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Abstract. The concepts of cubic spherical neutrosophic sets (CSNSs), introduced and investigated by Gomathi

et al. [5], offer a geometric representation of collection of neutrosophic sets (NSs), enhancing their ability to

capture uncertainty. The formulation characterizes information using points on a sphere with a defined center

and radius, providing a more precise depiction of fuzziness inherent in uncertain data. The cubic spherical

neutrosophic Archimedean triangular norms(ATN) and conorms (ATCN), expanding the model’s capabilities

to handle uncertainty. These algebraic operators enable the aggregation and combination of uncertain informa-

tion, offering a more comprehensive approach to decision-making. The research further presents a method for

solving multiple-criteria decision-making problems within the cubic spherical neutrosophic context, leveraging

the newly integrated norms and conorms. The algorithm utilizes the cosine similarity measure of cubic spher-

ical neutrosophic sets, exemplified through an application involving the selection of the most effective electric

truck. This extended framework provides decision-makers with enhanced tools to navigate complex decision

landscapes amidst uncertainty, facilitating more informed and robust choices across diverse domains.
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—————————————————————————————————————————-

1. Introduction

In 1998, Smarandache [27] early proposed NSs, which are a generalization of fuzzy sets and

intuitionistic fuzzy sets. The membership, indeterminacy and non-membership mappings used
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to describe NSs are such that the sum of their non-negative mapping values is less than three.

NSs are frequently utilized in several fields, resulting in decision-making, clustering algorithms,

distance measurement, entropy measurement, pattern recognition and medical diagnostics.

As a generalization of NSs, numerous sets are Proposed including single-valued NSs [29],

interval-valued NSs [28], neutrosophic hesitant FSs [33], bipolar NSs [3], spherical NSs [16],

simplified NSs [35], multi-valued NSs [16], and probability multi-valued NSs [21]. In 1954,

Menger [15] proposed the first description of TNs, and then Schweizer and Sklar [24,25] revised

them to become those that are currently in use. Several investigations [2, 7, 11–13, 36] study

the properties of above said norms including continuous, nilpotent, Archimedean, stringent

and others.

The area of operations research that is categorized as MCDM focuses on the explicit eval-

uation of multiple conflicting criteria while making decisions (in daily life and situations like

businesses, governments and medicals). Contradictory standards are frequently present while

examining possibilities. The cost of the truck is typically among the main criteria and the qual-

ity measure is commonly another, simply compared to the cost. When purchasing a truck, we

may prioritize cost, towing capacity, loading capability, security and fuel consumption. Typi-

cally, the truck with the lowest price also has the maximum towing and loading capabilities.

Whenever managing a portfolio, managers want to maximize profits while minimizing risks;

yet, the stocks with the highest return potential often have the highest risk of dropping money.

Customer happiness and service costs are fundamentally opposing factors in the service sector.

People frequently implicitly consider several factors when making daily decisions and they may

be satisfied with the results of those judgments if they are solely based on intuition. On the

other hand, it’s crucial to properly outline the problem when the stakes are high.

Research Gap and Motivation

The study of cubic spherical neutrosophic sets and their associated arithmetic operators

present a novel avenue for handling uncertainty and indeterminacy in decision-making pro-

cesses. However, despite its potential, there remains a notable research gap and several moti-

vating factors for further exploration:

• Lack of Comprehensive Frameworks: Existing research on neutrosophic sets and

their operators primarily focuses on conventional models, often overlooking the com-

plexities inherent in real-world decision-making scenarios. The introduction of CSNS

and its arithmetic operators offers a more comprehensive framework for addressing

uncertainty, yet further exploration is needed to fully understand its implications and

applicability across diverse domains.
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• Limited Applications and Case Studies: While the concept of CSNS shows

promise, there is a scarcity of practical applications and case studies demonstrating

its effectiveness in real-world contexts. The absence of empirical validation hinders

the wider adoption and understanding of CSNS-based methodologies, highlighting the

need for empirical studies and practical implementations.

• Potential for Methodological Enhancements: The development of CSNS-based

arithmetic operators opens avenues for further methodological enhancements and re-

finements. Exploring alternative aggregation techniques, refining parameter estimation

methodologies and investigating the scalability of CSNS-based models are areas ripe

for exploration and innovation.

The motivation behind this study stems from the need to address the challenges posed by un-

certainty and indeterminacy in decision-making processes. Traditional decision-making models

often struggle to accommodate the complexities and nuances inherent in real-world scenarios,

leading to suboptimal outcomes and missed opportunities. The introduction of CSNS and its

associated arithmetic operators offers a promising avenue for overcoming these challenges.

The motivation for studying CSNS lies in its potential to provide a more comprehensive and

nuanced representation of uncertain information. By incorporating a spherical representation

with a radius r and a triple at its center, CSNS allows decision-makers to capture degrees of

membership, indeterminacy and non-participation in a more intuitive and meaningful manner.

This in turn, facilitates more informed and robust decision-making processes across various

domains.

Contribution

The study makes several significant contributions to the field of decision-making under

uncertainty and indeterminacy:

• Introduction of Cubic Spherical Neutrosophic Sets (CSNS): The study in-

troduces CSNS as a novel framework for representing uncertainty and indeterminacy

in decision-making processes. By extending the concept of Neutrosophic Sets (NS) to

include a spherical representation with a radius r and a triple at its center, CSNS offers

a more comprehensive and nuanced approach to modeling uncertain information.

• Development of Arithmetic Operators: The research proposes two new arithmetic

operators specifically tailored for CSNS: Weighted Arithmetic Cubic Spherical Neutro-

sophic Aggregation Operators and Weighted Geometric Cubic Spherical Neutrosophic

Aggregation Operators. These operators address limitations of existing neutrosophic

operators and provide more reliable and effective aggregation techniques for handling

uncertain data.
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• Methodological Advancement in MCDM: The study presents an innovative

Multiple-Criteria Decision-Making (MCDM) method for selecting the best electric

truck based on CSNS and its arithmetic operators. By leveraging CSNS-based ag-

gregation techniques, the proposed method offers a systematic and robust approach to

decision-making in complex, uncertain environments.

• Practical Implications and Future Directions: The research not only advances

theoretical understanding but also holds practical implications for various domains.

The introduction of CSNS and its associated arithmetic operators has the potential

to enhance decision-making processes in diverse fields such as engineering, finance,

healthcare and environmental management. Furthermore, the study opens avenues

for future research, including empirical validation, comparative analysis with existing

methodologies and exploration of alternative arithmetic operators.

This study presents the concept of algebraic operations between CSNSs using TNs and

TCNs. Moreover, some weighted aggregation operators that transform input values repre-

sented by CSNV s to a single output value using these algebraic operations are proposed.

Finally, a cubic spherical CSM depending on the radius is given for evaluating the level of

similarity between CSNV s. In addition, we propose a technique for converting a set of NV s

into a CSNV s.

2. Preliminaries

Definition 2.1. [8] A mapping Γ : [0, 1] × [0, 1] −→ [0, 1] is a neutrosophic TN if it satisfies

the following:

(i) Γ(α, (1, 0, 0)) = α and Γ(α, (0, 1, 1)) = 0,

(ii) Γ(α, β) = Γ(β, α),

(iii) Γ(α,Γ(β, γ)) = Γ(β,Γ(α, γ)),

(iv) Γ(α, β) ≤ Γ(α′, β′) where α ≤ α′ and β ≤ β′,
for all α = (α1, α2), β = (β1, β2), γ = (γ1, γ2) ∈ [0, 1].

Definition 2.2. [8] A mapping Γ∗ : [0, 1]× [0, 1] −→ [0, 1] is a neutrosophic TCN if it satisfies

the following:

(i) Γ∗(α, (0, 1, 1)) = α and Γ∗(α, (1, 0, 0)) = 0,

(ii) Γ∗(α, β) = Γ∗(β, α),

(iii) Γ∗(α,Γ∗(β, γ)) = Γ∗(β,Γ∗(α, γ)),

(iv) Γ∗(α, β) ≤ Γ∗(α′, β′) where α ≤ α′ and β ≤ β′,
for all α = (α1, α2), β = (β1, β2), γ = (γ1, γ2) ∈ [0, 1].
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Definition 2.3. [9] A monotonically strictly decreasing mapping ∗ : [0, 1] −→ [0,∞) defined

by ∗(1) = 0 is called an AFG of a t-norm Γ if Γ(α, β) = ∗−1(∗(α) + ∗(β)) for any (α, β) ∈
[0, 1]× [0, 1].

Definition 2.4. [9, 14] If Γ (resp. Γ∗) is neutrosophic TN (resp. TCN) on [0, 1] is said to

be dual with respect to S, if Γ(α, β) = S(Γ∗(S(α),S(β))) (resp. Γ∗(α, β) = S(Γ(S(α),S(β)))

) for any α, β ∈ [0, 1].

Definition 2.5. [8, 18] If Γ (resp. Γ∗) is neutrosophic TN (resp. TCN) on [0, 1], then the

dual t-conorm T ∗ is defined as T ∗(α, β) = 1− Γ(1− α, 1− β), for any α, β ∈ [0, 1].

Clearly Γ is an ATN if it is continuous and Γ(α, α) < α for all α ∈ (0, 1) and Γ∗ is an ATCN

if it is continuous Γ∗(α, α) > α for any α ∈ (0, 1).

Definition 2.6. [8] A mapping N : [0, 1] × [0, 1] −→ [0, 1] is a neutrosophic negator, if it

satisfies three conditions:

(i) N (α, (0, 1, 1)) = 1 for any α ∈ [0, 1],

(ii) N (α, (1, 0, 0)) = 0 for any α ∈ [0, 1],

(iii) N (α, β) ≥ N (α′, β′) where α ≤ α′ and β ≤ β′.

Definition 2.7. [5] A cubic spherical neutrosophic set (CSNS) CcsR in X is defined by CcsR =

{< x, csTCx , csICx , csFCx ; csR >: x ∈ X}, where csTC , csIC , csFC : X −→ [0, 1] are mappings

satisfies the condition csTC + csIC + csFC ≤ 3 and csR > 0 denote the radius of the sphere

centred at the point ( csTCx , csICx , csFCx ) in the cube.

If a collection {< csTε,1, csIε,1, csFε,1 >,< csTε,2, csIε,2, csFε,2 >, ..., < csTε,kε , csIε,kε , csFε,kε >
} of CSNSs is assigned for any xε in X. Then UcsR = {< xε,

csTU
xε

, csIUxε ,
csFU
xε

; csRε >: xε ∈ X}

is a CSNS in X where < csTU
xε

, csIUxε ,
csFU
xε

>=<
∑kε
η=1 csTε,j
kε

,
∑kε
η=1 csIε,j
kε

,
∑kε
η=1 csFε,j
kε

> and csRε =

min{max1≤j≤kε
√

( csTUxε − csTε,j)
2 + ( csIUxε − csIε,j)

2 + ( csFUxε − csFε,j)
2, 1}.

Let X = {x, y} and λ1, λ2 ∈ NS(X) such that

λ1 = {〈x, 0.88, 0.33, 0.22〉, 〈x, 0.77, 0.44, 0.11〉, 〈x, 0.55, 0.44, 0.22〉, 〈x, 0.66, 0.55, 0.33〉}

λ2 = {〈y, 0.66, 0.22, 0.11〉, 〈y, 0.88, 0.11, 0.22〉, 〈y, 0.88, 0.33, 0.11〉, 〈y, 0.99, 0.44, 0.22〉}.

The CSNSs are λ(R1) = {〈x, 0.72, 0.44, 0.22; 0.20〉 : x ∈ X} and

λ(R2) = {〈y, 0.85, 0.28, 0.17; 0.22〉 : y ∈ X}.

Definition 2.8. [5] Let UcsR = {< x, csTUx , csIUx , csFUx ; csR >: x ∈ X} and VcsS =

{< x, csTVx , csIVx , csFVx ; csS >: x ∈ X} be CSNSs in X and † ∈ {min,max}. Then

(1) UcsR ⊂ VcsS iff csR ≤ csS and csTU
x ≤ csTV

x , csIU
x ≥ csIV

x and csFU
x ≥ csFV

x for any

x ∈ X,
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(2) UcsR = Vs iff csR = s and csTU
x = csTV

x , csIUx = csIV
x and csFU

x = csFV
x for any x ∈ X,

(3) U ccsR = {< x, csFUx , csIUx , csTUx ; csR >: x ∈ X},
(4) UcsR ∪† Vs = {< x,max( csTUx , csTVx ),min( csIUx , csIVx ),min( csFUx , csFVx );

† (csR, csS) >: x ∈ X},
(5) UcsR ∩† VcsS = {< x,min( csTUx , csTVx ),max( csIUx , csIVx ),max( csFUx , csFVx );

† (csR, csS) >: x ∈ X}.

The acronyms used in the current research are listed below.

Table 1. Acronyms

Abbreviation Description

min Minimum

max Maximum

NSs Neutrosophic Sets

NV s Neutrosophic Values

CSNSs Cubic Spherical Neutrosophic Sets

CSNV s Cubic Spherical Neutrosophic Values

MCDM Multiple-Criteria Decision-Making

CSM Cosine Similarity Measure

ATN Archimedean T-Norm

ATCN Archimedean t-Conorm

AFG Additive Functional Generator

3. Cubic Spherical Neutrosophic t-norm and t-conorm

Definition 3.1. Let u =< csTu, csIu, csFu; csRu > and v =< csTv, csIv, csFu; csRv > be two

CSNV s in X and † ∈ {min,max}. The following are some set operations that can be defined

between CSNV s :

(1) u⊕† v =< csTu + csTv − csTucsTv, csIucsIv, csFucsFv; †(csRu, csRv) >,
(2) u⊗† v =< csTucsTv, csIu + csIv − csIucsIv, csFu + csFv − csFucsFv; †(csRu, csRv) > .

From Definition 3.1, by using TN and TCN, we may extend.

If Γ and Γ∗ are dual TN and TCN with respect to the cubic spherical neutrosophic complement

S, respectively and Q is a TN or TCN. Then we can define the following algebraic operations

among CSNV s.

(1) u⊕Q v =< Γ∗(csTu, csTv),Γ(csIu, csIv),Γ(csFu, csFv);Q(csRu, csRv) >,

(2) u⊗Q v =< Γ(csTu, csTv),Γ∗(csIu, csIv),Γ∗(csFu, csFv);Q(csRu, csRv) > .
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If ? : [0, 1] −→ [0,∞) is the AFG of a continuous Archimedean ATN and ∗(t) = ?(1 − t)

and ℘ : [0, 1] −→ [0,∞) is the AFG of a continuous TCN. Then we can define the following

algebraic operations among CSNV s and m > 0.

(1) u⊕℘ v = < ∗−1(∗(csTu) + ∗(csTv)), ?−1(?(csIu) + ?(csIv)),
?−1 (?(csFu) + ?(csFv));℘−1(℘(csRu) + ℘(csRv)) >,

(2) u⊗℘ v = < ?−1(?(csTu) + ?(csTv)), ∗−1(∗(csIu) + ∗(csIv)),
∗−1 (∗(csFu) + ∗(csFv));℘−1(℘(csRu) + ℘(csRv)) >,

(3) m℘u = < ∗−1(m ∗ (csTu)), ?−1(m ? (csIu)), ?−1(m ? (csFu));℘−1(m℘(csRu)) >,

(4) um℘ = < ?−1(m ? (csTu)), ∗−1(m ∗ (csIu)), ∗−1(m ∗ (csFu));℘−1(m℘(csRu)) > .

Definition 3.2. Let ?, ∗, ℘, ρ : [0, 1] −→ [0,∞) be mappings such that ?(t) = −log t, ∗(t) =

−log (1 − t), ρ(t) = −log t, and ℘(t) = −log (1 − t) and m > 0. Then we can define the

following algebraic operations among CSNV s.

(1) u⊕℘ v = < csTu + csTv − csTucsTv, csIucsIv, csFucsFv; csRucsRv >,
(2) u⊕ρ v = < csTu + csTv − csTucsTv, csIucsIv, csFucsFv; csRu + csRv − csRucsRv >,
(3) u⊗℘ v = < csTucsTv, csIu + csIv − csIucsIv, csFu + csFv − csFucsFv; csRucsRv >,
(4) u⊗ρ v = < csTucsTv, csIu + csIv − csIucsIv, csFu + csFv − csFucsFv;

csRu + csRv − csRucsRv >,
(5) m℘u = < 1− (1− csTu)m, csImu , csFmu ; csRmu >,

(6) mρu = < 1− (1− csTu)m, csImu , csFmu ; 1− (1− csRu)m >,

(7) um℘ = < csTmu , 1− (1− csIu)m, 1− (1− csFu)m; csRmu >,

(8) umρ = < csTmu , 1− (1− csIu)m, 1− (1− csFu)m; 1− (1− csRu)m > .

Theorem 3.1. Let u =< csTu, csIu, csFu; csRu >, v =< csTv, csIv, csFv; csRv >, and
w =< csTw, csIw, csFw; csRw > be CSNV s and let m,n > 0. If ? : [0, 1] −→ [0,∞) is the AFG

of a continuous ATN and ∗(t) = ?(1− t) and ℘ : [0, 1] −→ [0,∞) is the AFG of a continuous

ATN or ATCN. Then

(1) u⊕℘ v = v ⊕℘ u,
(2) u⊗℘ v = v ⊗℘ u,
(3) (u⊕℘ v)⊕℘ w = u⊕ρ (v ⊕℘ w),

(4) (u⊗℘ v)⊗℘ w = u⊗℘ (v ⊗℘ w),

(5) m℘(u⊕℘ v) = m℘u⊕℘ m℘v,

(6) (m℘ ⊕ n℘)u = m℘u⊕℘ n℘u,
(7) (u⊗℘ v)m℘ = um℘ ⊗℘ vm℘ ,
(8) um℘ ⊗℘ un℘ = um℘+n℘ .
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Proof: (1) and (2) are trivial.

(3). (u⊕℘ v)⊕℘ w = < ∗−1(∗(csTu) + ∗(csTv)), ?−1(?(csIu) + ?(csIv)), ?−1(?(csFu) + ?(csFv));

℘−1(℘(csRu) + ℘(csRv)) > ⊕℘ < csTw, csIw, csFw; csRw >

= < ∗−1(∗(∗−1(∗(csTu) + ∗(csTv)) + ∗(csTw))),

?−1 (?(?−1(?(csIu) + ?(csIv)) + ?(csIw))),

?−1 (?(?−1(?(csFu) + ?(csFv)) + ?(csFw)));

℘−1(℘(℘−1(℘(csRu) + ℘(csRv)) + ℘(csRw))) >

= < ∗−1(∗(csTu) + ∗(csTv) + ∗(csTw)), ?−1(?(csIu) + ?(csIv) + ?(csIw)),

?−1 (?(csFu) + ?(csFv) + ?(csFw));℘−1(℘(csRu) + ℘(csRv) + ℘(csRw)) >

= < ∗−1(∗(csTu) + ∗(∗−1(∗(csTv) + ∗(csTw)))),

?−1 (?(csIu) + ?(?−1(?(csIv) + ?(csIw)))),

?−1 (?(csFu) + ?(?−1(?(csFv) + ?(csFw))));

℘−1(℘(csRu) + ℘(℘−1(℘(csRv) + ℘(csRw)))) >

= < csTu, csIu; csRu > ⊕℘ < ∗−1(∗(csTv) + ∗(csTw)), ?−1(∗(csIv) + ?(csIw)),

?−1 (?(csFv) + ?(csFw));℘−1(℘(csRv) + ℘(csRw)) >

= u⊕℘ (v ⊕℘ w).

(4). (u⊗℘ v)⊗℘ w = < ?−1(?(csTu) + ?(csTv)), ∗−1(∗(csIu) + ∗(csIv)), ∗−1(∗(csFu) + ∗(csFv));

℘−1(℘(csRu) + ℘(csRv)) > ⊗℘ < csTw, csIw, csFw; csRw >

= < ?−1(?(?−1(?(csTu) + ?(csTv)) + ∗(csTw))),

∗−1 (∗(∗−1(∗(csIu) + ∗(csIv)) + ∗(csIw))),

∗−1 (∗(∗−1(∗(csFu) + ∗(csFv)) + ∗(csFw)));

℘−1(℘(℘−1(℘(csRu) + ℘(csRv)) + ℘(csRw))) >

= < ?−1(?(csTu) + ?(csTv) + ?(csTw)), ∗−1(∗(csIu) + ∗(csIv) + ∗(csIw)),

∗−1 (∗(csFu) + ∗(csFv) + ∗(csFw));℘−1(℘(csRu) + ℘(csRv) + ℘(csRw)) >

= < ?−1(?(csTu) + ?(?−1(?(csTv) + ?(csTw)))),

∗−1 (∗(csIu) + ∗(∗−1(∗(csIv) + ∗(csIw)))),

∗−1 (∗(csFu) + ∗(∗−1(∗(csFv) + ∗(csFw))));

℘−1(℘(csRu) + ℘(℘−1(℘(csRv) + ℘(csRw)))) >
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= < csTu, csIu; csRu > ⊗℘ < ?−1(?(csTv) + ?(csTw)),

∗−1 (∗(csIv) + ∗(csIw)), ∗−1(∗(csFv) + ∗(csFw));

℘−1(℘(csRv) + ℘(csRw)) >

=u⊗℘ (v ⊗℘ w).

(5). m℘(u⊕℘ v) =m℘ < ∗−1(∗(csTu) + ∗(csTv)), ?−1(?(csIu) + ?(csIv)),

?−1 (?(csTu) + ?(csTv));℘−1(℘(csRu) + ℘(csRv)) >

= < ∗−1(m ∗ (∗−1(∗(csTu) + ∗(csTv)))), ?−1(m ∗ (?−1(?(csIu) + ?(csIv)))),

?−1 (m ∗ (?−1(?(csFu) + ?(csFv))));℘−1(m ∗ (℘−1(℘(csRu) + ℘(csRv)))) >

= < ∗−1(m ∗ (csTu) +m ∗ (csTv)), ?−1(m ? (csIu) +m ? (csIv)),

?−1 (m ? (csFu) +m ? (csFv)), ℘−1(m℘(csRu) +m℘(csRv)) >

= < ∗−1(h = ∗(∗−1(m ∗ (csTu))) + ∗(∗−1(m ∗ (csTv)))),

?−1 (?(?−1(m ? (csIu))) + ?(?−1(m ∗ (csIv)))),

?−1 (?(?−1(m ? (csFu))) + ?(?−1(m ∗ (csFv))));

℘−1(℘(℘−1(m℘(csRu))) + ℘(℘−1(m℘(csRv)))) >

= < ∗−1(∗(csTmu) + ∗(csTmv)), ?−1(?(csImu) + ?(csImv)),

?−1 (?(csFmu) + ?(csFmv));℘−1(℘(csRmu) + ℘(csRmv)) >

=m℘u⊕℘ m℘v.

(6). (m℘ + n℘)u = < ∗−1((m+ n) ∗ (csTu)), ?−1((m+ n) ? (csIu)), ?−1((m+ n) ? (csFu))−1

((m+ n)℘(csRu)) >

= < ∗−1(m ∗ (csTu) + n ∗ (csTu)), ?−1(m ? (csIu) + n ? (csIu)),

?−1 (m ? (csFu) + n ? (csFu));℘−1(m℘(csRu) + n℘(csRu)) >

= < ∗−1(∗(∗−1(m ∗ (csTu))) + ∗(∗−1(n ∗ (csTu)))), ?−1(?(?−1(m ? (csIu)))+

? (?−1(n ? (csIu)))), ?−1(?(?−1(m ? (csFu)))+

? (?−1(n ? (csFu))));℘−1(℘(℘−1(m℘(csRu))) + ℘(℘−1(n℘(csRu)))) >

= < ∗−1(∗(csTm℘u) + (∗(csTn℘u))), ?−1(?(csIm℘u) + (?(csIn℘u))),

?−1 (?(csFm℘u) + (?(csFn℘u)));℘−1(℘(csRm℘u) + (℘(csRn℘u))) >

=m℘u⊕℘ n℘u.

(7). (u⊗℘ v)m℘ = < ?−1(m ? (csTu⊗℘v)), ∗−1(m ∗ (csIu⊗℘v)), ∗−1(m ∗ (csFu⊗℘v));℘−1(m℘(csRu⊗℘v)) >

= < ?−1(m ? (?−1(?(csTu)))), ∗−1(m ∗ (∗−1(∗(csIu)))), ∗−1(m ∗ (∗−1(∗(csFu))));

℘−1(m℘(℘−1(℘(csRu)))) >
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= < ?−1(m ? (csTu) +m ? (csTv)), ∗−1(m ∗ (csIu) +m ∗ (csIv)),

∗−1 (m ∗ (csFu) +m ∗ (csFv));℘−1(m℘(csRu) +m℘(csRv)) >

= < ?−1(?(?−1(m ? (csTu))) + ?(?−1(m ? (csTv)))),

∗−1 (∗(∗−1(m ∗ (csIu))) + ∗(∗−1(m ∗ (csIv)))),

∗−1 (∗(∗−1(m ∗ (csFu))) + ∗(∗−1(m ∗ (csFv))));

℘−1(℘(℘−1(m℘(csRu))) + ℘(℘−1(m℘(csRv)))) >

= < ?−1(?(csTum℘ ) + ?(csTvm℘ )), ∗−1(∗(csIum℘ ) + ∗(csIvm℘ )),

∗−1 (∗(csFum℘ ) + ∗(csFvm℘ ));℘−1(℘(csRum℘ ) + ℘(csRvm℘ )) >

=um℘ ⊗ vm℘ .

(8). u
m℘+n℘
csR = < ?−1((m+ n) ∗ (csTu)), ∗−1((m+ n) ∗ (csIu)), ∗−1((m+ n) ∗ (csFu));

℘−1((m+ n)℘(csRu)) >

= < ?−1(m ? (csTu) + n ? (csTu)), ∗−1(m ∗ (csIu) + n ∗ (csIu)),

∗−1 (m ∗ (csFu) + n ∗ (csFu));℘−1(m℘(csRu) + n℘(csRu)) >

= < ?−1(?(?−1(m ? (csTu))) + ?(?−1(n ? (csTu)))), ∗−1(∗(∗−1(m ∗ (csIu)))+

∗ (∗−1(n ∗ (csIu)))), ∗−1(∗(∗−1(m ∗ (csFu))) + ∗(∗−1(n ∗ (csFu))));

℘−1(℘(℘−1(m℘(csRu))) + ℘(℘−1(n℘(csRu)))) >

= < ?−1(?(csTum) + ?(csTun)), ∗−1(∗(csIum) + ∗(csIun)),

∗−1 (∗(csFum) + ∗(csFun));℘−1(℘(csRum) + ℘(csRun)) >

=u
m℘
csR ⊗℘ u

n℘
csR.

4. Weighted Arithmetic Cubic Spherical Neutrosophic Aggregation Operators

Definition 4.1. Consider the collection {uε =< csTuε , csIuε , csFuε ; csRuε >: ε = 1, 2, 3, . . . , k}
of CSNV s. If ? : [0, 1] −→ [0,∞) is the AFG of a continuous ATN and ∗(t) = ?(1 − t)

and ℘ : [0, 1] −→ [0,∞) is the AFG of a continuous ATN or ATCN. Then a weighted

arithmetic cubic spherical neutrosophic aggregation operator is defined and denoted by

CSNWA℘(u1, u2, . . . , uk) = (℘)
⊕k

ε=1 ωεuε, where 0 ≤ ωε ≤ 1 for any ε = 1, 2, 3, . . . , k subject

to the condition
∑k

ε=1 ωε = 1.

Theorem 4.1. Consider {uε =< csTuε , csIuε , csFuε ; csRuε >: ε = 1, 2, 3, . . . , k} of CSNV s. If
h : [0, 1] −→ [0,∞) is the AFG of a continuous ATN and ∗(t) = ?(1−t) and ℘ : [0, 1] −→ [0,∞) is

the AFG of a continuous ATN or ATCN. Then CSNWA℘(u1, u2, . . . , uk) = < ∗−1(
∑k

ε=1 ωε ∗
(csTuε)), ?−1(

∑k
ε=1 ωε ? (csIuε)), ?−1(

∑k
ε=1 ωε ? (csFuε)); ℘−1(

∑k
ε=1 ωε℘(csRuε)) > where 0 ≤

ωε ≤ 1 for all ε = 1, 2, 3, . . . , k subject to the condition
∑k

ε=1 ωε = 1.
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Proof. Clearly CSNWA℘(u1, u2, . . . , uk) is a CSNV. The second part can be seen to be true

by using mathematical induction. If k = 2, we have

CSNWA℘(u1, u2, . . . , uk) =ω1℘u1 ⊕℘ ω2℘u2

= < ∗−1(∗(csTω1℘
u1) + ∗(csTω2℘

u2)), ?
−1(?(csIω1℘

u1) + ?(csIω2℘
u2)),

?−1 (?(csFω1℘
u1) + ?(csFω2℘

u2));℘
−1(℘(csRω1℘

u1) + ℘(csRω2℘
u2)) >

= < ∗−1(∗((∗−1(ω1h(csTu1))) + ∗(∗−1(ω2 ∗ (csTu2)))),

?−1 (?((?−1(ω1h(csIu1))) + ?(?−1(ω2 ∗ (csIu2)))), ?−1(?((?−1(ω1 ∗ (csFu1)))

+ ?(?−1(ω2 ∗ (csFu2))));℘−1(℘((℘−1(ω1h(csRu1))) + ℘(℘−1(ω1h(csRu2)))) >

= < ∗−1(ω1 ∗ (csTu1) + ω2h(csTu2)), ?−1(ω1 ? (csIu1) + ω2 ? (csIu2)),

?−1 (ω1 ? (csFu1) + ω2 ? (csFu2));℘−1(ω1℘(csRu1) + ω2℘(csRu2)) >

= < ∗−1(
2∑

η=1

ωη ∗ (csTuη)), ?−1(

2∑
η=1

ωη ∗ (csIuη)), ?−1(

2∑
η=1

ωη ? (csFuη));

℘−1(
2∑

η=1

ωη℘(csRuη)) > .

CSNWA℘(u1, u2, ..., uk−1) = < ∗−1(
k−1∑
η=1

ωη ? (csTuη)), ?−1(

k−1∑
η=1

ωη ∗ (csIuη)), ?−1(

k−1∑
η=1

ωη ? (csFuη));

℘−1(

k−1∑
η=1

ωη℘(csRuη)) >

CSNWA℘(u1, u2, . . . , uk) =CSNWA℘(u1, u2, . . . , uk−1)⊕℘ ωk℘uk

= < ∗−1(
k−1∑
η=1

ωη ∗ (csTuη)), ?−1(

k−1∑
η=1

ωη ? (csIuη)), ?−1(

k−1∑
η=1

ωη ? (csFuη));

℘−1(
k−1∑
η=1

ωη℘(csRuη)) > ⊕℘ < ∗−1(∗(csTωk℘u1)), ?
−1(?(csIωk℘u1)),

?−1 (?(csFωk℘u1));℘
−1(℘(csIωk℘u1)) >

= < ∗−1(∗((∗−1(
k−1∑
η=1

ωη ∗ (csTuη))) + ∗(∗−1(ωk ∗ (csTuk)))),

?−1 (?((?−1(
k−1∑
η=1

ωη ∗ (csIuη))) + ?(?−1(ωk ? (csIuk)))),

?−1 (?((?−1(

k−1∑
η=1

ωη ∗ (csFuη))) + ?(?−1(ωk ? (csFuk))));
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℘−1(℘((℘−1(

k−1∑
η=1

ωη℘(csRuη))) + ℘(℘−1(ωk℘(csRuk)))) >

= < ∗−1(
k−1∑
η=1

ωη ∗ (csTuη) + ωk ∗ (csTuk)), ?−1(

k−1∑
η=1

ωη ? (csIuη) + ωk ? (csIuk)),

?−1 (
k−1∑
η=1

ωη ? (csFuη) + ωk ? (csFuk));℘−1(
k−1∑
η=1

ωη℘(csRuη) + ωk℘(csRuk))

= < ∗−1(
k∑
ε=1

ωε ∗ (csTuε)), ?−1(
k∑
ε=1

ωε ? (csIuε)), ?−1(
k∑
ε=1

ωε ? (csFuε));

℘−1(
k∑
ε=1

ωη℘(csRuk)) > .

This completes the proof.

Definition 4.2. Let ?, ∗, ℘, ρ : [0, 1] −→ [0,∞) be mappings such that ?(t) = −log t,

∗(t) = −log (1 − t), ℘(t) = −log t and ρ(t) = −log (1 − t). The CSNWA aggregating op-

erators listed below can be considered specific cases of definition 4.1.

CSNWAA℘ (u1, u2, . . . , uk) =< 1−
∏k
ε=1(1−csTuε)ωε ,

∏k
ε=1 csIωεuε ,

∏k
ε=1 csFωεuε ;

∏k
ε=1 csR

ωε
uε > and

CSNWAAρ (u1, u2, . . . , uk) =< 1 −
∏k
ε=1(1 − csTuε)ωε ,

∏k
ε=1 csI

ωε
uε ,

∏k
ε=1 csF

ωε
uε ; 1 −

∏k
ε=1(1 −

csRuε)
ωε > .

It can be easily prove that the CSNWA operator has the following properties.

1. Idempotency property: If all uη (η = 1, 2, . . . , k) are equal, that is, uη = u for any η,

then CSNWAA℘ (u1, u2, . . . , uk) = u.

2. Boundary property: Let {uε =< csTuε , csIuε , csFuε ; csRuε >: ε = 1, 2, 3, . . . , k}
be a collection of CSNV s in X, and u− = minηuη, u

+ = maxηuη. Then u− ≤
CSNWAA℘ (u1, u2, . . . , uk) ≤ u+.
3. Monotonicity property: Let uη (η = 1, 2, . . . , k) and u

′
η (η = 1, 2, . . . , k) be two CSNV s

in X. If uη ≤ u
′
η, then CSNWAA℘ (u1, u2, . . . , uk) ≤ CSNWAA℘ (u

′
1, u

′
2, . . . , u

′
k).

4. Permutation property: Let {uε =< csTuε , csIuε , csFuε ; csRuε >: ε = 1, 2, 3, . . . , k} be a

collection of CSNV s in X, Then CSNWAA℘ (u1, u2, . . . , uk) = CSNWAA℘ (u
′
1, u

′
2, . . . , u

′
k), where

CSNWAA℘ (u1, u2, . . . , uk) is a permutation of CSNWAA℘ (u
′
1, u

′
2, . . . , u

′
k).

5. Weighted Geometric Cubic Spherical Neutrosophic Aggregation Operators

Definition 5.1. Consider the collection {uε =< csTuε , csIuε , csFuε ; csRuε >: ε = 1, 2, 3, . . . , k}
of CSNV s. If ? : [0, 1] −→ [0,∞) is the AFG of a continuous ATN and ∗(t) = ?(1 − t)

and ℘ : [0, 1] −→ [0,∞) is the AFG of a continuous ATN or ATCN. Then a weighted

geometric cubic spherical neutrosophic aggregation operator is defined and denoted by
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CSNWG℘(u1, u2, . . . , uk) = (℘)
⊗k

ε=1 ωεuε, where 0 ≤ ωε ≤ 1 for all ε = 1, 2, 3, . . . , k sub-

ject to the condition
∑k

ε=1 ωε = 1.

Theorem 5.1. Consider the collection {uε =< csTuε , csIuε , csFuε ; csRuε >: ε = 1, 2, 3, . . . , k}
of CSNV s. If ? : [0, 1] −→ [0,∞) is the AFG of a continuous ATN and ∗(t) = ?(1 − t)

and ℘ : [0, 1] −→ [0,∞) is the AFG of a continuous ATN or ATCN. Then we have

CSNWG℘(u1, u2, . . . , uk) =< ?−1(
∑k

ε=1 ωεf(csTuε)),
∗−1 (

∑k
ε=1 ωε ∗ (csIuε)), ∗−1(

∑k
ε=1 ωε ∗ (csFuε));℘−1(

∑k
ε=1 ωε℘(csRuε)) >

where 0 ≤ ωε ≤ 1 for any ε = 1, 2, 3, . . . , k subject to the condition
∑k

ε=1 ωε = 1.

Proof. Straightforward to Theorem 4.1.

Definition 5.2. Let ?, ∗, ℘, ρ : [0, 1] −→ [0,∞) be mappings such that ?(t) = −log t, ∗(t) =

−log (1− t), ℘(t) = −log t and ρ(t) = −log (1− t). The CSNWA aggregating operators listed

below can be considered specific cases of definition 5.1:

CSNWGa
℘(u1, u2, . . . , uk) =

<
∏k
ε=1 csTωεuε , 1−

∏k
ε=1(1− csIuε)ωε , 1−

∏k
ε=1(1− csFuε)ωε ;

∏k
ε=1 csR

ωε
uε >

CSNWGa
ρ(u1, u2, . . . , uk) =

<
∏k
ε=1 csTωεuε , 1−

∏k
ε=1(1− csIuε)ωε , 1−

∏k
ε=1(1− csFuε)ωε ; 1−

∏k
ε=1(1− csRuε)ωε >

6. An Application of Cubic Spherical Neutrosophic Values

For CSNV s, we define a similarity measure in this section. Then, in a cubic spherical

neutrosophic fuzzy environment, we provide an MCDM technique employing this similarity

measure and the suggested aggregation operators. Then, using the suggested approach, we

resolve a real-world decision problem from the literature involving picking the optimal solar

cell.

6.1. A similarity Measure for Cubic Spherical Neutrosophic Values

In an uncertain context, similarity measures are crucial tools for figuring out how similar

things are to one another. Due to their ability to handle ambiguity and the fact that they

have attracted many research efforts based on similarity measures within neutrosophic research,

more and more researchers have begun to explore NSs. The following is the similarity measure

for CSNV s.

Definition 6.1. If u =< csTu, csIu, csFu; csRu > and v =< csTv, csIv, csFu; csRu > be

CSNV s in X. Then the cubic spherical cosine similarity measure is defined and denoted by

csCSM(u, v) = csTucsTv+csIucsIv+csFucsFv√
csT2

u+csI2u+csF2
u

√
csT2

v+csI2v+csF2
v

× |csRu−csRv |
max{csRu,csRv} .
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6.2. A MCDM Method

In the cubic spherical neutrosophic environment, an MCDM method is suggested in this

section. The suggested approach is used to solve an MCDM problem that has been taken

from the literature to demonstrate its effectiveness in the next subsection. Following are the

steps of the suggested method that we can present:

Step 1: Suppose there are k alternatives that A = {A1, A2, . . . , Ak} expert has evaluated in

light of a list with j criteria as C = {c1, c2, . . . , cη}.
Step 2: For each criterion, the expert chooses the weight vector and converts the assessment

results of the alternatives into CSNV s.

Step 3: If there are any cost criteria based on their values, the complement operation is used.

Step 4: Evaluation findings for each choice that are expressed as ”CSNV s are transformed

using suggested weighted aggregation operations.

Step 5: The variation in csCSM between each alternative’s aggregate value and the ideal

alternative’s positive value < 1, 0, 0; 1 > is determined.

Step 6: The alternative with the greatest similarity value is taken to be the best.

6.3. Selection of Electric truck using CSNVs

In recent years, there has been an enormous increase in demand for electric vehicles. As a re-

sult of its success in the global and regional markets across many demography, several renowned

heavy-duty vehicle manufacturers started investing in developing electric heavy commercial ve-

hicles as a sustainable solution that will replace conventional heavy commercial vehicles for its

key advantage of zero air pollution. In India, the demand for electric trucks is constantly grow-

ing and the government works on several policies and agendas to meet the increasing demand

and to further boost the sales of electric commercial heavy vehicles across all categories. The

automobile manufacturers are competing to capture the growing Indian market by launching

a range of electric commercial vehicles from electric auto rickshaw that has a payload capacity

of a few hundred kilograms to full-scale electric trucks that pull tonnes of load.

At Truck Junction, more than 326 electric commercial vehicles are available. When com-

pared to a conventional commercial vehicle that has a mileage of 8-14 kmpl, an electric vehicle

has a range of up to 300km per charge which varies depending on the payload. The typical

charging time of an electric vehicle ranges between 4-6 hours. The payload capacity of a typical

electric truck ranges between 3.5 tons to 12 tons. When comparing a conventional vehicle with

an electric vehicle from the construction point of view, the major upgrade is the replacement

of an IC engine with motors. These are BLDC motors which have an efficiency of around

96-98 percent whereas a conventional IC engine can have a maximum efficiency of 36 percent.
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Further, the battery packs are mounted under the frame with the motors either placed at cen-

ter and the wheels are connected via transmission rods or each wheel has a dedicated motor

with an integrated gearbox for high torque application. This gives a strategic advantage for

an electric truck in terms of distribution of weight evenly across the length of the vehicle and

allows more loading space.

Step 1: Consider that the company’s engineering, project and purchasing divisions each have

three experts (csT1, csT2 and csT3). The set of 6 suppliers, ET1 − ET6, were selected by the

three experts from the departments based on seven distinct criteria, including estimated cost

(C1), delivery efficiency (C2), product flexibility (C3), reputation and management level (C4)

and eco-design (C5).

It is essential for the company to ensure that its suppliers care about the environment and

follow green guidelines in how they run their business. A supplier is more appealing to a

company if they are more environmentally friendly. Furthermore, it may be beneficial to forge

a long-term partnership with eco-friendly providers. The alternative ratings on the linguistic

scale [LS] used by the decision-makers are shown in Table 2 together with their particular

interpretations.

Linguistics Term Symbolic representation < csTU , csIU , csFU > ×10−1

No influence ∅1 < 1, 8, 9 >

Low influence ∅2 < 4, 6, 7 >

Medium influence ∅3 < 5, 4, 5 >

High influence ∅4 < 8, 2, 2 >

Very high influence ∅5 < 9, 1, 1 >

Table 2. LS for the calculation of DM’s priorities.

Step 2: Expert recommendations over suppliers according to the each criteria is shown in

Table 3.

DM’s T1 T2 T3

As csC1 csC2 csC3 csC4 csC5 csC1 csC2 csC3 csC4 csC5 csC1 csC2 csC3 csC4 csC5

ET1 ∅4 ∅1 ∅3 ∅2 ∅5 ∅3 ∅2 ∅1 ∅4 ∅3 ∅5 ∅1 ∅5 ∅4 ∅5
ET2 ∅1 ∅4 ∅2 ∅3 ∅1 ∅2 ∅3 ∅4 ∅1 ∅2 ∅4 ∅3 ∅4 ∅3 ∅4
ET3 ∅3 ∅4 ∅5 ∅2 ∅5 ∅5 ∅2 ∅2 ∅3 ∅5 ∅3 ∅4 ∅2 ∅2 ∅3
ET4 ∅1 ∅5 ∅1 ∅3 ∅1 ∅1 ∅3 ∅5 ∅1 ∅1 ∅2 ∅1 ∅3 ∅5 ∅2
ET5 ∅5 ∅3 ∅3 ∅1 ∅2 ∅3 ∅4 ∅4 ∅5 ∅3 ∅3 ∅5 ∅1 ∅1 ∅3
ET6 ∅2 ∅3 ∅1 ∅5 ∅4 ∅1 ∅5 ∅3 ∅2 ∅1 ∅2 ∅4 ∅5 ∅3 ∅2

Table 3. Expert recommendations over suppliers according to the criteria
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Step 3: Table 8 in Appendix A, transforms linguistic evaluations into NV s. The main vari-

able pairwise comparison matrix for each decision maker is shown in Table 9. We take the

complement of these values since C1 and C4 are the cost criteria. Thus, we obtain the cubic

spherical neutrosophic group normalized matrix illustrated in Table 4. The NV s in this deci-

sion matrix [DM ] must be transformed into CSNV s. In this approach, The decision matrix

in Table 9 is used to determine the greatest radius values.

Sup csC1 × 10−1 csC2 × 10−1 csC3 × 10−1 csC4 × 10−1 csC5 × 10−1

ET1 < 2, 2, 7; 4 > < 2, 7, 8; 3 > < 5, 4, 5; 7 > < 3, 3, 7; 5 > < 8, 2, 2; 4 >

ET2 < 6, 5, 4; 7 > < 6, 3, 4; 3 > < 7, 3, 3; 5 > < 6, 5, 4; 5 > < 4, 5, 6; 7 >

ET3 < 3, 3, 6; 4 > < 7, 3, 3; 5 > < 5, 4, 5; 6 > < 6, 5, 4; 2 > < 8, 2, 2; 4 >

ET4 < 8, 7, 2; 3 > < 5, 4, 5; 7 > < 5, 4, 5; 7 > < 5, 4, 5; 7 > < 2, 7, 8; 3 >

ET5 < 3, 3, 6; 4 > < 7, 2, 2; 4 > < 5, 5, 5; 6 > < 6, 6, 4; 9 > < 5, 5, 5; 2 >

ET6 < 8, 7, 3; 3 > < 7, 2, 2; 4 > < 5, 4, 5; 7 > < 4, 4, 6; 5 > < 4, 5, 6; 7 >

Table 4. The CSN decision matrix

Step 4: Applying the aggregation operations CSNWAA℘ , CSNWAAρ , CSNWGA
℘ and CSNWGA

ρ

defined via ∗(t) = −log t, h(t) = −log (1−t), ℘(t) = −log t and ρ(t) = −log (1−t), the decision

matrix expressed with CSNV s for all decisions is aggregated. Table 5 presents the aggregated

cubic spherical neutrosophic decision matrix using CSNV s.

Sup CSNWAA℘ × 10−1 CSNWAAρ × 10−1 CSNWGA
℘ × 10−1 CSNWGA

ρ × 10−1

ET1 < 4, 4, 6; 4 > < 4, 4, 6; 4 > < 3, 5, 7; 4 > < 3, 5, 7; 4 >

ET2 < 6, 4, 4; 5 > < 6, 4, 4; 5 > < 6, 4, 4; 5 > < 6, 4, 4; 5 >

ET3 < 6, 3, 4; 5 > < 6, 3, 4; 5 > < 6, 3, 4; 5 > < 6, 3, 4; 5 >

ET4 < 6, 5, 4; 5 > < 6, 5, 4; 6 > < 5, 6, 5; 5 > < 5, 6, 5; 6 >

ET5 < 6, 3, 4; 4 > < 6, 3, 4; 5 > < 5, 4, 4; 4 > < 5, 4, 4; 5 >

ET6 < 7, 4, 3; 4 > < 7, 4, 3; 5 > < 6, 4, 4; 4 > < 6, 4, 4; 5 >

Table 5. Aggregated values of CSNSs

Step 5: Each aggregated CSNV and positive ideal alternative are compared using the CSM

established in Definition 6.1 to determine exactly related or equivalent they are to each other.

The evaluation test between alternatives and the ideal positive alternative’s results are shown

in Table 6.

Step 6: The ranking of electric trucks:

The selection of electric trucks using cubic spherical neutrosophic sets offers a comprehensive

framework for decision-making in the procurement process. By aggregating expert recommen-

dations and criteria evaluations into cubic spherical neutrosophic decision matrices, we can
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Methods / csCSM csCSM csCSM csCSM csCSM csCSM
csCSM (A1, A

+) (A2, A
+) (A3, A

+) (A4, A
+) (A5, A

+) (A6, A
+)

CSNWAA℘ 0.512 0.700 0.786 0.624 0.761 0.788

CSNWAAρ 0.512 0.700 0.786 0.624 0.761 0.788

CSNWGA
℘ 0.327 0.677 0.714 0.492 0.686 0.732

CSNWGA
ρ 0.327 0.677 0.714 0.492 0.686 0.732

Table 6. Cosine similarity scores

Methods Ranking Best EV

CSNWAAO− CD [5] ET6 > ET5 > ET3 > ET2 > ET4 > ET1 ET6

CSNWGAO− CD [5] ET6 > ET3 > ET5 > ET2 > ET1 > ET4 ET6

CSNWAA℘ ET6 > ET3 > ET5 > ET2 > ET4 > ET1 ET6

CSNWAAρ ET6 > ET3 > ET5 > ET2 > ET4 > ET1 ET6

CSNWGA
℘ ET6 > ET3 > ET5 > ET2 > ET4 > ET1 ET6

CSNWGA
ρ ET6 > ET3 > ET5 > ET2 > ET4 > ET1 ET6

Table 7. Overall ranking of Electric trucks

effectively rank electric trucks based on various criteria. The final Table 7 presents the overall

ranking of electric trucks using different aggregation methods, providing valuable insights for

decision-makers in selecting the most suitable electric truck for their needs.

Comparison Analysis

We compared the results of proposed methods with the existing CSNS methods and their

visualization represents the overall raking of electric trucks are presented : The cubic spherical

Figure 1. Comparison of Ranking of Electric Trucks
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neutrosophic set utilizes a spherical framework to portray uncertainty among true, false, and

neutral functions, addressing vagueness comprehensively. This method surpasses traditional

averaging, providing a collective opinion representation. In Multi-Criteria Decision Making

(MCDM), the decision maker’s engagement determines criteria weights and preferences; a

substantial influence is recommended for sphere representation. Recognizing CSNS limitations

is crucial for effective MCDM utilization. Addressing constraints enhances CSNS applicability

and reliability in decision-making contexts.

7. Comparison of Cubic Spherical Neutrosophic Sets (CSNS) with Traditional

Neutrosophic Sets (NS)

To compare cubic spherical neutrosophic sets (CSNS) with traditional neutrosophic sets

(NS), we consider several aspects:

(1) Representation of Uncertainty:

Neutrosophic sets and CSNS handle uncertainty through three parameters: truth mem-

bership (T ), indeterminacy membership (I) and falsity membership (F ). However,

CSNS extend this representation by adding a fourth parameter, the radius (r), which

captures the degree of neutrality or neutrality in the information provided.

(2) Geometric Interpretation:

CSNS provide a geometric interpretation of uncertainty in a hypersphere, where the

center represents T , I and F and the radius represents the degree of neutrality (r).

This geometric interpretation allows for a more intuitive understanding of uncertainty.

(3) Aggregation Operators:

While neutrosophic sets have aggregation operators for combining uncertain informa-

tion, CSNS introduce weighted geometric aggregation operators tailored specifically to

handle uncertainty represented in hyperspheres. These operators take into account T ,

I, F and r, providing a comprehensive way to combine uncertain information.

(4) Handling Neutrality:

CSNS explicitly account for neutrality through the radius parameter, which represents

the degree to which an element is neither true nor false nor indeterminate. This allows

for a more nuanced handling of neutrality compared to traditional neutrosophic sets.

(5) Archimedean Triangular Norms and Conorms:

Archimedean triangular norms and conorms are commonly used in fuzzy logic and fuzzy

set theory to model conjunction and disjunction operations. CSNATN and CSNATCN

extend these operations to CSNS, allowing for the combination of uncertain information

in a way that respects the geometric structure of hyperspheres.
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8. Conclusion

The main aim of this study is to introduce the concept of a CSNS, defined as a sphere

with radius r and a triple at its center, representing membership, indeterminacy, and non-

participation. CSNSs extend the idea of NSs by depicting these degrees through spheres.

Arithmetic operators such as CSNWA and CSNWG are crucial for integrating neutrosophic

data. To overcome limitations of existing operators like NWAO and NWGO, we propose

”weighted arithmetic cubic spherical neutrosophic aggregation operators” and ”weighted geo-

metric cubic spherical neutrosophic aggregation operators,” offering improved reliability and

effectiveness. An MCDM method is developed for selecting the best electric truck based

on these operators. Future work aims to enhance other arithmetic operators like Dombi,

Hamacher, and Einstein through this framework.

Appendix A

Expert A csC1 × 10−1 csC2 × 10−1 csC3 × 10−1 csC4 × 10−1 csC5 × 10−1

ET1 < 8, 2, 2 > < 1, 8, 9 > < 5, 4, 5 > < 4, 6, 7 > < 9, 1, 1 >

ET2 < 1, 8, 9 > < 8, 2, 2 > < 4, 6, 7 > < 5, 4, 5 > < 1, 8, 9 >

T1 ET3 < 5, 4, 5 > < 8, 2, 2 > < 9, 1, 1 > < 4, 6, 7 > < 9, 1, 1 >

ET4 < 1, 8, 9 > < 9, 1, 1 > < 1, 8, 9 > < 5, 4, 5 > < 1, 8, 9 >

ET5 < 9, 1, 1 > < 5, 4, 5 > < 5, 4, 5 > < 1, 8, 9 > < 4, 6, 7 >

ET6 < 4, 6, 7 > < 5, 4, 5 > < 1, 8, 9 > < 9, 1, 1 > < 8, 2, 2 >

ET1 < 5, 4, 5 > < 4, 6, 7 > < 1, 8, 9 > < 8, 2, 2 > < 5, 4, 5 >

ET2 < 4, 6, 7 > < 5, 4, 5 > < 8, 2, 2 > < 1, 8, 9 > < 4, 6, 7 >

T2 ET3 < 9, 1, 1 > < 4, 6, 7 > < 4, 6, 7 > < 5, 4, 5 > < 9, 1, 1 >

ET4 < 1, 8, 9 > < 5, 4, 5 > < 9, 1, 1 > < 1, 8, 9 > < 1, 8, 9 >

ET5 < 5, 4, 5 > < 8, 2, 2 > < 8, 2, 2 > < 9, 1, 1 > < 5, 4, 5 >

ET6 < 1, 8, 9 > < 9, 1, 1 > < 5, 4, 5 > < 4, 6, 7 > < 1, 8, 9 >

ET1 < 9, 1, 1 > < 1, 8, 9 > < 9, 1, 1 > < 8, 2, 2 > < 9, 1, 1 >

ET2 < 8, 2, 2 > < 5, 4, 5 > < 8, 2, 2 > < 5, 4, 5 > < 8, 2, 2 >

T3 ET3 < 5, 4, 5 > < 8, 2, 2 > < 4, 6, 7 > < 4, 6, 7 > < 5, 4, 5 >

ET4 < 4, 6, 7 > < 1, 8, 9 > < 5, 4, 5 > < 9, 1, 1 > < 4, 6, 7 >

ET5 < 5, 4, 5 > < 9, 1, 1 > < 1, 8, 9 > < 1, 8, 9 > < 5, 4, 5 >

ET6 < 4, 6, 7 > < 8, 2, 2 > < 9, 1, 1 > < 5, 4, 5 > < 4, 6, 7 >

Table 8. The matrix of pairwise comparisons for the primary DM evaluation
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Expert A csC1 × 10−1 csC2 × 10−1 csC3 × 10−1 csC4 × 10−1 csC5 × 10−1

ET1 < 2, 2, 8 > < 1, 8, 9 > < 5, 4, 5 > < 7, 6, 4 > < 9, 1, 1 >

ET2 < 9, 8, 1 > < 8, 2, 2 > < 4, 6, 7 > < 5, 4, 5 > < 1, 8, 9 >

T1 ET3 < 5, 4, 5 > < 8, 2, 2 > < 9, 1, 1 > < 7, 6, 4 > < 9, 1, 1 >

ET4 < 9, 8, 1 > < 9, 1, 1 > < 1, 8, 9 > < 5, 4, 5 > < 1, 8, 9 >

ET5 < 1, 1, 9 > < 5, 4, 5 > < 5, 4, 5 > < 9, 8, 1 > < 4, 6, 7 >

ET6 < 7, 6, 4 > < 5, 4, 5 > < 1, 8, 9 > < 1, 1, 9 > < 8, 2, 2 >

ET1 < 5, 4, 5 > < 4, 6, 7 > < 2, 2, 8 > < 5, 4, 5 > < 5, 4, 5 >

ET2 < 7, 6, 4 > < 5, 4, 5 > < 8, 2, 2 > < 9, 8, 1 > < 4, 6, 7 >

T2 ET3 < 1, 1, 9 > < 4, 6, 7 > < 4, 6, 7 > < 5, 4, 5 > < 9, 1, 1 >

ET4 < 9, 8, 1 > < 5, 4, 5 > < 9, 1, 1 > < 9, 8, 1 > < 1, 8, 9 >

ET5 < 5, 4, 5 > < 8, 2, 2 > < 8, 2, 2 > < 1, 1, 9 > < 5, 4, 5 >

ET6 < 9, 8, 1 > < 9, 1, 1 > < 5, 4, 5 > < 7, 6, 4 > < 1, 8, 9 >

ET1 < 1, 1, 9 > < 1, 8, 9 > < 9, 1, 1 > < 2, 2, 8 > < 9, 1, 1 >

ET2 < 2, 2, 8 > < 5, 4, 5 > < 8, 2, 2 > < 5, 4, 5 > < 8, 2, 2 >

T3 ET3 < 5, 4, 5 > < 8, 2, 2 > < 4, 6, 7 > < 7, 6, 4 > < 5, 4, 5 >

ET4 < 7, 6, 4 > < 1, 8, 9 > < 5, 4, 5 > < 1, 1, 9 > < 4, 6, 7 >

ET5 < 5, 4, 5 > < 9, 1, 1 > < 1, 8, 9 > < 9, 8, 1 > < 5, 4, 5 >

ET6 < 7, 6, 4 > < 8, 2, 2 > < 9, 1, 1 > < 5, 4, 5 > < 4, 6, 7 >

Table 9. Normalized decision matrix
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