce during the first period is 
[50000,70000] MWh, and every 1 KAF of water in this plant produces 400 

MWh, we get the following constraint: 
[50000,70000]

400
 ⟹ 𝑥1 ≤  [125,175]   (2) 

Restricting the amount of water that must be supplied to power plant 𝐵: Since the 

maximum power that this plant can produce during the first period is 
[30000,40000] MWh, and every 1 KAF of water in this plant produces 200 

MWh, we get the following restriction: 
[30000,40000]

200
⟹ 𝑥2 ≤ [150,200]     (3) 

3- Maintaining the amount of water in tank 𝐴: 

The level of tank 𝐴 at the beginning of the first period, plus the amount of flow 

into this tank, must equal the amount of water supplied to power plant 𝐴 from 

tank 𝐴 + the amount of water that must be drained so that a flood does not occur 

+ the tank level at the end of the first period, i.e.: 

[50000,70000] + [150,250] = 𝑥1 + 𝑥3 +  𝑥5   ⟹ 

𝑥1 + 𝑥3 +  𝑥5 = [50150,70250]    (4) 

Since the minimum level allowed in this tank is [1000,1200] and the maximum 

capacity of this tank is 2000, the level of tank 𝐴 at the end of the first period 

must be limited between the values [1000,1200] and 2000 and thus we obtain 

the following double restriction: 
[1000,1200] ≤ 𝑥5 ≤ 2000     (5) 

4- Maintaining the amount of water in tank 𝐵: 

The water supplied to power plant 𝐵+ the water drained from tank 𝐵 so that there 

is no flooding + the level of  tank 𝐵 at the end of the first period must equal the 
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amount of water supplied to tank 𝐵 from power plant 𝐴 (it is the same amount of 

water that was supplied to power plant 𝐴 from the tank 𝐴) + the amount of water 

that must be drained from tank 𝐴 so that a flood does not occur + the level of 

tank 𝐵 at the beginning of the first period + the amount of flow into tank 𝐵 in the 

first period, i.e.: 

𝑥2 + 𝑥4 + 𝑥6 = 𝑥1 + 𝑥3 + [650,850] + [30,50] ⟹ 

𝑥2 + 𝑥4 + 𝑥6 − 𝑥1 − 𝑥3 = [680,900]     (6) 

Since the minimum level allowed in this tank is [600,800] and the maximum 

capacity of this tank is 1500, the level of tank 𝐵at the end of the first period must 

be limited between the values [600,800] and 1500, and thus we obtain the 

following double restriction: 
[600,800] ≤ 𝑥6 ≤ 1500     (7) 

 The study for the second period: 

Information about the power plants of the second period: 

Table No. (1) Information about power plants A and B during the second period 

power plant B 

 

power plant A 

 

power plants 
                  Information 

Unknown 

 

Unknown 

 

Water supplied to the power 

plant during the second period 

[30000,40000] [50000,70000] Maximum generating capacity 
during the second period 

200 
 

400 
 

The power it can generate for a 

volume of water of 1 KAF 

 

 

Information about tanks during the first period: 
Table No. (2) Information about reservoirs A and B during the second period 

Tank B 

 

Tank A 

 

Tanks 

Information 

1500 
 

2000 
 

Maximum capacity 

[600,800] 
 

[1000,1200] 
 

Minimum permissible level 

 
Unknown 

 

 
Unknown 

 

The ratio at the beginning of 
the second period is the same 

as the ratio at the end of the 

first period 

Unknown 
 

Unknown 
 

Excess water drained from the 
tank to prevent flooding 

[10,20] [80,180] Flow during the second period 

Unknown 
 

Unknown 
 

Reservoir level at the end of 
the second period 

The first step regarding this issue during the second period of work, we find that the 

unknowns: 

1- The amount of power produced is divided into two parts: a quantity that is sold 

for {15,20,25}$ MWh, and a quantity that is sold for {10,14,15}$ MWh. 

2- The amount of water that must be supplied to power plant 𝐴 will be denoted 𝑦1. 

3- The amount of water supplied to power plant 𝐵 will be denoted 𝑦2. 

4- The amount of water that must be drained from tank 𝐴 so that flooding does not 

occur. We will denote it 𝑦3. 
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5- The amount of water that must be drained from tank 𝐵 so that flooding does not 

occur. We will denote it 𝑦4. 

6- Tank 𝐴 level at the end of the second period. We will denote it 𝑦5. 

7- Tank 𝐵 level at the end of the second period. We will denote it 𝑦6. 

The second step regarding this issue during the second period of work we find the 

following restrictions: 

1- We assume that the amount of power sold during the first period at a price of 
{15,20,25}$ MWh, is 𝑌1 and the amount of power sold at a price of 
{10,14,15}$MWh, is 𝑌2. The amount of power produced during the first period 

is: 

𝑌 = 𝑌1 + 𝑌2 

Electrical power constraint: Since every 1 KAF, generates electrical power of 400 

MWh, in power plant 𝐴, when supplying this plant with the quantity 𝑦1 KAF, the 

power produced during the second period of this plant will be 400 𝑦1 . The same 

situation is for power plant 𝐵, the amount of power produced is 200𝑦2, and 

therefore the amount of power produced during the second period of the two 

plants is: 

400𝑦1 + 200𝑦2 

                 The amount of power produced during the second period must equal the amount  

                 of power sold during this period, meaning we get the restriction:        

 

400𝑦1 + 200𝑦2 = 𝑌1 + 𝑌2      (8) 

2- Constraint on the amount of water that must be supplied to power Plant 𝐴: Since 

the maximum power that this plant can produce during the second period is 
[50000,70000]MWh, and every 1 KAF of water in this plant produces 400 

MWh, we get the following constraint: 
[50000,70000]

400
 ⟹ 𝑦1 ≤  [125,175]  (9) 

Restricting the amount of water that must be supplied to power plant 𝐵: Since the 

maximum power that this plant can produce during the second period is 
[30000,40000] MWh, and every 1 KAF of water in this plant produces 200 

MWh, we get the following restriction: 
[30000,40000]

200
⟹ 𝑦2 ≤ [150,200]     (10) 

3- Maintaining the amount of water in tank 𝐴: 

 The level of tank 𝐴 at the beginning of the second period, plus the amount 

flowing into this tank, must equal the amount of water supplied to it Power factor 

𝐴 of tank 𝐴 + the amount of water that must be drained so that there is no 

flooding + the tank level at the end the first period, i.e.: 

𝑥5 + [150,250] = 𝑦1 + 𝑦3 + 𝑦5  ⟹ 

𝑦1 + 𝑦3 +  𝑦5 − 𝑥5 = [150,250]    (11) 

Since the minimum level allowed in this tank is [1000,1200] and the maximum 

capacity of this tank is 2000, the level of tank 𝐴 at the end of the first period must 

be limited between the values [1000,1200] and 2000 and thus we obtain the 

following double restriction: 
[1000,1200] ≤ 𝑦5 ≤ 2000      (12) 

4- Maintaining the amount of water in tank 𝐵: 

The water supplied to power plant 𝐵 + the water drained from tank 𝐵 so that 

there is no flooding + the level of tank 𝐵 at the end of the second period must 
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equal the amount of water supplied to tank 𝐵 from power plant 𝐴 (it is the same 

amount of water that was supplied to power plant 𝐴 from the tank 𝐴) + the 

amount of water that must be drained from tank 𝐴 so that a flood does not occur 

+ the level of tank 𝐵 at the beginning of the second period + the amount of flow 

into tank 𝐵 in the first period, i.e.: 

𝑦2 + 𝑦4 + 𝑦6 = 𝑥1 + 𝑦3 + 𝑥6 + [30,50] ⟹ 

𝑦2 + 𝑦4 + 𝑦6 − 𝑥1 − 𝑦3 − 𝑥6 = [30,50]    (13) 

                  Since the minimum level allowed in this tank is [600,800] and the maximum  

                  capacity of this tank is 1500, the level tank 𝐵 at the end of the second period  

                  must be confined between the values[600,800]and 1500, and thus we obtain the  

                 double entry. 
[600,800] ≤ 𝑦6 ≤ 1500     (14) 

The third step: In the problem, determine the objective function relation: 

From the data of the issue, we found that the department responsible for the 

workflow set two prices for selling the electrical power produced during the two 

periods, according to the quantity sold, and then they are: 

The amount of power produced during the first period is given by the following 

relation: 

𝑋 = 𝑋1 + 𝑋2 

Where 𝑋1 is the amount of power sold during this period at a price of {15,20,25}$ 

MWh, and 𝑋2 is the amount of power sold during this period is at a price of 
{10,14,15}$ MWh, the amount of power produced during the second period is given 

by the following relation: 

𝑌 = 𝑌1 + 𝑌2 

Where 𝑌1 is the amount of power sold during this period at a price of {15,20,25}$ 

MWh, and 𝑌2 is the amount of power sold during this period is at a price of 
{10,14,15}$ MWh, in the following figure we show the maximum revenue and the 

quantities sold of power corresponding to the price of {15,20,25}$ MWh, and the 

smallest revenue that we can obtain from power and the quantities sold of power 

corresponding to the price of {10,14,15}$ MWh. 

From the previous figure, we notice that the objective function is a discrete linear 

function. It is linear in the fields [0,50000] and ]50000, ∞[. Therefore, the quantity 

of electricity sold can be divided into two parts: the part sold at a price of 
{15,20,25}$/ MWh, and the part sold at a price: {10,14,15}$/ MWh, and the 

following figure shows the quantities produced and the maximum revenue for 

power sold at a price of {15,20,25}$ and the quantities produced and the smallest 

revenue we can get from power sold at a price of {10,14,15}$. 

From the above, we can represent the objective function with a linear function as 

follows: 

𝑍 = {15,20,25}(𝑋1 + 𝑌1) + {10,14,15}( 𝑋2 + 𝑌2)      (15) 

Mathematical model: 

Find: 

𝑍 = {15,20,25}(𝑋1 + 𝑌1) + {10,14,15}( 𝑋2 + 𝑌2)   ⟶ 𝑀𝑎𝑥 

Within the conditions: 

400𝑥1 + 200𝑥2 = 𝑋1 + 𝑋2  
𝑥1 ≤  [125,175]    
𝑥2 ≤ [150,200]      

𝑥1 + 𝑥3 +  𝑥5 = [50150,70250]     
𝑦5 ≤ 2000      
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𝑦5 ≥ [1000,1200] 
𝑥2 + 𝑥4 + 𝑥6 − 𝑥1 − 𝑥3 = [680,900]  

𝑥6 ≤ 1500  
𝑥6 ≥ [600,800] 

200𝑦1 + 400𝑦2 = 𝑌1 + 𝑌2  
𝑦1 ≤  [125,175]   
𝑦2 ≤ [150,200]   

𝑦1 + 𝑦3 +  𝑦5 − 𝑥5 = [150,250]   
𝑦5 ≤ 2000       

𝑦5 ≥ [1000,1200] 
𝑦2 + 𝑦4 + 𝑦6 − 𝑥1 − 𝑦3 − 𝑥6 = [30,50]  

𝑦6 ≤ 1500   
𝑦6 ≥ [600,800] 

𝑥𝑗 ≥ 0 , 𝑦𝑗 ≥ 0 ; 𝑗 = 1,2, … ,6  𝑎𝑛𝑑( 𝑋1, 𝑋2, 𝑌1, 𝑌2) ≥ 0 

It is a linear neutrosophic model. The direct simplex neutrosophic algorithm and its 

modifications can be used to find the optimal solution through which we achieve the 

maximum profit, and it takes into account all the conditions that the system’s working 

environment may experience, through the indeterminacy present in the neutrosophic 

values that were taken for data that is subject to change due to factors and conditions 

that can occur. To go through the work environment. 
Conclusion and results: 

In this research, we presented a study of the issue of planning hydroelectric systems. 

From the information contained in reference [1], we reformulated this issue in an 

expanded way using classical values. Since some of the data in this issue are affected 

by natural or other factors, we found that the solution we can get from While solving 

the linear model, there may be an inaccurate solution that does not fit with the 

conditions that the system’s operating environment may experience. Therefore, we 

presented a complex formula for the problem of planning hydroelectric systems using 

the concepts of neutrosophic logic, and we obtained a neutrosophic linear model. 

Special neutrosophic algorithms can be used to solve the linear models that were 

presented. In previous research to obtain the optimal neutrosophic solution suitable 

for all conditions 
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