\TSS Neutrosophic Sets and Systems, Vol. 67, 2024

'l' "' University of New Mexico
N1 a
Fuzzy Metric Spaces Of The Two-Fold Fuzzy Algebra

Hazim M. Wali Al-Tameemi

The Osol Aldeen Private University College, Iraq

Drhazim8@oue.edu.ig

Abstract:

This paper is dedicated to defining and studying for the first time the concept of fuzzy
metric spaces based on two-fold fuzzy algebras, where the elementary properties of this
new concept will be studied and presented by many theorems and related examples that
explain the validity of our work. Also, many different types of open and closed balls will be
discussed, as well as the relationships between these metric substructures.
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Introduction and basic concepts

The applications of neutrosophic sets and fuzzy sets are very wide and open research areas.
In the literature, we can find many neutrosophic and fuzzy algebraic structures with deep
connection with applied mathematics and number theory [5-11]. The concept of two-fold
algebra was presented by Smarandache in [4], where many suggestions for the algebraic
structure related to this algebra were defined and presented. This new idea has been used
in [1] to study the two-fold algebra based on the standard fuzzy number theoretical system
[3].

In [2], Hatip et.al. proposed the two-fold vector space and two-fold algebraic module based
on fuzzy mappings, where they have studied the elementary properties of these new
generalizations with many interesting examples.

This work is motivated by the modern idea of two-fold algebra, and metric spaces, where

we can combine those to different structures in one algebraic structure called two-fold
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fuzzy metric space. On the other hand, we concentrate on deriving the essential properties
and substructures of this new concept.

First, we recall some basic definitions:

Main discussion

Definition:

Let R be the real field, we define the two-fold fuzzy real algebra as follows:
Rpo,1] = {*a;x ER.a €[0.1]} and a =u(y) ;y €R and u: R - [0,1]
Definition:

We define the following operations on Ry qj :

*: Ro,1] X Rjo,1] = R4 such that:

Xu(y) * Zut) = (X + 2D ey

0:Rpo,1] X Ryjo,1] = Rpg,1; such that:

Xu(y) © Zut) = (X Duyey

Theorem 1:

Let Rjo1] be the two-fold fuzzy real algebra, then:

1] (*,0) are commutative.

2] (*,0) are associative.

3] (*,©) have identities.

4] (*,0) are anti- inverse in general.

Example:

x| 0<|x]<1
Take u: R—- [0,1] ; wu(x) = L ; [x] =1

[x|
0 ; x=0
. 1
Consider x,,) = 5u(6) Zu@r) = (E)M(l) € R[o,1}, then:
3
1 n

X * zuw = (5 + %)u(g) =5 )u(Z) =3

2
1

%) © Zuce) = (5 'z)u(e) - @%’

3

Definition:
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Let Rjoq; be the two fold fuzzy real algebra, with: u: R — [0.1], then we say that x,(,) =

: . X2z
Z,(y) if and only if: {“(y) > u(t)
Al >0 ifand only if: {7 =7
SO, Xuy) 2 0 1f and only 1it: u(y) =0
Example:
x? —1<x<1
For u: R—-[01] ; u(x) =41 > 1 and for:
[x|
Xu) = 4#(1) Zut) = (5),1(4), we can see:

X =2z
If Xuy) = Zut) - then {‘u(y) = u(t)

Theorem?2:

Consider the relation (<) defined previonsly over R4, then:

1] Xy < xXu@y for all x.y €R.

21T xu(y) < Zuey) and zy(e) < Xu(y) -then x4y =24y for all x.y.z.t €R.
B1If xuy) < Zuey and zu) < Ny(s) -then x,¢,) < Ny for all x.y.z.N.t.s €R
Remark:

Theorem (2) means that (<) is a partial order relation on Rpg .

Definition:

Let U, V be two non- empty sets, with:

d=UxU - R*. wVxV-]J01] such that:

(d) is a metricon U, (u) is a fuzzy metric on V.

We define the corresponding twofold algebra fuzzy metric as:
x . +

A=b ; XEU. yEV, with: d Ax AR,

Such that:

dy(xy.2;) = [d(x.2)] u(y.ty the mapping (d,) is called the twofold algebra fuzzy metric.

Theorem 3:
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Let (A.d,) be two fold algebra fuzzy metric space defined above, then:

1] dy(x4.%5) = 0o and d,(x4.y5) = 0o

2] dy(xq.yp) = dy(yp-Xa).

3] dy(xq.z.) < dy(xq.yp) + dy(yp.2z;) for all x.y.z €U .a.b.c €V.
Example:

Take U= R with d=RXR >R ;dx.y)={x—y |

1

And V= R with u=RXR - [0.1] ;u(a.b):{E ;axb

0;a=5h>

We have: A= {x, ;x.a € R}. For example:

Xq =35 .yp=4%¢ . du(xq.yp) = (3 —4Dyuce) = 1% .

Definition:

Let By(x.r) ={y €U ;d(x.y) <r } be an open ball in U, with x €U as a center

and r €R" asaradius.

By(x.r)= {y€U ;d(x.y) <r } be the corresponding closed ball, and T,;(x.7)=
{y €U ;d(x.y) =r } be the corresponding torus.

Also, let B,(a.t) ={b €V ;u(a.b) <t } be an open ball in V, with a €V as a center

and t €[0.1] as aradius.

B_ﬂ(a. t)={b€V ;u(a.b) <t } be the corresponding closed ball, and T,(a.t) =
{b €V ;u(a.b) =t } be the corresponding torus.

We define the following different types of balls in the twofold algebra fuzzy metric spaces:

1] AgZ:{xaeA ;XEBy . a€B,}.
2] A%z{xaEA;xEBd. a € B,}.
3] Ap'={xa €A ;x€By a€T,}
4] Ag_z={xaEA;xEB_d. a € B,}.
5] Ag:z={xaEA;xEB_d. a € B,}.
6] A?_l‘f:{xaEA ;x €Bg. a€T,}.

7] A'={x, €A ;x€T; a€B,}.
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8] g—;‘i:{xaeA;xETd. a € B,}.
9 A'={xa €L ;x €T, a€T,}

Remark:

(A.d,) has 9 different types of balls.

Theorem4:

Consider By(x.r) ={y €U ;d(x.y)<r } cU.Bg(x.r) and T;(x.r).
Consider By(a.t) ={b €V ;u(a.b) <t }cV.B,(a.t).and T,(a.t).

Then we have:

B

1] Alic ABic ABe

3 H H

B B By
2] ABZQ AB—ZQ Aﬁ

T By — ABa
3] A gﬂgA gﬂg AB_Z

4] A"§ c Azte AZe
5] &g, < Azt
6] A% < A%

Example:

Consider U= R .V= R,with d=RXR ->Rf.u=RXxR - [0.1]

Such that: d(x.y) =|x—y| and u(a.b) =

0 ;a=Dhb
; lal.lbl =1

N | =

% s lal<1 or |bl<1

Wehavefor =3 .r=1 .a=2 .t=§:

Byx.r)={yeR ;|ly—-3I<1 }={yeR ;2<y<4}.
Bix.r)={y€ER ;2<y<4}LT;(x.7) = {2.4}.
Also, B(a.t) ={beR ; uab)<i}={peR ;lbl<1 }u{2

B,(a.t)={beR ; |bl<1 }u{2}=B,(a.t).
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L= {berR ; pab)=:}=0

Proof of theorem (1):

1 Xy * Zuy = (0 + Dpiey = @+ Dpey) = Zuo * Xuw)-

Also,  Xu(y) © Zuey = (X" Do) = (2 Dpcey) = Zu() © Xu)-

2l ) * (Vu) * Zu0) = Xu) * O + Doy = O+ Y + Dpcave) = * + Yucan) * Zuco) =
(Xu(a) * Yu®)) * Zu(o)-

Also,  Xu(ay © (Vu) © Zu(e) = Xu(a) © 0D vy = (¥ piave) = (V) ab) © Zue) = Fu(a) ©

Yu)) © Zu(c)-

. Xy =x
3Jif Xu(a) © Yur) = Xu(a) -then {u(ab) = u(a) for all x.a € R.

So that: y =1.b = 1.and the identity of (0) is 1.
xX+y=x
If Xy *Yuw) = Xu@ -then {u(ab) — u(a) for all x.a € R.

O.and the identity of (x) iso;.

So that: {Z i 1

. _ u(ab) =1
4]if x,(q) * Yup) =©1 -then {x +y=0

This implies that (*) is anti- inverse in general, that is because finding (b) for each (a) such
that u(ab) =1 is depended on pu.
For (0), it can be proved by the same.

Proof of theorem (2):

<x

X =
u) <uy) MM Fuw) S Ko

1] since {

<z

2] x <z implies that { x=
ko) = Zut TP u) < p(ey

. . z<x X=2z
Zu(t) < Xu(y) implies that{#(t) <u®) .thus {,u(t) = u(y) .and X,y = Zy(p)-

3] Assume that Xu(y) < Zuey and zy) <

x<z<N

N, -then {‘u(y) < u(t) < uls)

.thus  x,5) < Ny

Proof of theorem (3):
1] dy(xq.x4) = [d(x. )] y(a.a) = Oo-

dy(xq.yp) = [d(x.y)]u(ap) on the other hand, we have:
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{d(x.y) >0

u(a.b) =0 -hence  dy,(xq.yp) = 0o.

2] dy(xa-yp) = [dx-N]p@p) = [AO-Olup.ay = duYp-Xa)-

d(x.z) <d(x.y) +d(y.z)

3] We have: {M(a- c) < u(a.b) + u(b.c)

Thus: [d(x.2)]uac) < [d&Y) ] uap) + [AQ-2)]up.c), hence:
dy(xq.z.) < dy(xg.yp) + dy(Vp.2c).

Proof of theorem (4):

By . y € Bd - Bd
1] Let y, € AB” .then: {b €B, c —“
B Bg Bg
Thus ABZE ABZE AB—Z.

2] It can be proved by a similar argument of .

Tq ) y € Td c B_d
3] Let y, € ATu .then: {b eT, c —y
Thus: A;;’Q A?; A%.
4] It can be proved by a similar way.
y € Td c Td

Tq . “«
5] Let y, € AB” .then: {b €B, c B,

Thus Agz c g—i.
6] It can be proved by a similar argument of .

Definition:

Consider By (x.7).B4(x.7).B,(a.t).B,(a.t), and:

~ Byx.r)={y€euU ; dlx.y)=r }.

~ Bglx.r)={yeU ; dxy)>r }.

~ B(a.t) ={beV ; ula.b) >t }

~ By(a.t)={beV ; ula.b) >t 1

We define:

1] A;ﬂBd={xaeA ;  XE€~ By .a€B,}
2] AT p'={x,€A; x€~ By .a€~ B}
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3] A;MB_E {xg €A ;
4] A~ fﬁ:{xaeA ;
5] A;—#de {xo €A ;

6] A~ Bd—{xaeA ;
71 8y = {xa € ;

8] A7 pi={xs€n ;

9 a5"i={xg€A ;

S| &
|

10] AT 22={x, €A ;

m
1] A= {x, €A ;
12]ABd—{xa€A ;
13]ABd—{xa€A ;

14] A Bd—{xaEA ;

Theorem (5):

X €~ By aEB}
x€~ By .a€~ B}
x€~ By .a€B,}.

x€~ By .a€~ B,}.

x €~ By .a€B,}

x€ By .a€~B,}

x€ By .a€~ B,}-

1] 45,7 nAZ 3= 0 .A;TLBd nA~ %z 0.

2]ABdn ANBd 0} ABdn A Baz g,

By
3]ABdnA =0 ABdnAgizzqs.
4]ABd nABd ¢ A nAjiZ:(z).

~ B ~ B ~ Bg ~ Bg
5] Ap, “CA Ed g e A

B By Bg
6] A_jic A’ ANB_A d

~By

7] ABdnA " Ba— pTd

~By ~By

NBu

Bg ~ Bg_ ATa
ANEOA NE—A

~ By
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Bg Bq _ A Bg Bq Bqg _ 5 Bg
8] AE N A~B#_AT# 'AE N A~B#_AT#'

9 A,

Tq

T,

d Bgq
n AZ2=A
By N

Proof:
For the proof, we must regard that: Ay N Az = Ajfg forall x. ACU .y.BCV.
Also, Ay= @ ifandonlyif x=0 or y=20.

According to the definitions, we can write:

B,N~B,=B,N~B, =0
Bdﬂ~Bd=B_dﬂ~B_d=®

Thus , hold directly.
Also, {Bd N~Ba=Tq .thus: @ hold directly.

B_u N~B, =T,
On the other hand, we have:
B; € By
¢~ "% thus E hold directly.
B, € B,

Example:
ForU=V=R .d=RXR ->Rt.u=RxR -[01] .with d(x.y) =|x—y| .u(a.b) =

0 ; a=Dhb
1
> ; laland|b| =1 , we have:

; Jal<1 or |bl<1

~ByBD ={yeR; [y-3[=z1={yeR; y=z4 or ys2j
~B,B1)={yeR; y>4 or y<2}

~B,(23)={rer; p@p2i=per ;bIz1}
~B,(23)={prer; u@b)>i}={per ;bI=1}=~B(2.2)

So that, we have:

Ade={xaEA; 2<x<4 . la] <1 or a=2}
B B

Edz ABud
Bg _

ATH =0
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Ajﬁ:{xaeA ;
Aj—‘i: {x, EA ;

Ba_ .
Ag, ={xg €A ;

B
Azd= {x, €A ;

Agi={x, €D ;
T
A~%= {x, €A ;

AB/:de {xa €A ;

A= {xg €A ;
Ap =0
Ajdez {x, EA ;
vafd= {xa €A ;
AB;B:: {x, €A ;

A—;B_d= {x, €A :

A~~Bi_d= {x, €A :

2<x<4 .

2<x<4 .

2<x<4 .

2<x<4 .

lal > 1 }

lal >1 }

lal <1 }

lal <1 }

2<x<4 .

2<x<4 .

x €{24} .

x €{24} .

x €{2.4} .

x €{2.4} .

x> 4

x> 4

x> 4

or

or

or

or

or

or

or

lal >1 }

lal>1 }

lal <1

lal <1

lal =1 }

lal =1 }.

x<2

x> 2

x> 2

x<?2

or a =2}

or a =2}

la] <1 or a=2}

la] <1 or a =2}

lal = 1}

lal = 1}

lal <1 or a=2}

lal <1 or a=2}

lal| =1 }
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AN“B_MB_d:{xaeA; x>4 or x<2 . |al=1}

Conclusion

In this paper, we defined for the first time the concept of fuzzy metric spaces based on
two-fold fuzzy algebras, where the elementary properties of this new concept were studied
and presented by many theorems and related examples that explain the validity of this
work. Also, many different types of open and closed balls were discussed, as well as the
relationships between these metric substructures.
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