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1. Introduction 

Fuzzy is a concept characterized by three basic criteria namely imprecision, uncertainty, and degrees 

of truthfulness of values. These criteria has been introduced by Zadeh in 1965 to give the detailed 

description for linguistic variables, representing size, age and temperature etc., used for system input 

and output. Once we collect the set of categories of the linguistic variables, it defines a fuzzy set along 

with the membership function developed for each member in that set. The membership function 

always takes values in the interval [0, 1] and this range is referred to as the membership grade or 

degree of membership. Intuitionistic fuzzy set, an extension of fuzzy set, has been introduced by 

Atanassov (1986). Intuitionistic fuzzy set has been found to be more efficient in dealing with 

vagueness and ambiguity. It is characterized by a membership function (μA(x)) and a non-

membership function (νA(x)) with their sum being less than or equal to one (μA(x) + νA(x) ≤ 1). This 

relaxes the enforced duality νA(x) = 1- μA(x) from fuzzy set theory. Intuitionistic fuzzy set allows one 

to address the positive and negative side of an imprecise concept separately. 

Neutrosophic set is simply an extension of intuitionistic fuzzy set and fuzzy set. This concept 

came into existence when Floretic Smarandache, the professor of mathematics from university of 

New Mexico, proposed a paper in 1998 [26, 27]. He characterized the Neutrosophic set by using 3 

values namely a truth-membership degree, an indeterminacy-membership degree and a falsity 

membership degree, whose sum lies between 0 and 3. This concept has been successfully applied to many 

fields such as medical diagnosis problem, decision making problem, etc. The graphical representation of 

fuzzy set was developed by Rosenfeld in1973. This induces several graphical concepts based of fuzzy-

graph logics. Ansari in 2013 extended the fuzzy logic to neutrosophic logic and also developed 

neutrosophication of fuzzy models. In 2016, Rajab Ali Borzooei defined some basic concepts in fuzzy 
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labeling graph and in 2017, Akram and shahzadi introduced the neutrosophic graph. Recently many 

applications of neutrosophic sets were developed by Abdel Basset [1-6] and Broumi [14-22]. 

In this paper, we extend the fuzzy- graph logics by introducing the neutrosophic labeling 

graphs which has a scope in the entire real world field which involves decision making problems. 

The new criteria that define neutrosophic labeling tree were introduced. 

2. Preliminaries 

Definition 2.1: A neutrosophic graph is of the form G∗ = (V,  , ) where  = (T1, I1, F1)  

and  = (T2, I2, F2) 

(i) V = {v1, v2, v3, ···, vn} such that T1: V → [0, 1], I1: V → [0, 1] and F1 : V → [0, 1] denote the degree of 

truth-membership function, indeterminacy-membership function and falsity-membership function 

of the vertex vi ∈ V respectively, and 0 ≤ T1 (v) + I1 (v) + F1 (v) ≤ 3 ∀ vi ∈ V (i=1, 2, 3….n). 

(ii) T2 : V × V → [0, 1], I2 : V × V →  [0, 1] and F2 : V × V → [0, 1], where T2(vi, vj) ,  

I2(vi, vj) and F2(vi, vj) denote the degree of truth-membership function, indeterminacy membership 

function and falsity-membership function of the edge (vi, vj) respectively such that for every (vi, vj), 

 T2 (vi, vj) ≤ min {T1(vi), T1(vj)},  

 I2 (vi, vj) ≤ min {I1(vi), I1(vj)},  

 F2 (vi, vj) ≤ max {F1 (vi), F1(vj)}, and 0 ≤ T2(vi, vj) + I2(vi, vj) + F2(vi, vj) ≤ 3 . 

 

Example 2.2: Let G∗ = (V,  , ) be an neutrosophic graph, where  = (T1(v), I1(v), F1(v)),  

 = (T2(vi, vj) , I2(vi, vj), F2(vi, vj)). Let the vertex set be V= {v1, v2, v3, v4, v5} and 

 (v1) = (0.5,0.3,0.4),  (v2) = (0.2,0.2,0.6),  (v3) = (0.6,0.45,0.3),  (v4) = (0.4,0.8,0.35),  

 (v5) = (0.4,0.6,0.5),  ( v1, v2) = (0.1,0.2,0.5),  (v2, v3) = (0.15,0.1,0.5),  (v3, v4) = (0.3,0.35,0.3),  

 (v4, v5) = (0.35,0.5,0.45)  (v5, v1) = (0.4,0.2,0.4),  (v5, v2) = (0.15,0.15,0.4),  (v1, v4) = 

(0.3,0.25,0.3),  ( v4, v2) = (0.05,0.1,0.4). 

 

3. Neutrosophic labeling graph 
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In this section we introduce neutrosophic labeling graph, neutrosophic labeling subgraph, 

connectedness in neutrosophic labeling graph, neutrosophic partial cut node and neutrosophic 

partial bridge and investigated some of the properties with suitable examples.  

Definition 3.1: A neutrosophic graph G∗ = (V,  , ) is said to be an neutrosophic labeling graph if T1 

: V → [0, 1], I1 : V → [0, 1] F1 : V → [0, 1] and T2 : V × V → [0, 1], I2 : V × V →  [0, 1], F2 : V × V → [0, 1] 

is bijective such that truth-membership function, indeterminacy-membership function and falsity-

membership of the vertices and edges are distinct and for every edges (vi, vj), 

T2(vi, vj) ≤ min{T1(vi), T1(vj)}, 

I2(vi, vj) ≤ min{I1(vi), I1(vj)},  

F2(vi, vj) ≤ max{F1(vi), F1(vj)}, and  

0 ≤ T2(vi, vj) + I2(vi, vj) + F2(vi, vj) ≤ 3  

 

Example 3.2: In the above figure 2, all the vertices and edges have distinct values for membership, 

indeterminacy and falsity. Therefore , I and   are one to one and onto functions.  

Definition 3.3: Neutrosophic labeling graph R= (V, α, β) where α = (α1(c), α2(c), α3(c)) and  

β= (β1(c,d), β2(c,d), β3(c,d)) is called an neutrosophic labeling subgraph of G∗ = (V,  , ) where                 

 = (T1(c), I1(c), F1(c)) and  = (T2(c,d) , I2(c,d), F2(c,d)), if α1(c) ≤ T1(c), α2(c) ≤ I1(c), α3(c) ≥ F1(c) for all  

c ∈ V and β1(c,d) ≤ T2(c,d), β2(c,d) ≤ I2(c,d), β3(c,d) ≤ F2(c,d) for all edges (c,d). 

Theorem 3.4: If R=(V, α, β) is an neutrosophic  labeling  subgraph of G∗ = (V,  , ), then  



1  (c,d) ≤ 


2T (c,d), 


2  (c,d) ≤ 


2I (c,d),


3  (c,d)≥ 


2F (c,d), for all c,d ∈ V. 

Proof: Let G∗ = (V,  , ) be any neutrosophic labeling graph and R = (v, α, β) be its subgraph. Let 

(c,d) be any path in G* then its strength be ((


2T (c,d), 


2I (c,d), 


2F (c,d)). Since R in a subgraph of 

G* ,then α1(c) ≤ T1(c), β1(c,d) ≤ T2(c,d), α2(c) ≤ I1(c), β2(c,d) ≤ I2(c,d), α3(c) ≥ F1(c) and β3(c,d) ≥ F2(c,d), 

which implies that 


1  (c,d) ≤ 


2T (c,d), 


2  (c,d) ≤ 


2I (c,d),


3  (c,d) ≥ 


2F (c,d), for all c,d ∈ 

V.  
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Theorem 3.5: The union of any two neutrosophic labeling graph  11
1* ,,V G  and 

 22
11** ,,V G  where  )(),(),( 1111 cFcIcT ,  ),(),,(),,( 2221 dcFdcIdcT , 

 )(),(),( 3332 cFcIcT ,  ),(),,(),,( 4442 dcFdcIdcT , is also an neutrosophic labeling 

graph, if the Truth membership, Indeterminacy, Falsity membership values of the edges between *G

and **G are distinct. 

Proof: Let  11
1* ,,V G  and  22

11** ,,V G  be any two neutrosophic labeling graph such 

that, the Truth membership, Indeterminacy, Falsity membership values of the edges between *G and 

**G are distinct and   ,,VG  , where  NIM  ,,  and  NIM  ,, , be the union of 

two neutrosophic labeling graph *G and **G . 

To prove: G is a Neutrosophic labeling graph. 

Now, 
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Similarly, 
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Thus the Truth membership, Indeterminacy and Falsity membership values of the vertices and edges 

are distinct. Hence,   ,,VG  is a Neutrosophic labeling graph. 

Definition 3.6:  Let G∗ = (V,  , ) be an neutrosophic labeling graph. The strength of the path P of n 

edges ei for i = 1,2,……,n is denoted by S(P) = (S1(P), S2(P), S3(P)) and denoted by S1(P) = min1≤i≤n  T2(ei), 

S2(R) = min1≤i≤n  I2(ei) and S3(R) = max1≤i≤n  F2(ei). 
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Definition 3.7: Let G = (V,  , ) be a neutrosophic labeling graph. Then for a pair of vertices c,d ∈ V, 

the strength of connectedness, denoted by CONNG(c,d) = (CONN1G(c,d), CONN2G(c,d), CONN3G(c,d)) 

and is defined as  

CONN1G(c,d) = max{S1(P)}, CONN2G(c,d) = max{S1(P)}  and CONN3G(c,d) = min{S2(P)},  where P is a 

path connecting  the vertices c,d  in G. If c and d are isolated vertices of G, then CONNG(c,d) = (0, 

0). 

 

 

Example 3.8: Figure 3 is an example of neutrosophic labeling graph G having CONNG (v1, v2) = (0.02, 

0.75, 0.37), CONNG (v1, v3) = (0.04, 0.6, 0.62), CONNG (v1, v5) = (0.04, 0.65, 0.52) and so on. 

 

Proposition 3.9: Let G be an neutrosophic labeling graph and R is an neutrosophic labeling subgraph 

of G. Then for every pair of vertices c,d ∈ V, we have CONN1R(c,d) ≤ CONN1G(c,d),  

CONN2R(c,d) ≤ CONN2G(c,d)  and CONN3R(c,d) ≥CONN3G(c,d). 

 

Definition 3.10:  If S1(P) = CONN1G(c,d) S2(P) = CONN2G(c,d) and S3(P) = CONN3G(c,d), where P is a 

path connecting  the vertices c,d  in the neutrosophic labeling graph G then P is called the strongest 

path connecting c, d in G. 

 

Definition 3.11: Let G be an neutrosophic labeling graph. A node z is called a neutrosophic partial 

cut node ( Neu p-cut node) of G if there exists a pair of nodes c,d ∈ G such that c   d   z and  

CONN1(G-z)(c,d) < CONN1G(c,d), CONN2(G-z)(c,d) < CONN2G(c,d) and  CONN3(G-z)(c,d) > CONN3G(c,d) 

 

A neutrosophic partial block (Neu p-block) is a neutrosophic labeling graph which is connected and 

does not contain any Neu p-cut nodes in it. 
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Example 3.12 : Let G be an neutrosophic labeling graph, which is shown in above Figure 4. 

Node v1 is a neutrosophic partial cut node, since 

CONN1(G-
1v )(v2, v4) = 0.02 < 0.04 = CONN1G (v2, v4),  

 CONN2(G-
1v )(v2, v4) = 0.1 < 0.15 = CONN2G (v2, v4) and  

CONN3(G-
1v )(v2, v4) =0.65 > 0.55= CONN3G (v2, v4).  

Similarly, Node v2 is a neutrosophic partial cut node, since, 

CONN1(G-
2v )(v1, v3) = 0.02 < 0.03 = CONN1G (v1, v3),   

CONN2(G-
2v )(v1, v3) = 0.1 < 0.17 =CONN2G (v1, v3) and  

CONN1(G-
2v )(v1, v3) =0.65 >0.52= CONN3G (v1, v3). 

Definition 3.13: Let G be an neutrosophic labeling graph. An arc e = (c,d) is called neutrosophic 

partial bridge (Neu p- bridge) if CONN1(G-e)(c,d) < CONN1G(c,d), CONN1(G-e)(c,d) < CONN1G(c,d) and 

CONN3(G-e)(c,d) > CONN3G(c,d). 

A neutrosophic p-bridge is said to be a neutrosophic partial bond (Neu p-bond) if  

CONN1(G-e)(x, y) < CONN1G(x, y), CONN2(G-e)(x, y) < CONN2G(x, y), CONN3(G-e)(x, y) > CONN3G(x, y) with at 

least one of x or y different from both u and v and is said to be a neutrosophic partial cut bond (p-cut 

bond) if both x or y are different from u and v. 

 

Example 3.14 : In the  Figure 4, for all arcs except the arc (v4, v3) are neutrosophic partial bridge. In 

specific particular, arc (v2, v3) is a neutrosophic partial cut bond, since  

CONN1(G-(v2,v3))(v3, v4) = 0.03 < 0.06 = CONN1G(v3, v4) , CONN2(G-(v2,v3))(v3, v4) = 0.03 < 0.06 = CONN2G(v3, v4) 

and CONN3(G-(v2,v3))(v3, v4) = 0.55 > 0.5 = CONN3G(v3, v4).  

  

4. Types of Arcs in a Neutrosophic Labeling Graph 

In this section we discussed some types of neutrosophic α strong, δ strong, β strong arcs.  

Definition 4.1: If all the arcs of cycle C in the neutorsophic labeling graph G are strong, then C is 

called the strong cycle in G. 

Definition 4.2: An arc (n,m) of G is called neutrosophic α strong if  T2(c,d) > CONN1(G-(n,m))(n,m),  

I2(c,d) > CONN2(G-(n,m)) (n,m) and F2(c,d) < CONN3(G-(n,m)) (n,m) 
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Definition 4.3: An arc (n,m) of G is called neutrosophic δ strong if  T2(c,d) <  CONN1(G-(n,m))(n,m), 

I2(c,d) <  CONN2(G-(n,m)) (n,m) and F2(c,d) > CONN3(G-(n,m)) (n,m) 

Definition 4.4: An arc (n,m) of G is called neutrosophic β strong if  T2(c,d) =  CONN1(G-(n,m))(n,m), 

I2(c,d) =  CONN2(G-(n,m)) (n,m) and F2(c,d) = CONN3(G-(n,m)) (n,m) 

Definition 4.5: An n-m path P in G is called a strong n-m path if all the arcs of P are strong. In 

particular, if all the arcs of P are neutrosophic α-strong, then P is called neutrosophic α strong path. 

Obviously, An arc (n,m) is strong if it is neutrosophic α-strong, if (n,m) is strong arc, then n and m 

are said to be strong neighbors of each other. 

 

Example 4.6: In the above figure 5, the arcs (V1, V2), (V2, V4), (V4, V5) are neutrosophic α strong, the 

arc (V3, V4) is neutrosophic δ strong, the arcs (V1, V3) is neutrosophic β strong and P = V1V2V4V5 is a 

neutrosophic α strong path. 

Theorem 4.7. Let G be a connected neutrosophic labeling graph and let r and s be any two nodes in 

G. Then there exists a strong path from c to do. 

 

Proof.  

Assume that G = (V,  , ) is a connected neutrosophic labeling graph. Let r and s be any two nodes 

of G. If the arc (r, s) is strong, then there is nothing to prove. Otherwise, either (r, s) is a δ arc or there 

exist a path of length more than one from r to s. 

 In the first case, we can find a path P (say) such that S1 (P) > T2(r,s), S2(P) > I2(r,s)  and 

S3(P) < F2(r,s) In either case, the path from c to d of length more than one. If some arc on this path is 

not strong, replace it by a path having more strength. Hence P is a path from r to s, whose arcs are 

strong and thus P is a strong path from r to s.  

Theorem 4.8: A connected neutrosophic labeling graph G is a neutrosophic partial block if and only 

if any two nodes x, y ∈ V such that (x y) is not neutrosophic α strong are joined by two internally 

disjoint strongest path. 

Proof:   

Suppose that G is a neutrosophic partial block. Let x, y ∈ V such that (x, y) is not neutrosophic α 

strong arc. Now, we shall prove that there exist two internally disjoint strongest x–y paths. If not, i.e 



Neutrosophic Sets and Systems, Vol.30, 2019    268  

 

 

M. Gomathi and V. Keerthika, Neutrosophic labeling graph 

there exist exactly one internally disjoint strongest x-y path in G. Since (x, y) is not α strong, length 

of all strongest x - y path must be at least two. Also for all strongest x - y paths in G, there must be a 

common vertex. Let z be such node in G. Then CONN1 (G-z) (x, y) > CONN1G(x, y), CONN2 (G-z)(x, y) > 

CONN2G(x, y)  and CONN3(G-z)(x, y) < CONN3G(x, y), which contradict the fact that G has no P-cut nodes. 

Hence there exist two internally disjoint strongest x - y paths. 

Conversely, let any two nodes of G are joined by two internally disjoint strongest paths. Let w be a 

node in G. For any pair of nodes c,d  ∈ V such that u  v   w, there always exists a strongest 

path not containing w. So, we cannot be a neutrosophic p-cut node. Hence G is a neutrosophic partial 

block. 

 

5. Neutrosophic Labeling Tree 

In this section we define neutrosophic labeling tree as follows 

Definition 5.1: A graph G∗ = (V,  , ) where   (v)= (T1(r), I1(r), F1(r)) and  = (T2(r,s) , I2(r,s), 

F2(r,s)) is said to be neutrosophic labeling tree, if it has neutrosophic labeling graph and an 

neutrosophic spanning subgraph M= (V, α, β) where α(r)= (α1(r), α2(r), α3(r)) and β= (β1(r,s), β2(r,s), 

β3(r,s)) which is a tree, where for all arcs (r, s) not in T2(r,s) < 


1 (r,s), I2(r,s) < 


2  (r,s), F2(r,s) >



3  (r,s). 

Theorem 5.2: If G∗ = (V,  , ) is a neutrosophic labeling tree, then the arcs of neutrosophic spanning 

subgraph M= (V, α, β) are neutrosophic bridges of G∗. 

 

Proof: Let G∗ = (V,  , ) be a neutrosophic labeling tree and M= (V, α, β) be its spanning subgraph. 

Let (r, s) be an arc in M. Then 


1 (r,s) < T2(r,s) ≤ 


2T (c,d),


2  (r,s) < I2(r,s) ≤ 


2I (r,s),  


3  (r,s) > 

F2(r,s) ≥


2F (r,s), which implies that the arc (r, s) is an neutrosophic bridge of G∗. Since the arc (r, s) 

is an arbitrary, then the arcs of M are the neutrosophic bridges of G∗. 

 

Theorem 5.3: Every neutrosophic labeling graph is a neutrosophic labeling tree. 

Proof: Let G∗ = (V,  , ) be a neutrosophic labeling graph. Since is   is bijective, each and every 

vertex of G* will have at least one arc as neutrosophic bridge. Therefore, the spanning subgraph M 

will exist, such that whose arcs are neutrosophic bridges. Hence, by above theorem 5.2, every 

neutrosophic labeling graph is an neutrosophic labeling tree. 

 

6. Partial Neutrosophic Labeling Tree 

Finally, we define partial neutrosophic labeling tree and discussed some of the properties. 

Definition 6.1: A connected neutrosophiclabeling graph G∗ = (V,  , ) is called a partial neutrosophic 

labeling tree if G* has a spanning subgraph M= (V, α, β) which is a tree, where for all arc (r, s) of G* 

which are not in M, CONN1G(r,s) > T2(r,s), CONN2G(r,s) > I2(r,s)  and CONN3G(r,s) < F2(r,s). 

If all the components of disconnected graph G* satisfies above condition, then G*   is called a partial 

forest. 
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Example 6.2: If we remove the arc (v1, v2) figure 6, we will get a spanning tree M. Also for the arc (v1, 

v2), CONN1G (v1, v2) = 0.03 > 0.02 = T1 (v1, v2), CONN2G (v1, v2) = 0.16 > 0.15 = I1 (v1, v2), and CONN3G 

(v1, v2) = 0.42 < 0.55 = F1 (v1, v2). Thus figure 6 is an example of partial neutrosophic labeling tree. 

 

Theorem 6.3: Let G∗ = (V,  , ) be a connected neutrosophic labeling graph. Then the necessary and 

sufficient condition for G*  to be  a neutrosophic partial tree is that , for  any cycle C in G*, there 

must exists an arc γ = (r, s) such that T2(γ) < CONN1(G* -γ)(r, s), I2(γ) < CONN2(G* - γ)(r, s) and  

F2(γ) > CONN3(G* - γ)(r, s), where G*- γ is the subgraph of G* obtained by deleting the arc γ from G*. 

Proof: Assume that G∗ is a connected neutrosophic labeling graph. If G∗ has no cycle, then G∗ itself 

behave as a partial tree.  

If G* has a cycle C and let γ = (r,s) be an arc of C with minimum weightage for truth membership, 

indeterminacy  and maximum weightage for falsity  membership in  G* . Now, remove the arc γ = 

(r,s) from G* and continue this process until we get a tree M which is the subgraph of G*. 

The arcs deleted in each process were stronger than the one which removed preceding 

process. Since M is a tree and the arc γ = (r, s) having minimum membership value, minimum 

indeterminacy and maximum falsity membership value from the arcs of a cycle in G* does not belongs 

to M,  we can conclude that there exists a path from r to s whose membership value greater than 

T2(r, s), indeterminacy value greater than I2(r, s) and falsity membership value less than F2(r, s), and 

that does not involve (r, s) or any arcs deleted prior to it. It contains only the arcs of M. Thus G* is a 

partial neutrosophic labeling tree. 

 Conversely, if G* is a partial neutrosophic labeling tree and P is cycle, then some arc 

γ = (r, s) of P does not belong to M. Thus by definition we have T2(γ) < CONN1(G* -γ)(r, s), I2(γ) < 

CONN2(G* - γ)(r, s) and F2(γ) > CONN3(G* - γ)(r, s). 

Theorem 6.4: Between any two nodes of G*, If there exist at most one strongest path, then G* must be 

a partial forest. 

Proof: 

Assume that G* is not a partial forest. Then G* must contain a cycle C such that T2(r, s) ≥ CONN1G(r, 

s), I2(r, s) ≥ CONN2G(r, s) and F2(r, s) ≤ CONN3G(r, s) for all arcs γ = (r, s) of the cycle C. Thus, γ = (r, s) 

is the strongest path from r to s. If we choose (r, s) to be a weakest arc of C, it follows that the rest of 

the cycle C is also a strongest path from r to s, which is a contradiction. Hence, G* must be a partial 

forest. 
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Theorem 6.5: If G* is a not a tree but partial tree, then has G* at least one arc γ = (r, s) for which  

T2(r, s) < CONN1G(r, s), I2(r, s) < CONN2G(r, s) and F2(r, s) > CONN3G(r, s). 

Proof:   

Assume that G* is a partial tree, then by definition of partial tree, G* must contain a spanning tree M 

such that T2(r, s) < CONN1G(r, s), I2(r, s) < CONN2G(r, s) and F2(r, s) > CONN3G(r, s), for all arcs  

γ = (r, s) not in M. Thus has G* at least one arc γ = (r, s) (since G* is not a tree), which satisfies the above 

condition.  

Theorem 6.6:  If M is the spanning tree of the partial tree G*, then the arcs of M are the partial bridges 

of G*. 

Proof:  

Let γ = (r, s) be an arc in M. Since, M is a spanning tree, this arc γ form a unique path between the 

nodes r and s in M.  

If G* has no other paths between r and s, then clearly γ = (r, s) is a bridge of G* and hence it is a partial 

bridge of G*.  

On the other hand, if P is a path connecting r and s in G*, then P must contain an arc γ = (r, s) which 

is not in M such that T2(r, s) < CONN1G(r, s), I2(r, s) < CONN2G(r, s) and F2(r, s) > CONN3G(r, s). Then 

γ = (r, s) is not a weakest arc of any cycle in G* and hence (r, s) is a partial bridge. 

 

7. Conclusion 

Connectivity concepts are the major key in neutrosophic graph problems. This paper presented new 

connectivity concepts in neutrosophic labeling graphs. Definition of neutrosophic strong arc, 

neutrosophic partial cut node, Neutrosophic Bridge and block based on connectivity concepts of 

intuitionistic fuzzy graph was introduced. The neutrosophic labeling tree and partial neutrosophic 

labeling tree concepts were established with interesting properties on them.  We extended our 

research work to bipolar neutrosophic graph, covering problem on neutrosophic graphs, Chromatic 

number in neutrosophic graphs, Colouring of neutrosophic graphs. 
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