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Abstract – This study explores a new type of matrix called a range-symmetric Fermatean 

neutrosophic fuzzy matrix (FNFM), inspired by the concept of range-Hermitian matrices. We 

demonstrate that all FNFMs inherently possess a specific property we term "Pythagorean 

neutrosophic fuzzy," (PNFM) but the reverse is not always true. Furthermore, we delve into 

graphical representations of FNFMs with specific symmetry properties (kernel-symmetric (KS), 

column symmetric, and range-symmetric (RS)) and show that these properties hold for all 

isomorphic graphs. The study goes on to establish equivalent characterizations for range-symmetric 

FNFMs and identify conditions for KS FNFMs. We introduce a novel concept: k-KS and RS FNFMs. 

Examples illustrate that KS FNFMs inherently possess k-KS, but not necessarily the other way 

around. This research contributes to a deeper understanding of symmetric FNFM and their potential 

applications, highlighting their importance in mathematical and computational fields. 

Keywords: PNFM, FNFM, NFM 

 

1. Introduction 

This paper delves into Generalized Symmetric FNFM, a recent development in representing 

uncertainty. We begin with the fundamental concept of FS, introduced by Zadeh [1], which use 

membership degrees to handle vagueness. Recognizing limitations in assigning non-membership 

values, Atanassov introduced intuitionistic fuzzy sets [2]. Smarandache further extended this 

framework with neutrosophic sets (NSs) to encompass indeterminacy [3]. Building on these ideas, 

Wang et al. [4, 5] proposed single-valued and interval-valued neutrosophic sets, expanding their 

applicability. 
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The concept of symmetric fuzzy matrices with properties based on range and kernel was explored 

by Kim and Roush [6]. They showed that range symmetry implies kernel symmetry, but not vice 

versa. Meenakshi [7] introduced FM  with a fixed product, leading to further research on k-real 

and k-Hermitian matrices [8]. Baskett and Katz [9] and Schwerdtfeger [10] also contributed 

significantly to the field. 

Recent studies by Meenakshi and colleagues [11, 12, 13, 14] explored various aspects of symmetric 

fuzzy matrices, including k-kernel symmetric and k-range symmetric properties. Sumathi and 

Arockiarani [15] proposed new operations on FNSM, while Meenakshi and Krishnamoorthy [16] 

introduced k-EP matrices. Jaya Shree [17] studied secondary κ-RSFM. Anandhkumar et al. [18] 

characterized Generalized Symmetric NFMs, and Broumi et al. [19] discussed Fermatean 

neutrosophic matrices. Silambarasan [20] further explored Fermatean fuzzy matrices. 

Neutrosophic theory, introduced by Smarandache [3], embraces indeterminacy, acknowledging 

that truth, falsity, and indeterminacy can coexist. Neutrosophic sets address this by using 

membership degrees for truth, falsity, and indeterminacy. The study of matrices has evolved 

significantly to accommodate uncertainty, leading to the development of GSFNFM. This paper aims 

to explore the development of GSFNFM, discuss their theoretical foundations, mathematical 

properties, and potential applications. Anandhkumar [21] et.al, have studied Interval Valued 

Secondary k-Range Symmetric NFMs,  

GSFNFM represent a novel approach to modeling uncertainty by combining Fermatean algebra, 

neutrosophic theory, and fuzzy logic. Fermatean algebra extends classical algebra to include three 

logical states: true, false, and indeterminate. This framework allows for a structured representation 

of uncertainty. We will explore the theoretical underpinnings of GSFNFM, their mathematical 

properties, and potential applications in various domains. Anandhkumar [22] et.al, have studied 

Secondary K- CSNFM. 

1.1 Research Gap 

In our research, we aim to introduce two innovative categories of NFM the RS-FNFM and the 

KS-FNFM. These matrices draw inspiration from EP-matrices within the complex domain and offer 

fresh perspectives on representing uncertainty and indeterminacy. 

Our study establishes that while every FNFM qualifies as a PNFM, the reverse relationship does not 

always hold. Additionally, we depict visual representations of KS, CS, and RS adjacency FNFM to 

demonstrate their versatility in various scenarios, particularly in depicting relationships within 

isomorphic graphs. 

Furthermore, we introduce RS-FNFM and derive environments for KS-FNFM, shedding light on 

their characteristics and interrelations. This exploration aids in comprehending the basic structures 

and constraints foremost these matrices. 
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Moreover, we present the idea of k-KS and RS-FNFM, providing illustrations that illustrate their 

relations. Exactly, we demonstrate that KS implies k-KS, thereby deepening our understanding of 

the interactions between different forms of SNFM. 

Our research expands the comprehension of symmetric NFM and their practical applications, 

mostly in mathematical and computational sciences. By presenting novel matrix types and 

investigating their properties, we pay to forward both theoretic frameworks and applied uses of 

NFM. This underscores the worth of our findings in proceeding the understanding and utilization 

of SFM. 

Prior research has laid a foundation for understanding symmetric fuzzy matrices, including 

explorations of k-kernel symmetric and k-range symmetric properties [11, 12, 13, 14]. However, the 

specific application of these symmetry concepts to Fermatean neutrosophic fuzzy matrices (FNFMs) 

remains underexplored. This gap in knowledge motivates our current investigation. 

Building on the work of Anandhkumar et al. [18] who presented range and KS to NFM, we extend 

these principles to FNFMs. While their work represents a significant advancement, a critical research 

gap persists regarding generalized symmetric properties in FNFMs. In particular, no prior research 

has investigated how range and KS principles apply to FNFMs, nor have the properties of such 

matrices been well-characterized. 

Our study addresses this gap by: 

We propose two new types of FNFMs: RS-FNFM) and KS-FNFM. These matrices draw inspiration 

from EP-matrices in the complex domain and offer a fresh perspective for representing uncertainty 

and indeterminacy, especially when neutrosophic logic is relevant. We go beyond simply 

introducing new matrix types. Our research explores the connections between these novel FNFMs 

and existing concepts. We will establish that all FNFMs possess a property we call "Pythagorean 

NFM," but the converse is not always true. This distinction provides valuable insights into the 

characteristics of these matrices. To enhance understanding and highlight their applicability, we will 

explore graphical representations of KS, CS, and RS adjacency FNFMs. This visualization is 

particularly useful in representing relationships within isomorphic graphs. We will establish 

equivalent characterizations for RS-FNFM and identify conditions for KS-FNFM. These findings will 

provide a deeper understanding of the fundamental constructions and relationships leading these 

matrices. We will present the concept of k-KS and RS-FNFMs and illustrate their connections 

through examples. We will show that a kernel-symmetric FNFM inherently possesses k-KS, though 

the converse does not always hold. This analysis sheds light on the interplay between different types 

of symmetric NFM. 

By addressing these research objectives, our work aims to significantly advance the understanding 

of symmetric NFM and their applications, particularly in mathematical and computational domains. 
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We introduce novel matrix types, explore their properties and relationships with existing concepts, 

and showcase their potential for representing uncertainty in various contexts. 

 

 

 

 

 

 

 

 

 

1.2 Novelty 

This study introduces several key elements that contribute to its originality and significance: 

We propose two new types of matrices, RS-FNFM and KS-FNFM. Inspired by EP-matrices, these 

matrices offer a fresh perspective for representing uncertainty and indeterminacy, particularly when 

dealing with neutrosophic logic. Our research goes beyond simply introducing new matrices. We 

extend the well-established principles of symmetric matrices to the domain of FNFMs. This 

expansion leads to the development of equivalent characterizations for RS-FNFM and the 

identification of conditions for KS-FNFM. These findings provide deeper insights into the properties 

and underlying structures governing these novel matrices. We delve into the connections between 

different types of symmetric NFMs. For instance, we demonstrate that a kernel-symmetric FNFM 

inherently possesses k-KS, although the converse is not always true. This analysis sheds light on the 

intricate interplay between various symmetry properties within the framework of NFMs. To 

enhance understanding and showcase the applicability of these matrices, we explore graphical 

representations of KS, CS, and RS adjacency FNFMs.  

This visualization is particularly valuable in representing relationships within isomorphic graphs. 

Our research identifies and addresses a critical gap in the existing literature. While prior studies 

have explored various types of symmetric fuzzy matrices, the specific application of these concepts 

to FNFM has remained largely unexamined. This work fills this void by introducing novel matrix 

types, exploring their properties, and highlighting their potential applications. By introducing these 

novel matrices and exploring their properties, we contribute to a more comprehensive 

understanding of symmetric NFM and their potential applications in mathematical and 

computational domains. This work advances the theoretical foundations of NFM and paves the way 

for their broader practical use. These elements collectively demonstrate the originality and 

significance of our research, offering valuable insights and expanding the existing framework for 

representing uncertainty in various fields. 

 

Secondary k-KSFM 

Secondary k-RSFM Generalized Symmetric NFM Generalized 

Symmetric FNFM 

On k-KSM On k -RSM 
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1.3 Notations:  

For FNFM of  [ , , ]T I F n
P P P P FNFM   

[ , , ]T I FP P P T  : Transpose of[ , , ]T I FP P P ,  

R([ , , ]T I FP P P ) : Row space of[ , , ]T I FP P P ,  

C([ , , ]T I FP P P ) : Column space of [ , , ]T I FP P P  

N([ , , ]T I FP P P ) : Null Space of [ , , ]T I FP P P  ,  

[ , , ]T I FP P P 
: Moore-Penrose inverse of[ , , ]T I FP P P ,  

GSFNFM: Generalized Symmetric Fermatean Neutrosophic Fuzzy Matrices. 

1.4. PRELIMINARIES: The permutation matrix K is satisfied using the subsequent 

 (P1) K = KT , K2 = I for all  [ , , ]T I F n
P P P P FNFM    

 (P2) N([ , , ]T I FP P P ) = N([ , , ]T I FP P P K) = N(K[ , , ]T I FP P P ) 

(P3) ([ , , ] ) [ , , ]T I F T I FP P P K K P P P  and ([ , , ]) [ , , ]T I F T I FP P P P P P   K exists, if 

[ , , ]T I FP P P 
exists. 

(P4) [ , , ]T I FP P P T is a Generalized inverse of [ , , ]T I FP P P  iff [ , , ]T I FP P P 
 occur. 

2. DEFINITIONS AND THEOREMS                                                                   

Definition:2.1 (NFM): A NS P on the set X is well-defined as  , , I,F ,x XP x T    , where 

, , : ] 0,1 [T I F X    and 0 3.T I F   
 

Example2.1: Consider a NFM 

(0.7,0.8,0.5) (0.2,0.4,0.6) (0.3,0.7,0.4)

(0.4,0.5,0.6) (0.3,0.2,0.1) (0.3,0.2,0.1)

(0.1,0.2,0.3) (0.7,0.2,0.1) (0.2,0.2,0.2)

P

 
 


 
  

 

Definition 2.2 PNFM: PNFM P with m × n matrix is given by [ , , , ]ij mxnP X T I F    

where , , [0,1]T I F   are referred to as the degrees of the truth, the indeterminacy, and the falsity of 

in P, which preserving the form  
2 2 20 2T I F      where 

2 20 2T F    and  
20 1I  .   
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  Example2.2: Consider a PNFM  

(1,1,0) (0.5,0.3,0.4) (0.3,0.4,0.1)

(0.6,1,0.2) (0.4,0.1,0.6) (1,1,0)

(0.5,0.5,1) (1,1,0) (0.4,0.4,0.5)

P

 
 


 
  

 

Definition 2.3 FNFM: FNFM with dimensions m × n is given by [ , , , ]mxnP X T I F    

where , , [0,1]T I F   are referred to as the degrees of the truth, the indeterminacy, and the falsity of 

in P, which preserving the state  
3 3 30 2T I F      where 

3 30 1T F    and  
30 1.I       

Example2.3: Consider a NFM 

0.7,0.7,0.8 1,0,1 0.2,0.3,0.4

1,0,1 1,0,1 1,0,1

0.2,0.3,0.4 1,0,1 1,0,1

P

      
 

      
 
       

is not PNFM 

but it P is a FNFM. 

(0.7)2 + (0.7)2 + (0.8)2 = 1.62 ≤ 2, (0.7)2+ (0.8)2 =1.13 > 1 not PNFM 

(0.7)3 + (0.7)3 + (0.8)3= 1.198 ≤ 2, (0.7)3+ (0.8)3 =0.855 < 1 is FNFM 

Therefore every FNFM is PNFM but converse need not be true. 

Definition: 2.4 Let  [ , , ]T I F n
P P P P FNFM   be a FNFM, if R [[ , , ]T I FP P P ] = 

R [[ , , ]T I FP P P T] and R [[ , , ]T I FP P P ] = R [[ , , ]T I FP P P T] then [ , , ]T I FP P P P  is called as RS. 

Example: 2.4 Consider a FNFM 

0.4,0,1 1,0,1 0.2,0.3,0.4

[ , , ] 1,0,1 1,0,1 1,0,1

0.2,0.3,0.4 1,0,1 1,0,1

T I FP P P P

      
 

       
 
       

 

Here, R [ (0.2,0.4,0.4) (0.1,0.2,0.3) (0.1,0.2,0.3) ([ , , ] )T

T I FR P P P ] = R [[ , , ]T I FP P P T] 

The following matrix does not meet the RS-FNFM condition. 

0.3,0,0.2 0.1,0.2,0.3 0.5,0.6,0.4

[ , , ] 0.1,0.2,0.3 0.1,0.2,0.3 0.1,0.2,0.3 ,

0.2,0.4,0.4 0.1,0.2,0.3 0.1,0.2,0.3

T I FP P P

      
 

      
 
       

 

0.3,0,0.2 0.1,0.2,0.3 0.2,0.4,0.4

[ , , ] 0.1,0.2,0.3 0.1,0.2,0.3 0.1,0.2,0.3 ,

0.5,0.6,0.4 0.1,0.2,0.3 0.1,0.2,0.3

T I FP P P

      
 

      
 
       

 

 (0.3,0,0.2) (0.1,0.2,0.3) (0.5,0.6,0.4) ([ , , ]) ,T I FR P P P
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 (0.3,0,0.2) (0.1,0.2,0.3) (0.5,0.6,0.4) ([ , , ] )T

T I FR P P P

 (0.1,0.2,0.3) (0.1,0.2,0.3) (0.1,0.2,0.3) ([ , , ]) ,T I FR P P P

 (0.1,0.2,0.3) (0.1,0.2,0.3) (0.1,0.2,0.3) ([ , , ] )T

T I FR P P P

 (0.2,0.4,0.4) (0.1,0.2,0.3) (0.1,0.2,0.3) ([ , , ]) ,T I FR P P P
 

 (0.2,0.4,0.4) (0.1,0.2,0.3) (0.1,0.2,0.3) ([ , , ] )T

T I FR P P P  

([ , , ]) ([ , , ] )T

T I F T I FR P P P R P P P

                                                        
Note:2.1 For  FNFM P with det [ , , ]T I FP P P  > <0,1,1>  has non- null rows columns, hereafter 

N([ , , ]T I FP P P ) = <0,1,1> = N([ , , ]T I FP P P T). Additionally, a SM [ , , ]T I FP P P  = [ , , ]T I FP P P T that is 

N([ , , ]T I FP P P )= N([ , , ]T I FP P P T). 

 
Definition : 2.5  Let  [ , , ]T I F n

P P P P FNFM  if  N([ , , ]T I FP P P ) = N([ , , ]T I FP P P T) and  P is 

said to be  KS- FNFM where N([ , , ]T I FP P P ) = {y/y[ , , ]T I FP P P  =  (0,1,1)  and y∈ F1×n}. 

Example: 2.5 Consider a FNFM 

0.4,0.4,0.6 0.6,0.7,0.7 0.5,0.6,0.7

[ , , ] 0.6,0.8,0.7 0.7,0.9,0.2 0.3,0.7,0.2

0.7,0.6,0.7 0.5,0.6,0.6 0.5,0.5,0.6

T I FA A A

      
 

      
 
       

 

([ , , ]) ([ , , ] ) (0,1,1).T

T I F T I FN P P P N P P P   

Definition 2.6. Symmetric FNFM. If  [ , , ]T I F n
P P P P FNFM  is called SFNFM if p𝑖𝑗 = p𝑗i . 

Example: 2.6 Consider a FNFM 

0.5,0,1 1,0,1 0.5,0.6,0.7

[ , , ] 1,0,1 1,0,1 1,0,1

0.5,0.6,0.7 1,0,1 1,0,1

T I FP P P

      
 

      
 
       

 

Here, [ , , ]T I FP P P = [ , , ]T I FP P P T  

Definition 2.7. Permutation NFM 
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v2 

v3 

v1 

u3 

u1 u2 

A NFPM is a square matrix where every row and every column contain exactly one <1,1,0> entry, 

with all other entries being <0,0,1>. 

Example: 2.7 Consider a NFPM,  

(0,0,1) (0,1,1) (0,0,1)

(0,0,1) (0,0,1) (1,1,0)

(1,1,0) (1,0,0) (0,0,1)

K

 
 


 
  

 

3. Graphical Representation of Range symmetric, CS and KS Adjacency NFM.  

Definition 3.1. Adjacency FNFM  

  An adjacency FNFM is a square matrix used to represent a finite graph. The elements of this 

matrix indicate whether pairs of vertices in the graph are connected. For a finite simple graph, this 

matrix can be defined as a binary matrix, often referred to as a (1,1,0) and (0,0,1) matrix, where all 

diagonal elements are consistently set to (0,0,1). Let G(V, E) represent a simple graph with n vertices. 

The adjacency matrix P = [Pij] is a SM defined P = [Pij] = (1,1,0) vi is adjacent to vj and (0,0,1) 

otherwise denoted by P(G). 

 

Example: 3.1 Consider a FNFM 

(0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (1,1,0)

(0,0,1) (0,0,1) (1,1,0) , (1,1,0) (0,0,1) (0,0,1)

(1,1,0) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0,1)

G HA A

   
   

 
   
        

Equivalent adjacency graph. 

 

 

 

 

 

Definition 3.2. Incidence FNFM

 

The incidence NFM I = [mij] is a n m  matrix defined by I = [mij] = (1,1,0), vi is incident to vj and 

(0,0,1) otherwise denoted by P(G). 

 

Example:3.2 Consider a FNFM and its equivalent graph. 

a (1,1,0) (0,0,1) (0,0,1) (1,1,0) (1,1,0) 

I b (1,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1) 

c (0,0,1) (0,0,1) (1,1,0) (1,1,0) (0,0,1) 

d (0,0,1) (1,1,0) (1,1,0) (0,0,1) (1,1,0) 

 
 
 
 
 
 

 

Corresponding graph 

 



Neutrosophic Sets and Systems, Vol.70, 2024     93  

 

 

M.Anandhkumar  et al., Generalized Symmetric Fermatean NFMs 

 

 

 

 

v2 v5 

v1 

v3 
v4 u4 

u1 u3 

u2 

u5 

  

 

 

 

 

3.1 Relation between isomorphism , non-isomorphism and KS, RS and CS- FNFM        

                                     

Graph: I 

 

 

 

 

 

 

 

 

 

1 2 3 4 5

1

2

3

4

5

(0,0,1) (1,1,0) (1,1,0) (0,0,1) (1,1,0)

(1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0,1)

(1,1,0) (1,1,0) (0,0,1) (1,1,0) (0,0,1)

(0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0)

(1,1,0) (0,0,1) (0,0,1) (1,1,0) (0,0,1)

U

u u u u u

u

u
A

u

u

u








 
 
 
 
 
 
 
 

   

 

1 2 3 4 5

1

2

3

4

5

(0,0,1) (1,1,0) (1,1,0) (0,0,1) (1,1,0)

(1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0,1)

(1,1,0) (1,1,0) (0,0,1) (1,1,0) (0,0,1)

(0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0)

(1,1,0) (0,0,1) (0,0,1) (1,1,0) (0,0,1)

V

v v v v v

v

v
A

v

v

v








 
 
 
 
 
 
 
 

   

 

Graph: I Two graphs have the equal number of vertices, the equal number of edges, the equal degree 

sequence, and the FNFM are equal. Consequently, the given graphs are isomorphic  

a 
b 

c 
d 

 
e1 

e2 

e3 

e4 

e5 
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A B 

D C 

E 

H G 

F  

 

O P 

R Q 

S 

V U 

T 

and also KS, CS, RS adjacency FNFM. 

Graph: II  

 

 

 

 

 

 

(0,0,1) (1,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

(1,1,0) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0,1)

(1,1,0) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

(0,0,1) (1,1,0) (1,U

O R P Q S V T U

O

R

P

A Q 1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

(1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (1,1,0) (0,0,1)

(0,0,1) (1,1,0) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (1,1,0)

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (0,0

S

V

T ,1) (1,1,0)

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1,0) (1,1,0) (0,0,1)U

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(0,0,1) (1,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

(1,1,0) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1, 0) (0,0,1) (0,0,1)

(1,1,0) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (1,1,0) (0,0,1)

(0,0,1) (1,1,0) (1,V

A B D C E F H G

A

B

D

A C 1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1, 0) (1,1,0) (0,0,1)

(0,0,1) (1,1,0) (0,0,1) (0,0,1) (1,1,0) (0,0,1) (0,0,1) (1,1,0)

(0,0,1) (0,0,1) (1,1,0) (0,0,1) (1,1,0) (0,0,1) (0,0

E

F

H ,1) (1,1,0)

(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,1, 0) (1,1,0) (0,0,1)G

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Two graphs have the equal number of vertices, the equal number of edges, the degree sequence are 

not equal.  

Consequently, the graphs II, G and H are not isomorphic. 

4.Theorems and Results 

Theorem:4.1 For a FNFM
 

[ , , ],T I FP P P P [ , , ]T I FQ Q Q Q  and K be a NFPM if 

([ , , ])T I FN P P P = ([ , , ])T I FN Q Q Q ⇔ ( [ , , ]T I FN K P P P ) ( [ , , ] )T T

T I FK N K Q Q Q K . 

Proof:  Let ( [ , , ] )T

T I Fz N K P P P K  

( [ , , ] ) (0,1,1)T

T I Fz K P P P K   
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(0,1,1),TxK   

everywhere ([ , , ])T I Fx zK P P P   

( )Tx N K   

det det (0,1,1)TK K    

Consequently,                                        

( ) (0,1,1)TN K     

Hereafter  

(0,0,1)x   

([ , , ]) (0,1,1)T I FzK P P P   

([ , , ]) ([ , , ])T I F T I FzK N P P P N Q Q Q    

([ , , ]) (0,0,1)T

T I FzK Q Q Q K   

( ([ , , ]) )T

T I Fz N K Q Q Q K   

( [P ,P ,P ] ) ( [ , , ] )T T

v L T I FN K K N K Q Q Q K    

Also, ( [ , , ] ) ( [ , , ] )T T

T I F T I FN K Q Q Q K N K P P P K  

Consequently, 

([ , , ]) ([ , , ])T I F T I FN P P P N Q Q Q ⇔ ( [ , , ] ) ( [ , , ] )T T

T I F T I FN K P P P K N K Q Q Q K  

Conversely, if ( [ , , ] ) ( [ , , ] )T T

T I F T I FN K P P P K N K Q Q Q K ,  

N ([ , , ])T I FP P P = N (KT (K[ , , ]T I FP P P KT) K) 

= N (KT (K ([ , , ])T I FQ Q Q KT) K)    

([ , , ]) ([ , , ])T I F T I FN P P P N Q Q Q  

Example: 4.1 Consider a FNFM 



Neutrosophic Sets and Systems, Vol.70, 2024     96  

 

 

M.Anandhkumar  et al., Generalized Symmetric Fermatean NFMs 

0.3,0.3,0.4 0.5,0.3,0.6 0.2,0.3,0.4

[ , , ] 0.4,0.7,0.6 0.4,0.8,0.1 0.2,0.5,0.1

0.2,0.4,0.4 0.4,0.4,0.5 0.4,0.5,0.6

T I FP P P

      
 

      
 
       

(1,1,0) (0,0,1) (0,0,1)

(0,0,1) (1,1,0) (0,0,1)

(0,0,1) (0,0,1) (1,1,0)

K

 
 


 
  

 

0.5,0.3,0.7 0.4,0.3,0.6 0.3,0.4,0.4

[ , , ] 0.5,0.7,0.5 0.4,0.8,0.2 0.2,0.5,0.2

0.2,0.4,0.4 0.4,0.4,0.5 0.4,0.5,0.6

T I FQ Q Q

      
 

      
 
       

 

[ , , ] T

T I FK P P P K =

(1,1,0) (0,0,1) (0,0,1)

(0,0,1) (1,1,0) (0,0,1)

(0,0,1) (0,0,1) (1,1,0)

 
 
 
  

0.3,0.3,0.4 0.5,0.3,0.6 0.2,0.3,0.4

0.4,0.7,0.6 0.4,0.8,0.1 0.2,0.5,0.1

0.2,0.4,0.4 0.4,0.4,0.5 0.4,0.5,0.6

      
 
     
 
       

(1,1,0) (0,0,1) (0,0,1)

(0,0,1) (1,1,0) (0,0,1)

(0,0,1) (0,0,1) (1,1,0)

 
 
 
  

 

=

0.3,0.3,0.4 0.5,0.3,0.6 0.2,0.3,0.4

0.4,0.7,0.6 0.4,0.8,0.1 0.2,0.5,0.1

0.2,0.4,0.4 0.4,0.4,0.5 0.4,0.5,0.6

      
 
     
 
       

 

Let ( [ , , ] )T

T I Fw N K P P P K  

[(0,0,1) (0,0,1) (0,0,1)]w 
 

By definition 2.7 

( [ , , ] )T

T I Fw K P P P K  

[(0,0,1) (0,0,1) (0,0,1)]

0.3,0.3,0.4 0.5,0.3,0.6 0.2,0.3,0.4

0.4,0.7,0.6 0.4,0.8,0.1 0.2,0.5,0.1

0.2,0.4,0.4 0.4,0.4,0.5 0.4,0.5,0.6

      
 
     
 
       

= (0,0,1) 

(0,1,1) where ([ , , ])T

T I FxK x zK P P P    

Hence 

(0,1,1)x 
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0.3,0.3,0.4 0.5,0.3,0.6 0.2,0.3,0.4

[ , , ] 0.4,0.7,0.6 0.4,0.8,0.1 0.2,0.5,0.1

0.2,0.4,0.4 0.4,0.4,0.5 0.4,0.5,0.6

T I FK P P P

      
 

      
 
       

 

([ , , ]) (0,1,1)T I FzK P P P   

([ , , ]) ([ , , ])T I F T I FzK N P P P N Q Q Q    

([ , , ]) (0,0,1)T

T I FzK Q Q Q K   

( ([ , , ]) )T

T I Fz N K Q Q Q K   

( [P ,P ,P ] ) ( [ , , ] )T T

v L T I FN K K N K Q Q Q K    

Also, ( [ , , ] ) ( [ , , ] )T T

T I F T I FN K Q Q Q K N K P P P K  

Consequently, 

([ , , ]) ([ , , ])T I F T I FN P P P N Q Q Q ⇔ ( [ , , ] ) ( [ , , ] )T T

T I F T I FN K P P P K N K Q Q Q K  

Conversely, if ( [ , , ] ) ( [ , , ] )T T

T I F T I FN K P P P K N K Q Q Q K ,  

N ([ , , ])T I FP P P = N (KT (K[ , , ]T I FP P P KT) K) 

= N (KT (K ([ , , ])T I FQ Q Q KT) K)    

([ , , ]) ([ , , ])T I F T I FN P P P N Q Q Q  

Theorem:4.2 For a FNFM  [ , , ]T I F n
P P P P FNFM   and K be a NFPM if 

([ , , ]) ([ , , ] )T

T I F T I FN P P P N P P P ⇔N(K[ , , ]T I FP P P KT) = N(K [ , , ]T I FP P P T KT) . 

Proof: The proof is like to theorem 4.1 

Theorem: 4.3 For  [ , , ]T I F n
P P P P FNFM 

 
is KS- FNFM, then N([ , , ]T I FP P P [ , , ]T I FP P P T) = 

N([ , , ]T I FP P P ) = N([ , , ]T I FP P P T[ , , ]T I FP P P ). 

Example: 4.2 Consider a FNFM 



Neutrosophic Sets and Systems, Vol.70, 2024     98  

 

 

M.Anandhkumar  et al., Generalized Symmetric Fermatean NFMs 

0.1,0.3,0.5 0.4,0.3,0.6 0.2,0.3,0.4

[ , , ] 0.4,0.7,0.6 0.4,0.7,0.1 0.2,0.5,0.1

0.2,0.3,0.5 0.4,0.3,0.5 0.4,0.2,0.1

T I FP P P

      
 

      
 
       

 

Theorem:4.4 For a FNFM  [ , , ], [ , , ]T I F T I F n
P P P P Q Q Q Q FNFM     and K NFPM,  

R ([ , , ]T I FP P P ) = R ([ , , ]T I FQ Q Q ) ⇔ R (K[ , , ]T I FP P P KT) = R (K[ , , ]T I FQ Q Q KT) . 

Proof: Let R ([ , , ]T I FP P P ) = R ([ , , ]T I FQ Q Q ) 

Then, R ([ , , ]T I FP P P KT) = R ([P ,P ,P ]v L  ) KT     

= R ([ , , ]T I FP P P ) KT     

= R ([ , , ]T I FP P P KT) 

Let  ( [ , , ] )T

T I Fz R K P P P K  

( [ , , ] ) for someT n

T I Fz w K P P P K w V   

[ , , ] ,T

T I Fz r P P P K r wK   

    [ , , ] [ , , ]T T

T I F T I Fz R P P P K R Q Q Q K 
 

[ , , ] for someT n

T I Fz u Q Q Q K u V   

  [ , , ]T T

T I Fz uK K Q Q Q K  

[ , , ] for someT n

T I Fz vK Q Q Q K v V   

( [ , , ] )T

T I Fz R K Q Q Q K  

Therefore, ( [ , , ] ) ( [ , , ] )T T

T I F T I FR K P P P K R K Q Q Q K  

Similarly, ( [ , , ] ) ( [ , , ] )T T

T I F T I FR K Q Q Q K R K P P P K  

Therefore, R(K[ , , ]T I FP P P KT) = R(K[ , , ]T I FQ Q Q KT) 

Conversely, Let R(K[ , , ]T I FP P P KT) = R(K[ , , ]T I FQ Q Q KT)  
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([ , , ]) [ ( [ , , ] ) ]T T

T I F T I FR P P P R K K P P P K K  

[ ( [ , , ] ) ]T T

T I FR K K Q Q Q K K  

([ , , ])T I FR Q Q Q  

([ , , ]) ([ , , ])T I F T I FR P P P R Q Q Q
 

Example: 4.3 Consider a FNFM  

0.5,0.6,0.4 0.3,0.1,0.2 0.2,0.4,0.5

[ , , ] 0.3,0.1,0.2 0.4,0.5,0.1 0.2,0.5,0.5

0.2,0.4,0.5 0.2,0.5,0.5 0.4,0.2,0.1

T I FP P P

      
 

      
 
       

 

0.2,0.4,0.5 0.2,0.5,0.5 0.4,0.2,0.1

[ , , ] 0.3,0.1,0.2 0.4,0.5,0.1 0.2,0.5,0.5

0.5,0.6,0.4 0.3,0.1,0.2 0.2,0.4,0.5

T I FQ Q Q

      
 

      
 
       

 

(0,0,1) (1,1,0) (0,0,1)

(0,0,1) (0,0,1) (1,1,0)

(1,1,0) (0,0,1) (0,0,1)

K

 
 


 
  

 

Theorem:4.5 For  [ , , ]T I F n
P P P P FNFM  be the FNFM and K be a NFPM, R([ , , ]T I FP P P )  

= R([ , , ]T

T I FP P P ) ⇔ R(K[ , , ]T I FP P P KT) = R(K [ , , ]T I FP P P T KT) . 

Proof: The proof is comparable to theorem 4.4 

Example: 4.4 Consider a FNFM 

0.2,0.1,0.3 0.3,0.3,0.2 0.4,0.5,0.6

[ , , ] 0.3,0.3,0.2 0.4,0.7,0.1 0.4,0.5,0.2

0.4,0.5,0.6 0.4,0.5,0.2 0.3,1,1

T I FP P P

      
 

      
 
       

 

Theorem:4.6 For a FNFM  [ , , ], [ , , ]T I F T I F n
P P P P Q Q Q Q FNFM    and K NFPM 

C([ , , ]T I FP P P ) = C([ , , ]T I FQ Q Q ) ⇔ C(K[ , , ]T I FP P P KT) = C(K [ , , ]T I FQ Q Q  KT).  

Proof: The proof is like to theorem 4.4 

Example: 4.5 Consider a FNFM 
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0.1,0.2,0.3 0.4,0.5,0.1 0.3,0.2,0.1

[ , , ] 0.1,0.4,0.5 0.3,0.1,0.8 0.6,0.5,0.4

0.2,0.3,0.1 0.8,0.2,0.1 0.5,0.6,0.2

0.3,0.2,0.1 0.4,0.5,0.1 0.1,0.2,0.3

[ , , ] 0.6,0.5,0.4

T I F

T I F

P P P

Q Q Q

      
 

      
 
       

     

  0.3,0.1,0.8 0.1,0.4,0.5

0.5,0.6,0.2 0.8,0.2,0.1 0.2,0.3,0.1

 
 

    
 
       

 

0.1,0.2,0.3 0.4,0.5,0.1 0.3,0.2,0.1

[ , , ] 0.1,0.4,0.5 0.3,0.1,0.8 0.6,0.5,0.4

0.2,0.3,0.1 0.8,0.2,0.1 0.5,0.6,0.2

T I FP P P

      
 

      
 
       

 

0.3,0.2,0.1 0.4,0.5,0.1 0.1,0.2,0.3

[ , , ] 0.6,0.5,0.4 0.3,0.1,0.8 0.1,0.4,0.5

0.5,0.6,0.2 0.8,0.2,0.1 0.2,0.3,0.1

T I FQ Q Q

      
 

      
 
       

 

 

5.k-KERNEL SYMMETRIC IVNFM   

Definition: 5.1 Let  [ , , ]T I F n
P P P P FNFM   is said to be k-KS- FNFM if N([ , , ]T I FP P P ) = 

N(K[ , , ]T I FP P P TK) . 

Theorem: 5.1 The subsequent conditions are equivalent for  [ , , ]T I F n
P P P P FNFM   

(i) N([ , , ]T I FP P P ) = N(K[ , , ]T I FP P P TK),  

(ii) N(K[ , , ]T I FP P P ) = N((K[ , , ]T I FP P P )T),  

(iii)  N([ , , ]T I FP P P K) = N(([ , , ]T I FP P P K)T),  

(iv)  N([ , , ]T I FP P P T) = N(K[ , , ]T I FP P P ),  

(v) N([ , , ]T I FP P P ) = N(([ , , ]T I FP P P K)T ),  

(vi) [ , , ]T I FP P P + is k-KSIVNFM,  

(vii) N([ , , ]T I FP P P ) = N([ , , ]T I FP P P +K),  

(viii) K [ , , ]T I FP P P +[ , , ]T I FP P P  = [ , , ]T I FP P P [ , , ]T I FP P P +K, 
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(ix) [ , , ]T I FP P P +[ , , ]T I FP P P K = K[ , , ]T I FP P P [ , , ]T I FP P P + 

Proof: The proof is like to Ref [12]  

6. Comparison Study: 

Fuzzy Matrices Neutrosophic Fuzzy 

Matrices (NFM) 

GSFNFM 

Representation of Uncertainty 

This research 

leverages fuzzy sets, a 

mathematical 

framework that 

utilizes membership 

degrees between 0 and 

1. These degrees 

quantify the extent to 

which an element 

belongs to a particular 

set, enabling the 

representation of 

uncertainty with 

varying levels of 

inclusion. 

In NFM, the authors extend 

the capabilities of 

traditional fuzzy matrices 

by incorporating 

neutrosophic logic. 

Neutrosophic sets introduce 

membership degrees for 

truth (T), indeterminacy (I), 

and falsity (F), allowing us 

to capture not only 

vagueness but also 

ambiguity and 

inconsistency within a 

single framework. 

This study introduces GSFNFM, 

a novel extension of 

neutrosophic fuzzy matrices. 

GSFNFM incorporates 

symmetric properties and 

Fermatean neutrosophic 

elements, offering a more 

comprehensive and nuanced 

approach to representing 

complex forms of uncertainty 

encountered in real-world 

scenarios. 

Symmetry Properties 

Prior research on 

fuzzy or neutrosophic 

matrices may not have 

explicitly addressed 

symmetry properties 

as a core concept. 

While some studies might 

have introduced the idea of 

symmetry, they likely did 

not delve into it as deeply as 

the current work. 

This research emphasizes the 

significance of various 

symmetry properties, such as 

kernel symmetry, range 

symmetry, and column 

symmetry. By extensively 

exploring these properties, the 

study enhances our 

understanding and broadens 

the potential applications of the 

matrices. 

Computational Complexity 

Many fundamental 

matrix operations, 

such as addition, 

multiplication, and 

inversion, have 

Introducing neutrosophic 

elements into the matrix 

framework can potentially 

increase the computational 

complexity compared to 

Incorporating symmetric 

properties like kernel or range 

symmetry can further add to 

the computational complexity. 

Specialized algorithms may be 
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well-established and 

efficient algorithms. 

These algorithms 

allow for fast and 

reliable computations 

involving traditional 

matrices. 

traditional matrices. This is 

because neutrosophic 

elements involve additional 

membership degrees (truth, 

indeterminacy, falsity) 

compared to the single 

membership value used in 

classical matrices. 

necessary to handle these 

properties efficiently when 

performing matrix operations 

involving GSFNFM. 

Developing such algorithms 

will be crucial for practical 

applications of GSFNFM. 

Interpretability 

Traditional fuzzy sets 

offer a high degree of 

interpretability due to 

their use of single 

membership values 

between 0 and 1. 

These values directly 

correspond to the 

likelihood of an 

element belonging to a 

set, making the results 

easy to understand. 

The introduction of 

neutrosophic elements, 

including indeterminacy 

and falsity memberships, 

can introduce some 

complexity into the 

interpretation process. 

Researchers and users need 

to be aware of the nuances 

of these additional degrees 

to avoid misinterpretations. 

The complexity of symmetric 

properties, like kernel or range 

symmetry, can affect 

interpretability. While these 

properties offer valuable 

insights, understanding their 

impact on the overall meaning 

of the matrix might require 

advanced visualization 

techniques. These techniques 

can help to represent the data 

visually and enhance clarity, 

especially when dealing with 

intricate symmetric 

relationships. 

Real-world Applications 

Traditional fuzzy set 

theory has proven 

valuable in numerous 

real-world 

applications, 

including 

decision-making, 

pattern recognition, 

and control systems. 

These applications 

leverage the ability of 

fuzzy sets to represent 

uncertainty with 

varying degrees of 

membership. 

Neutrosophic sets extend 

the capabilities of fuzzy sets 

by incorporating 

indeterminacy and falsity 

memberships. This 

additional information 

makes them particularly 

well-suited for domains 

with inherent uncertainty 

and ambiguity, such as 

medical diagnosis and 

financial forecasting. 

Generalized Symmetric 

Fermatean Neutrosophic Fuzzy 

Matrices (GSFNFM) represent a 

novel approach with the 

potential to address even more 

complex real-world scenarios. 

The combination of symmetric 

properties and Fermatean 

neutrosophic elements opens 

doors for applications in 

network analysis, image 

processing, and expert systems, 

where these features can play a 

significant role in modeling and 

reasoning with intricate forms 
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of uncertainty. 

Research Focus 

Much of the existing 

research in fuzzy logic 

and related fields has 

primarily focused on 

improving the 

efficiency of 

computational 

methods and 

expanding the 

applicability of these 

techniques to various 

real-world domains. 

This focus ensures that 

these tools can be used 

effectively in practical 

applications. 

This research takes a 

broader perspective, 

shifting the focus towards 

enhancing the 

representational capabilities 

of these frameworks. By 

introducing concepts like 

neutrosophic elements, we 

aim to address complex 

uncertainty scenarios that 

may not be adequately 

captured by traditional 

methods. 

Our study delves deeper by 

exploring the intricate interplay 

between symmetric properties 

and neutrosophic elements 

within the context of GSFNFM. 

This exploration opens doors 

for the development of novel 

algorithms specifically tailored 

for efficient manipulation of 

these matrices. Furthermore, by 

investigating these properties 

and algorithms, we aim to 

extend the applicability of 

GSFNFM to a wider range of 

diverse domains, enabling 

researchers and practitioners to 

leverage its strengths in tackling 

intricate problems. 

 

Generalized Symmetric FFNFM emerge as a powerful new tool for representing and reasoning with 

uncertainty. This framework builds upon traditional fuzzy sets and neutrosophic fuzzy matrices by 

incorporating symmetric properties and FNFM elements. This innovation offers a more nuanced 

and comprehensive approach to capturing the complexities of uncertainty encountered in 

real-world scenarios. 

The introduction of symmetric properties within GSFNFM unlocks new possibilities for analyzing 

relationships and structures. Furthermore, Fermatean neutrosophic elements provide a richer 

framework for representing situations involving not only vagueness but also indeterminacy and 

inconsistency. 

While GSFNFM holds significant promise, future research is crucial to unlocking its full potential. 

In particular, further exploration is needed to validate its effectiveness through empirical studies 

and practical applications across diverse domains. Additionally, research efforts focused on 

developing efficient algorithms for GSFNFM operations will be essential for ensuring its 

widespread adoption. 

In conclusion, GSFNFM represents a significant leap forward in the field of uncertainty modeling. 

By harnessing the strengths of prior frameworks and introducing novel features, GSFNFM paves 
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the way for more robust and insightful decision-making processes in various fields grappling with 

intricate uncertainties. 

7. CONCLUSION

 

Our investigation into Generalized Symmetric FNFM sheds light on a powerful tool for representing 

and reasoning with uncertain information. This novel framework holds significant promise for 

various fields, offering a more nuanced approach to decision-making under uncertainty. 

Key Contributions: 

We have delved into the theoretical foundations of GSFNFM, unveiling their core properties and 

relationships between different types, such as Range-Symmetric (RS-FNFM) and Kernel-Symmetric 

(KS-FNFM) matrices. Our exploration has introduced the concept of k-kernel-symmetric FNFMs 

(k-KS-FNFM) and illustrated their connections to KS-FNFM through examples. The graphical 

representation of adjacency and incidence FNFMs with specific symmetry properties provides 

valuable insights into their applicability, particularly in the context of isomorphic graphs. 

Future works: 

This research lays a solid foundation for further exploration of GSFNFM's potential. Future 

endeavors can extend our findings in several key directions: Investigating properties related to 

generalized inverses of k-Kernel Symmetric FNFMs can offer deeper understanding and potential 

applications. Devising efficient algorithms for performing matrix operations involving GSFNFM is 

crucial for practical applications. Integration with existing computational frameworks for 

uncertainty management holds significant promise. While theoretical advancements are important, 

further research should focus on validating the effectiveness of GSFNFM in real-world 

scenarios. Empirical studies demonstrating its practical utility across various domains are essential 

for broader adoption. The efficacy of GSFNFM relies on the quality and availability of data inputs. 

Future research should explore strategies for obtaining accurate and comprehensive data that can be 

effectively represented using GSFNFM, particularly in domains with inherent uncertainty and 

variability. By addressing these future directions, the potential of GSFNFM can be fully realized, 

leading to more robust and reliable decision-making processes in complex real-world problems. As 

we navigate the ever-present uncertainties in various fields, GSFNFM emerges as a powerful tool, 

paving the way for a more informed future. 
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