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Abstract. In human existence, making decisions is a common event. Various techniques have been devised

to tackle decision-making troubles in practical situations. Over the past ten years, a great deal of study has

concentrated on quantifying the degree of ambiguity and unpredictability in knowledge using the concept of

neutrosophic sets or extensions thereof. An efficient framework for handling information in decision-making

problems involving uncertain, indeterminate, and time-related aspects is the Temporal Complex Neurosophic

Set (TCNS). Measures of entropy and similarity can be helpful for evaluating data to solve multicriteria decision-

making (MCDM) challenges in practical situations. However, TCNS information measurements were of no

concern or relevance to the current technique. In the context of the TCNS, this work suggests multiple novel

similarity and entropy measurements. The proposed metrics have been validated and shown to comply with

the explicit definition of the entropy measure and similarity for the TCNS. The novel similarity and entropy

measures on the TCNS environment are proposed in this research. The four similarity measures on the TCNS

contain Dice, Jaccard, Cosine, and Cotangent. Also, a numerical example concerning selecting a Vietnam

tourist destination is provided to validate the usefulness of the suggested measures. The practical application

shows that proposed TCNS similarity and entropy metrics can produce accurate and significant outcomes for

real-world decision-making problems.

Keywords: Similarity measure; Entropy measure; Neutrosophic set; Temporal Complex Neutrosophic Set;

MCDM;
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1. Introduction

In human activities, decision-making (DM) is a highly typical routine. A multi-attribute

decision-making (MADM) problem is determining the most suitable option from a group of

options that all need to be evaluated simultaneously. Numerous DM problems have been solved

using MADM models, which have attracted the attention of multiple researchers in diverse

domains [1, 2] However, real-world issues are excessively complex because they frequently

need clarification, clarity, or insufficient data. As a result, decision-makers tackle those issues

through the fuzzification process, which is a vital method to address humanistic systems that

exist in real-world problems.

The concept of classical fuzzy sets (FS) was introduced by Zadeh [3] in 1965 as a way

to handle uncertain data. By enabling elements to be a part of sets with varying levels of

membership, FS successfully captures the fuzziness and ambiguity that are inherent in many

common problems. After that, it was used by numerous scientists and scholars to look into

various real-world events in different fields and recommend the best courses of action. However,

the nature of covert human assessments of discontent was not explained by the FS theory,

Atanassov [4] was prompted by this to suggest an intuitionistic fuzzy set (IFS), wherein the

levels of each element’s membership and non-membership are determined separately. Then,

an extension of IFS, namely neutrosophic set (NS), is introduced by Smarandache [5] by

introducing an uncertain membership function with degrees of falsity, indeterminacy, and truth

into IFS. It’s also an essential and effective technique for handling conflicting, ambiguous, and

incomplete information in certain real-life situations [6, 7, 8].

Although FS or its extension versions have shown remarkable effectiveness in addressing

issues emerging from vagueness and uncertainty in many real-world scenarios, they cannot

solve the periodicity of some ambiguous information. It is challenging to express periodic forms

using crisp sets, FS, IFS, or NS. In order to address this challenge, Ramot et al. [9] introduced

the notion of the complex fuzzy set (CFS), which adds information to a phase component

in order to provide details about a specific higher dimensional periodic problem. Since its

introduction, many researchers have researched and developed CFS because it is considered a

valuable tool for representing information with ambiguous, uncertain, and periodic components

[10, 11].

Furthermore, the complex neutrosophic set (CNS) was described by Ali and Smarandache

[12]. With the intention of integrating the ”complex” component to make NS more flexible and

sensitive to occasionally ambiguous information, CNS is an integrated version of the CFS and

NS. Uncertainty, inconsistency, and indeterminacy are the three membership degree functions

that define a CNS. These functions have a complex-valued range in the complex space unit

circle. The CNS is limited if the total of the negative, abstinence, and positive grades is three
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or less. Following its introduction, CNS demonstrated its value in characterizing data that

included unpredictable, inconsistent, periodic, and indeterminate factors.

In real-world decision-making problems, we encounter complex natural phenomena that re-

quire adding a second dimension to represent the degree of membership. By establishing the

second dimension, information is fully gathered, and the problem of information loss is mini-

mized. Therefore, since the beginning of the CNS, many hybrid versions have been developed

and used in a range of life domains, such as Interval CNS [13], Bipolar CNS [14], Complex

neutrosophic soft set (CNSS) [15], Interval-valued complex neutrosophic soft set (IVCNSS)

[16]... In light of the theories mentioned above, it is evident that many MCDM researchers

have found the information’s uncertainty and time-periodic element interesting. Many of the

decision-making scenarios we encounter in real life involve periodic events, which call for the

representation of various time intervals (e.g., seasonal variations in weather information). How-

ever, the present experiments have yet to take into account the effect of temporal factors by

CNS in an MCDM model concurrently. Recently, Lan et al. [17] introduced an extension of

CNS, namely Temporal Complex neutrosophic set (TCNS), to represent data with dynamic

and temporal factors of several real-life decision-making contexts. It covers decision-making is-

sues with uncertain, temporal, and periodic aspects. It is a novel opening with several practical

applications that concern the time cycle and time element.

Making decisions involves systematically solving issues in the real world and selecting the

best option after determining which feasible alternatives are available. All possible options are

sorted, allowing users to choose the suitable solution. When faced with multi-criteria decision-

making difficulties, decision-makers can select the best option primarily based on information

measures, including cross-entropy, entropy, similarity, and distance measures. Because of

this, entropy and similarity measurements are consistently two crucial subjects that have

been investigated widely by many scholars from various backgrounds. Nevertheless, prior

research has yet to focus on refining and strengthening the theory of the TCNS environments

using similarity metrics, mathematical operations, and entropy measures. That is the primary

motivation for carrying out this research.

(1) Define novel measures of entropy and similarity for the Temporal Complex Neutrono-

sophic Set, which addresses the unpredictable, periodic, and temporal aspects of DM problems.

(2) Build the decision-making model using the proposed entropy and similarity measure-

ments in the TCNS environment.

(3) Using a real-world case study of selecting a tourism location in Vietnam, illustrate the

viability and logic of applying the suggested model’s decision-making process.

(4) Prove our proposed model’s effectiveness and potential for real-life case study through

a comparative analysis with related MCDM techniques.
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The remaining portions of the paper are organized in this manner. Section 2 outlines

the research gap and a few connected works. Next, in Section 3, we go over a few of the

significant concepts of the TCNS. Novel metrics of entropy and similarity depending on the

TCNS framework are defined in Section 4. The multi-criteria technique for making decisions

using proposed indicators is provided in Section 5. In Section 6, a comparative experiment

is utilized to demonstrate how our theory might be used in practice in a particular tourist

location. The conclusions are finally presented in Section 7.

2. Literature review

2.1. Related works

Similarity is essential to finding solutions in many intricate and unpredictable situations in

human life. Both the entropy and similarity measurements were able to show how similar two

objects were in an unexpected and uncertain environment. As a result, many scholars have

concentrated on using NS or extensions to quantify fuzziness and ambiguity in data. Many

different entropy and similarity metrics established and have effectively dealt with practical

applications such as clustering analysis [18, 19], decision-making [20, 21], health diagnostics

[22, 23] and pattern recognition [24, 25].

According to Hausdorff distance, Broumi and Smarandache [26] presented some similarities

for NS in the neutrosophic environment. Several metrics of entropy and similarity of a single-

valued NS were proposed by Majumdar et al. [27]. The approach based on score function

and divergence measure is suggested to determine the weights of decision experts using a

single-valued NS [28]. Bin Ji et al. [29] published the multi-parameter similarity measure for

interval-valued neutrosophic sets based on the tangent function. The Q-Neutrosophic Soft set

was enhanced with similarity and entropy tools by Abu Qamar and Hassan [30], who also

evaluated how well they worked for issues involving medical diagnosis. Additionally, entropy

and similarity are frequently employed as crucial metrics for resolving real-world multi-criteria

decision-making issues [31, 32, 33]

Since entropy and similarity measurements are two significant topics in the CFS and CNS,

they have been comprehensively investigated from a variety of perspectives in multiple studies.

Utilizing mixed models to handle the ambiguities of periodical data—where time is a crucial

component in its representation—researchers made essential contributions to the literature on

similarity measures domains. Axiomatic formulations of the similarity measure and entropy

for Complex Multi Fuzzy Soft Sets were presented by Al-Qudah and Hassan [34]. Using a

complex fuzzy soft set, Ganeshsree Selvachandran et al. [35] introduced metrics of distance

and similarity to address pattern recognition challenges involving digital photographs. The

Cosine similarity measures were used by the authors in [36] to calculate the coefficients of
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similarity and dissimilarity between two Complex linear Diophantine fuzzy sets. The Com-

plex Multi-Fuzzy Hypersoft Set’s Entropy and Similarity Measure concept was introduced in

[37]. To demonstrate the validity and significance of the developed measures, some associated

theorems and an application for a person’s selection decision issue who intends to buy a car

are established.

Keeping up with this development and improving the modeling of some real-world issues

using our approach (CNS theory and its hybrid structures), novel dice similarity measure-

ments utilizing CNS were proposed by Ali et al. [38]. The authors then used the pattern

recognition model and the criteria they provided to test the validity and superiority of the

pre-existing methods. Jaccard, Dice, and cosine are three examples of complex neutrosophic

similarity metrics proposed by Mondal et al. [39]. A numerical case study demonstrates the

suggested methods for handling multi-attribute decision-making scenarios in which students

select an appropriate course for post-secondary education after passing a secondary exam. Xu

et al. [40] introduced some distance measures based on Hamming, Hausdorff, and Euclidean

metrics to deal with the interval CNS information. In order to help with decision-making in

medical diagnosis, Faisal et al. [41] developed several similarity metrics of interval complex

neutrosophic soft sets (ICNSS) based on the distance measurements: Euclidean and Hamming.

An axiomatic definition of single-valued CNS entropy and normalized distance formulas are

provided by [42]. Also, to demonstrate the usefulness and feasibility of our suggested entropy

metric, we offer a real-world example that involves the choice of green suppliers.

Because physical problems are inherently complicated and unpredictable, the difficulty of

researching MCDM has concentrated on the issues with criteria values in the form of intervals,

drawing attention to this attractive study area. The research indicates they are effective at

encapsulating and illustrating vague and ambiguous information, enabling decision-makers to

make intelligent decisions.

2.2. Research gap analysis

The evaluations above suggest that these several measures of similarity and entropy and

their applications play a significant role in efficiently managing uncertainty and inconsistency

in decision-making contexts. However, there are several extant research gaps, as indicated

below:

- All entropy and similarity measures in the literature are established based on the theory

of CFS, CNS, and these hybrid structures.

- Entropy and similarity measures in the literature only deal with uncertain, imprecise, and

periodic information. None of the above theories have the capability of managing information

involving dynamic, temporal, and time-cycle factors in real-life problems.
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- Previous theories focused on the time-varying component but neglected the temporal,

time-cycle factor, and the impact of temporal factors.

- Many entropy measures exist for CFS, CNS, or extension of CNS in the literature that fail

to deal with the problem of providing reasonable or consistent results to the decision-makers

in the case of a TCNS environment.

- There hasn’t been any study on entropy and similarity metrics especially created for TCNS

information theory, even though they are essential to fuzzy set theory.

When taking into account the time cycle, periodic, and time components, TCNS is a novel

opening with several practical applications. Unfortunately, previous studies have not concen-

trated on improving and solidifying the theory of the TCNS settings through entropy and

similarity metrics. The above facts and the research gap in CNS neutrosophic information

theory prompted us to pursue this work. Thus, the paper aims to develop novel entropy and

similarity metrics for the TCNS.

3. Preliminaries

This section summarizes the core concepts of TCNS and the three operations (intersection,

union, and complement) that will be applied in our study.

Definition 3.1 ([17]). Let U be a universal set, and let τ̃ = {τ1, τ2, ..., τnτ } be consecutive

time periods. On U , a temporal complex neutrosophic set (TCNS) A is represented by form

below:

A(θ, τ̃) = {θ, ⟨p (θ, τl) .ejµ(θ,τl), q (θ, τl) .ejν(θ,τl), r (θ, τl) .ejη(θ,τl)⟩ | θ ∈ U} (1)

Where p (θ, τl), q (θ, τl), r (θ, τl) ∈ [0, 1] and µ (θ, τl), ν (θ, τl), η (θ, τl) ∈ [0, 2π]

Definition 3.2 ([17]). Suppose there are two TCNSs Ω1 (θ, τ̃) and Ω2 (θ, τ̃) respectively.

Ω1 (θ, τ̃) =
{
θ,
〈
pΩ1 (θ, τ̃) e

jµΩ1
(θ,τ̃), qΩ1 (θ, τ̃) e

jνΩ1
(θ,τ̃), rΩ1 (θ, τ̃) e

jηΩ1
(θ,τ̃)

〉}
Ω2 (θ, τ̃) =

{
θ,
〈
pΩ2 (θ, τ̃) e

jµΩ2
(θ,τ̃), qΩ2 (θ, τ̃) e

jνΩ2
(θ,τ̃), rΩ2 (θ, τ̃) e

jηΩ2
(θ,τ̃)

〉}
The following describes the fundamental functions of TCNS:

Complement:

C (Ω1 (θ, τ̃)) =

θ,

〈 rΩ1 (θ, τ̃) e
j(2π−ηΩ1

(θ,τ̃)),

(1− qΩ1 (θ, τ̃)) e
j(2π−vΩ1

(θ,τ̃)),

pΩ1 (θ, τ̃) e
j(2π−µΩ1

(θ,τ̃))

〉
| θ ∈ U

 (2)

Union:

Ω1 (θ, τ̃) ∪ Ω2 (θ, τ̃) =

θ,

〈 (pΩ1 (θ, τ̃) ∨ pΩ2 (θ, τ̃)) e
jµΩ1∪Ω2

(θ,τ̃),

(qΩ1 (θ, τ̃) ∧ qΩ2 (θ, τ̃)) e
jνΩ1∪Ω2

(θ,τ̃),

(rΩ1 (θ, τ̃) ∧ rΩ2 (θ, τ̃)) e
jηΩ1∪Ω2

(θ,τ̃)

〉
| θ ∈ U

 (3)
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Intersect:

Ω1 (θ, τ̃) ∩ Ω2 (θ, τ̃) =

θ,

〈 (pΩ1 (θ, τ̃) ∧ pΩ2 (θ, τ̃)) e
jµΩ1∩Ω2

(θ,τ̃),

(qΩ1 (θ, τ̃) ∨ qΩ2 (θ, τ̃)) e
jνΩ1∩Ω2

(θ,τ̃),

(rΩ1 (θ, τ̃) ∨ rΩ2 (θ, τ̃)) e
jηΩ1∩Ω2

(θ,τ̃)

〉
| θ ∈ U

 (4)

4. Propose new measures of Temporal complex neutrosophic set

The study presents a few TCNS similarity metrics in this part, including the Dice, Jac-

card, Cosine, and Cotangent similarity measures. Additionally, it is suggested that decision-

making models in temporally complex neutrosophic contexts start with an entropy assessment

of TCNS.

4.1. TCNS - Dice similarity measure

Definition 4.1. Assume that

Ω1 =
〈
pΩ1 (θi, τl) e

jµΩ1
(θi,τl), qΩ1 (θi, τl) e

jνΩ1
(θi,τl), rΩ1

(θi, τl) e
jηΩ1

(θi,τl)
〉

and Ω2 =〈
pΩ2 (θi, τl) e

jµΩ2
(θi,τl), qΩ2 (θi, τl) e

jνΩ2
(θi,τl), rΩ2

(θi, τl) e
jηΩ2

(θi,τl)
〉

be are two TCNSs on uni-

verse of discourse U for θi (1, 2, ..., nU ) and τl (1, 2, ..., nτ ).

Suppose SimD (Ω1,Ω2) is a TCNS - Dice similarity measure between Ω1 and Ω2, SimD (Ω1,Ω2)

is defined as follows:

SimD (Ω1,Ω2)

=
1

nU ∗ nτ

nU∑
i=1

nτ∑
l=1

2 ∗

 (pΩ1 (θi, τl) + µΩ1 (θi, τl)) (pΩ2 (θi, τl) + µΩ2 (θi, τl))

+ (qΩ1 (θi, τl) + νΩ1 (θi, τl)) (qΩ2 (τl) + νΩ2 (θi, τl))

+ (rΩ1 (θi, τl) + ηΩ1 (θi, τl)) (rΩ2 (θi, τl) + ηΩ2 (θi, τl))


 (pΩ1 (θi, τl) + µΩ1 (θi, τl))

2 + (qΩ1 (θi, τl) + νΩ1 (θi, τl))
2

+(rΩ1 (θi, τl) + ηΩ1 (θi, τl))
2 + (pΩ2 (θi, τl) + µΩ2 (θi, τl))

2

+(qΩ2 (θi, τl) + νΩ2 (θi, τl))
2 + (rΩ2 (θi, τl) + ηΩ2 (θi, τl))

2


(5)

Example 4.2. Let U = {θ1, θ2} be a universe of discourse; τ̃ = {τ1, τ2, τ3} be time period; Ω1

and Ω2 be two TCNS in U

Ω1 (θ1) =


〈
0.1ej0.2, 0.6ej0.45, 0.3ej0.56

〉
,
〈
0.8ej0.77, 0.2ej0.86, 0.4ej0.65

〉
,〈

0.6ej0.52, 0.2ej0.2, 0.36ej0.2
〉


Ω1 (θ2) =


〈
0.5ej0.12, 0.2ej0.65, 0.5ej0.85

〉
,
〈
0.3ej0.8, 0.7ej0.23, 0.1ej0.32

〉
,〈

0.74ej0.6, 0.5ej0.15, 0.66ej0.41
〉


Ω2 (θ1) =


〈
0.6ej0.8, 0.9ej0.25, 0.4ej0.52

〉
,
〈
0.6ej0.62, 0.5ej0.24, 0.3ej0.18

〉
,〈

0.3ej0.82, 0.3ej0.6, 0.4ej0.71
〉


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Ω2 (θ2) =


〈
0.3ej0.22, 0.4ej0.56, 0.6ej0.26

〉
,
〈
0.1ej0.38, 0.5ej0.43, 0.5ej0.24

〉
,〈

0.2ej0.29, 0.4ej0.72, 0.5ej0.65
〉


Then, the TCNS - Dice similarity measure between Ω1 and Ω2 can be: SimD (Ω1,Ω2) =

0.87942

Theorem 4.3. Let Ω1 and Ω2be two TCNSs then,

(1) 0 ≤ SimD (Ω1,Ω2) ≤ 1

(2) SimD (Ω1,Ω2) = SimD (Ω2,Ω1)

(3) SimD (Ω1,Ω2) = 1 , if and only if Ω1 = Ω2

(4) if Ω3 is a TCNS in U and Ω1 ⊆ Ω2 ⊆ Ω3 then SimD (Ω1,Ω3) ≤ SimD (Ω1,Ω2) and

SimD (Ω1,Ω3) ≤ SimD (Ω1,Ω2)

Proof

(1) We can have,

2 ∗

 (pΩ1 (θi, τl) + µΩ1 (θi, τl)) (pΩ2 (θi, τl) + µΩ2 (θi, τl))

+ (qΩ1 (θi, τl) + νΩ1 (θi, τl)) (qΩ2 (θi, τl) + νΩ2 (θi, τl))

+ (rΩ1 (θi, τl) + ηΩ1 (θi, τl)) (rΩ2 (θi, τl) + ηΩ2 (θi, τl))



≤

 (pΩ1 (θi, τl) + µΩ1 (θi, τl))
2 + (qΩ1 (θi, τl) + νΩ1 (θi, τl))

2

+(rΩ1 (θi, τl) + ηΩ1 (θi, τl))
2 + (pΩ2 (θi, τl) + µΩ2 (θi, τl))

2

+(qΩ2 (θi, τl) + νΩ2 (θi, τl))
2 + (rΩ2 (θi, τl) + ηΩ2 (θi, τl))

2


Hence, 0 ≤ SimD (Ω1,Ω2) ≤ 1. Thus, the first inequality is shown to be true.

(2) It is easy to observe that this is true

(3) When Ω1 = Ω2 , then it implies that SimD (Ω1,Ω2) = 1. On the other hand, if

SimD (Ω1,Ω2) = 1 then,

pΩ1 (θi, τl) = pΩ2 (θi, τl); µΩ1 (θi, τl) = µΩ2 (θi, τl); qΩ1 (θi, τl) = qΩ2 (θi, τl); νΩ1 (θi, τl) =

νΩ2 (θi, τl); rΩ1 (θi, τl) = rΩ2 (θi, τl); ηΩ1 (θi, τl) = ηΩ2 (θi, τl);

This implies that Ω1 = Ω2. Thus, the third inequality is proved.

(4) When Ω1 ⊆ Ω2 ⊆ Ω3, we can have

pΩ1 (θi, τl) + µΩ1 (θi, τl) ≤ pΩ2 (θi, τl) + µΩ2 (θi, τl) ≤ pΩ3 (θi, τl) + µΩ3 (θi, τl);

qΩ1 (θi, τl) + νΩ1 (θi, τl) ≥ qΩ2 (θi, τl) + νΩ2 (θi, τl) ≥ qΩ3 (θi, τl) + νΩ3 (θi, τl);

rΩ1 (θi, τl) + ηΩ1 (θi, τl) ≥ rΩ2 (θi, τl) + ηΩ2 (θi, τl) ≥ rΩ3 (θi, τl) + ηΩ3 (θi, τl);

So, SimD (Ω1,Ω3) ≤ SimD (Ω1,Ω2) and SimD (Ω1,Ω3) ≤ SimD (Ω2,Ω3). So, the fourth

inequality is proved

4.2. TCNS - Jaccard similarity measure

Definition 4.4. Let two TCNSs

Luong Thi Hong Lan, Nguyen Tho Thong, Nguyen Long Giang 
and Florentin Smarandache, A New Development of Entropy and Similarity
Measures in Temporal Complex Neutrosophic Environments for 
Tourist Destination Selection

Neutrosophic Sets and Systems, Vol. 70, 2024                                                                              278



Ω1 =
〈
pΩ1 (θi, τl) e

jµΩ1
(θi,τl), qΩ1 (θi, τl) e

jνΩ1
(θi,τl), rΩ1

(θi, τl) e
jηΩ1

(θi,τl)
〉

and Ω2 =〈
pΩ2 (θi, τl) e

jµΩ2
(θi,τl), qΩ2 (θi, τl) e

jνΩ2
(θi,τl), rΩ2

(θi, τl) e
jηΩ2

(θi,τl)
〉

and θi; i = 1, 2, ..., nU and

τl; l = 1, 2, ..., nτ .

SimJ (Ω1,Ω2)) is a TCNS - Jaccard similarity measure between Ω1 and Ω2 and SimJ (Ω1,Ω2))

is defined as follows:

SimJ (Ω1,Ω2) =

1

nU ∗ nτ

nU∑
i=1

nτ∑
l=1

(pΩ1 (θi, τl) + µΩ1 (θi, τl)) (pΩ2 (θi, τl) + µΩ2 (θi, τl))

+ (qΩ1 (θi, τl) + νΩ1 (θi, τl)) (qΩ2 (θi, τl) + qΩ2 (θi, τl))

+ (rΩ1 (θi, τl) + rΩ1 (θi, τl)) (rΩ2 (θi, τl) + rΩ2 (θi, τl))

(pΩ1 (θi, τl) + µΩ1 (θi, τl))
2 + (qΩ1 (θi, τl) + νΩ1 (θi, τl))

2

+(rΩ1 (θi, τl) + rΩ1 (θi, τl))
2 + (pΩ2 (θi, τl) + µΩ2 (θi, τl))

2

+(qΩ2 (θi, τl) + qΩ2 (θi, τl))
2 + (rΩ2 (θi, τl) + rΩ2 (θi, τl))

2

−

 (pΩ1 (θi, τl) + µΩ1 (θi, τl)) (pΩ2 (θi, τl) + µΩ2 (θi, τl))

+ (qΩ1 (θi, τl) + νΩ1 (θi, τl)) (qΩ2 (θi, τl) + qΩ2 (θi, τl))

+ (rΩ1 (θi, τl) + rΩ1 (θi, τl)) (rΩ2 (θi, τl) + rΩ2 (θi, τl))



(6)

Example 4.5. Let U = {θ1, θ2};τ̃ = {τ1, τ2, τ3}; and two TCNS Ω1, Ω2 in U .

Ω1 (θ1) =


〈
0.1ej0.2, 0.6ej0.45, 0.3ej0.56

〉
,
〈
0.8ej0.77, 0.2ej0.86, 0.4ej0.65

〉
,〈

0.6ej0.52, 0.2ej0.2, 0.36ej0.2
〉


Ω1 (θ2) =


〈
0.5ej0.12, 0.2ej0.65, 0.5ej0.85

〉
,
〈
0.3ej0.8, 0.7ej0.23, 0.1ej0.32

〉
,〈

0.74ej0.6, 0.5ej0.15, 0.66ej0.41
〉


Ω2 (θ1) =


〈
0.6ej0.8, 0.9ej0.25, 0.4ej0.52

〉
,
〈
0.6ej0.62, 0.5ej0.24, 0.3ej0.18

〉
,〈

0.3ej0.82, 0.3ej0.6, 0.4ej0.71
〉


Ω2 (θ2) =


〈
0.3ej0.22, 0.4ej0.56, 0.6ej0.26

〉
,
〈
0.1ej0.38, 0.5ej0.43, 0.5ej0.24

〉
,〈

0.2ej0.29, 0.4ej0.72, 0.5ej0.65
〉


SimJ (Ω1,Ω2) is The TTCNS - Jaccard similarity measure between Ω1, Ω2 can be:

SimJ (Ω1,Ω2) = 0.78807

Theorem 4.6. Let Ω1 and Ω2 be two TCNSs then,

(1) 0 ≤ SimJ (Ω1,Ω2) ≤ 1

(2) SimJ (Ω1,Ω2) = SimJ (Ω2,Ω1)

(3) SimJ (Ω1,Ω2) = 1, if and only if Ω1 = Ω2

(4) if Ω3 is a TCNS in U and Ω1 ⊆ Ω2 ⊆ Ω3 then SimJ (Ω1,Ω3) ≤ SimJ (Ω1,Ω2) and

SimJ (Ω1,Ω3) ≤ SimJ (Ω2,Ω3)
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Proof

(1) Since:

 (pΩ1 (θi, τl) + µΩ1 (θi, τl)) (pΩ2 (θi, τl) + µΩ2 (θi, τl))

+ (qΩ1 (θi, τl) + νΩ1 (θi, τl)) (qΩ2 (θi, τl) + νΩ2 (θi, τl))

+ (rΩ1 (θi, τl) + ηΩ1 (θi, τl)) (rΩ2 (θi, τl) + ηΩ2 (θi, τl))



≤



(pΩ1 (θi, τl) + µΩ1 (θi, τl))
2 + (qΩ1 (θi, τl) + νΩ1 (θi, τl))

2

+(rΩ1 (θi, τl) + ηΩ1 (θi, τl))
2 + (pΩ2 (θi, τl) + µΩ2 (θi, τl))

2

+(qΩ2 (θi, τl) + νΩ2 (θi, τl))
2 + (rΩ2 (θi, τl) + ηΩ2 (θi, τl))

2

−

 (pΩ1 (θi, τl) + µΩ1 (θi, τl)) (pΩ2 (θi, τl) + µΩ2 (θi, τl))

+ (qΩ1 (θi, τl) + νΩ1 (θi, τl)) (qΩ2 (θi, τl) + νΩ2 (θi, τl))

+ (rΩ1 (θi, τl) + ηΩ1 (θi, τl)) (rΩ2 (θi, τl) + ηΩ2 (θi, τl))




Hence, we have, 0 ≤ SimJ (Ω1,Ω2) ≤ 1

(2) It is easily observed.

(3) When Ω1 = Ω2, then, SimJ (Ω1,Ω2) = 1. On the other hand, if SimJ (Ω1,Ω2) = 1 then,

pΩ1 (θi, τl) = pΩ2 (θi, τl); µΩ1 (θi, τl) = µΩ2 (θi, τl); qΩ1 (θi, τl) = qΩ2 (θi, τl); νΩ1 (θi, τl) =

νΩ2 (θi, τl); rΩ1 (θi, τl) = rΩ2 (θi, τl); ηΩ1 (θi, τl) = ηΩ2 (θi, τl)

This implies that Ω1 = Ω2.

(4) When Ω1 ⊆ Ω2 ⊆ Ω3, we can write pΩ1 (θi, τl) + µΩ1 (θi, τl) ≤ pΩ2 (θi, τl) +

µΩ2 (θi, τl) ≤ pΩ3 (θi, τl) + µΩ3 (θi, τl);

qΩ1 (θi, τl) + νΩ1 (θi, τl) ≥ qΩ2 (θi, τl) + νΩ2 (θi, τl) ≥ qΩ3 (θi, τl) + νΩ3 (θi, τl);

rΩ1 (θi, τl) + ηΩ1 (θi, τl) ≥ rΩ2 (θi, τl) + ηΩ2 (θi, τl) ≥ rΩ3 (θi, τl) + ηΩ3 (θi, τl);

So, SimJ (Ω1,Ω3) ≤ SJ (Ω1,Ω2) and SimJ (Ω1,Ω3) ≤ SimJ (Ω2,Ω3).

4.3. TCNS - Cosine Similarity

The cosine similarity measure is one of the practical measures in the decision-making process.

The similarity between two TCNS can be computed with the use of the temporal complex

neutrosophic cosine measure. Time factors and time cycles are of interest to this metric,

which employs complex neutrosophic numbers.

The cosine similarity measure for TCNSs is defined as follows:

Definition 4.7. Let

Ω1 =
〈
pΩ1 (θi, τl) e

jµΩ1
(θi,τl), qΩ1 (θi, τl) e

jνΩ1
(θi,τl), rΩ1

(θi, τl) e
jηΩ1

(θi,τl)
〉

and

Ω2 =
〈
pΩ2 (θi, τl) e

jµΩ2
(θi,τl), qΩ2 (θi, τl) e

jνΩ2
(θi,τl), rΩ2

(θi, τl) e
jηΩ2

(θi,τl)
〉

be two TCNSs and

θi (1, 2, 3, ..., nU ) belong to U and τl (1, 2, 3, ..., nτ ).
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SimCos (Ω1,Ω2) is A TCNS - Cosine similarity measure between TCNSs Ω1 and Ω2 and

SimCos (Ω1,Ω2) is proposed as follows:

SimCos (Ω1,Ω2)

=
1

nU ∗ nτ

nU∑
i=1

nτ∑
l=1

(pΩ1 (θi, τl) + µΩ1 (θi, τl)) (pΩ2 (θi, τl) + µΩ2 (θi, τl))

+ (qΩ1 (θi, τl) + νΩ1 (θi, τl)) (qΩ2 (θi, τl) + qΩ2 (θi, τl))

+ (rΩ1 (θi, τl) + rΩ1 (θi, τl)) (rΩ2 (θi, τl) + rΩ2 (θi, τl))√√√√(pΩ1 (θi, τl) + µΩ1 (θi, τl))
2 + (qΩ1 (θi, τl) + νΩ1 (θi, τl))

2

+ (rΩ1 (θi, τl) + rΩ1 (θi, τl))
2

×

√√√√(pΩ2 (θi, τl) + µΩ2 (θi, τl))
2 + (qΩ2 (θi, τl) + qΩ2 (θi, τl))

2

+ (rΩ2 (θi, τl) + rΩ2 (θi, τl))
2

(7)

Example 4.8. Let U = {θ1, θ2};τ̃ = {τ1, τ2, τ3} and Ω1 and Ω2 are two TCNS in U

Ω1 (θ1) =


〈
0.1ej0.2, 0.6ej0.45, 0.3ej0.56

〉
,
〈
0.8ej0.77, 0.2ej0.86, 0.4ej0.65

〉
,〈

0.6ej0.52, 0.2ej0.2, 0.36ej0.2
〉



Ω1 (θ2) =


〈
0.5ej0.12, 0.2ej0.65, 0.5ej0.85

〉
,
〈
0.3ej0.8, 0.7ej0.23, 0.1ej0.32

〉
,〈

0.74ej0.6, 0.5ej0.15, 0.66ej0.41
〉



Ω2 (θ1) =


〈
0.6ej0.8, 0.9ej0.25, 0.4ej0.52

〉
,
〈
0.6ej0.62, 0.5ej0.24, 0.3ej0.18

〉
,〈

0.3ej0.82, 0.3ej0.6, 0.4ej0.71
〉



Ω2 (θ2) =


〈
0.3ej0.22, 0.4ej0.56, 0.6ej0.26

〉
,
〈
0.1ej0.38, 0.5ej0.43, 0.5ej0.24

〉
,〈

0.2ej0.29, 0.4ej0.72, 0.5ej0.65
〉


We have the following results:

SimCos (Ω1,Ω2) = 0.73203

Theorem 4.9. Let Ω1 and Ω2 be two TCNSs then,

(1) 0 ≤ SimCos (Ω1,Ω2) ≤ 1

(2) SimCos (Ω1,Ω2) = SimCos (Ω2,Ω1)

(3) SimCos (Ω1,Ω2) = 1, if and only if Ω1 = Ω2

(4) if Ω3 is a TCNS in U and Ω1 ⊆ Ω2 ⊆ Ω3then SimCos (Ω1,Ω3) ≤ SimCos (Ω1,Ω2) and

SimCos (Ω1,Ω3) ≤ SimCos (Ω2,Ω3)

Proof
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(1) We can have,

 (pΩ1 (θi, τl) + µΩ1 (θi, τl)) (pΩ2 (θi, τl) + µΩ2 (θi, τl))

+ (qΩ1 (θi, τl) + νΩ1 (θi, τl)) (qΩ2 (θi, τl) + νΩ2 (θi, τl))

+ (rΩ1 (θi, τl) + ηΩ1 (θi, τl)) (rΩ2 (θi, τl) + ηΩ2 (θi, τl))


2

≤

 (pΩ1 (θi, τl) + µΩ1 (θi, τl))
2 + (qΩ1 (θi, τl) + νΩ1 (θi, τl))

2

+(rΩ1 (θi, τl) + ηΩ1 (θi, τl))
2 + (pΩ2 (θi, τl) + µΩ2 (θi, τl))

2

+(qΩ2 (θi, τl) + νΩ2 (θi, τl))
2 + (rΩ2 (θi, τl) + ηΩ2 (θi, τl))

2



Hence, 0 ≤ SCos (Ω1,Ω2) ≤ 1

(2) It is easily observed.

(3) Since Ω1 = Ω2, then SimCos (Ω1,Ω2) = 1. On the other hand, if SimCos (Ω1,Ω2) = 1,

we have,

pΩ1 (θi, τl) = pΩ2 (θi, τl);µΩ1 (θi, τl) = µΩ2 (θi, τl); qΩ1 (θi, τl) = qΩ2 (θi, τl).; νΩ1 (θi, τl) =

νΩ2 (θi, τl); rΩ1 (θi, τl) = rΩ2 (θi, τl); ηΩ1 (θi, τl) = ηΩ2 (θi, τl);

This implies that Ω1 = Ω2

(4) When Ω1 ⊆ Ω2 ⊆ Ω3, we can have

pΩ1 (θi, τl) + µΩ1 (θi, τl) ≤ pΩ2 (θi, τl) + µΩ2 (θi, τl) ≤ pΩ3 (θi, τl) + µΩ3 (θi, τl);

qΩ1 (θi, τl) + νΩ1 (θi, τl) ≥ qΩ2 (θi, τl) + νΩ2 (θi, τl) ≥ qΩ3 (θi, τl) + νΩ3 (θi, τl);

rΩ1 (θi, τl) + ηΩ1 (θi, τl) ≥ rΩ2 (θi, τl) + ηΩ2 (θi, τl) ≥ rΩ3 (θi, τl) + ηΩ3 (θi, τl);

So, SimJ (Ω1,Ω3) ≤ SimJ (Ω1,Ω2) and SimJ (Ω1,Ω3) ≤ SimJ (Ω2,Ω3)

Hence, Theorem 4.9 is proved.

4.4. TCNS - Cotangent Similarity

In this part, we utilize the special characteristics of the Cotangent function to present a

novel method of similarity measurement in the context of TCNS.

Definition 4.10. Let two TCNSs

Ω1 =
〈
pΩ1 (θi, τl) e

jµΩ1
(θi,τl), qΩ1 (θi, τl) e

jνΩ1
(θi,τl), rΩ1

(θi, τl) e
jηΩ1

(θi,τl)
〉

and Ω2 =〈
pΩ2 (θi, τl) e

jµΩ2
(θi,τl), qΩ2 (θi, τl) e

jνΩ2
(θi,τl), rΩ2

(θi, τl) e
jηΩ2

(θi,τl)
〉

for all θi (1, 2, 3, ..., nU ) be-

long to U and τl (1, 2, 3, ..., nτ ).
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SimCot 1 (Ω1,Ω2) is a TCNS - Cotangent similarity measure between TCNSs Ω1 and Ω2

and SimCot 1 (Ω1,Ω2) is defined as follows:

SimCot 1 (Ω1,Ω2) =

cot


π

4
+

π

8
× 1

nU ∗ nτ

nU∑
i=1

nτ∑
l=1



max


| pΩ1(θi, τl)− pΩ2(θi, τl) |,

| qΩ1(θi, τl)− qΩ2(θi, τl) |,

| rΩ1(θi, τl)− rΩ2(θi, τl) |



+
1

2π
max


| µΩ1(θi, τl)− µΩ2(θi, τl) |,

| νΩ1(θi, τl)− νΩ2(θi, τl) |,

| ηΩ1(θi, τl)− ηΩ2(θi, τl) |






(8)

SimCot 2 (Ω1,Ω2) =

cot


π

4
+

π

24
× 1

nU ∗ nτ

nU∑
i=1

nτ∑
l=1




| pΩ1(θi, τl)− pΩ2(θi, τl) |

+ | qΩ1(θi, τl)− qΩ2(θi, τl) |

+ | rΩ1(θi, τl)− rΩ2(θi, τl) |



+
1

2π
max


| µΩ1(θi, τl)− µΩ2(θi, τl) |

+ | νΩ1(θi, τl)− νΩ2(θi, τl) |

+ | ηΩ1(θi, τl)− ηΩ2(θi, τl) |






(9)

Example 4.11. Let U = {θ1, θ2}; τ̃ = {τ1, τ2, τ3}; Ω1 and Ω2 are two TCNS in U

Ω1 (θ1) =


〈
0.1ej0.2, 0.6ej0.45, 0.3ej0.56

〉
,
〈
0.8ej0.77, 0.2ej0.86, 0.4ej0.65

〉
,〈

0.6ej0.52, 0.2ej0.2, 0.36ej0.2
〉


Ω1 (θ2) =


〈
0.5ej0.12, 0.2ej0.65, 0.5ej0.85

〉
,
〈
0.3ej0.8, 0.7ej0.23, 0.1ej0.32

〉
,〈

0.74ej0.6, 0.5ej0.15, 0.66ej0.41
〉


Ω2 (θ1) =


〈
0.6ej0.8, 0.9ej0.25, 0.4ej0.52

〉
,
〈
0.6ej0.62, 0.5ej0.24, 0.3ej0.18

〉
,〈

0.3ej0.82, 0.3ej0.6, 0.4ej0.71
〉


Ω2 (θ2) =


〈
0.3ej0.22, 0.4ej0.56, 0.6ej0.26

〉
,
〈
0.1ej0.38, 0.5ej0.43, 0.5ej0.24

〉
,〈

0.2ej0.29, 0.4ej0.72, 0.5ej0.65
〉


Since Definitions 4.10, we have: SimCot 1 (Ω1,Ω2) = 0.690485; SimCot 2 (Ω1,Ω2) = 0.82243

Theorem 4.12. Let Ω1 and Ω2 be two TCNSs then,

(1) 0 ≤ SimCot (Ω1,Ω2) ≤ 1

(2) SimCot (Ω1,Ω2) = SimCot (Ω2,Ω1)

(3) SimCot (Ω1,Ω2) = 1, if and only if Ω1 = Ω2
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(4) if Ω3 is a TCNS in U and Ω1 ⊆ Ω2 ⊆ Ω3 then SimCot (Ω1,Ω3) ≤ SimCot (Ω1,Ω2) and

SimCot (Ω1,Ω3) ≤ SimCot (Ω2,Ω3)

Proof

The proof follows the same general approach as that used for Equations (5) and (6), with

specific adaptations for this case.

(1) We have,

Hence, 0 ≤ SimCot (Ω1,Ω2) ≤ 1

(2) It is easily observed.

(3) When Ω1 = Ω2, then obviouslySCot 2 (Ω1,Ω2) = 1. On the other hand, if

SCot 2 (Ω1,Ω2) = 1 then,

pΩ1 (θi, τl) = pΩ2 (θi, τl);µΩ1 (θi, τl) = µΩ2 (θi, τl);qΩ1 (θi, τl) = qΩ2 (θi, τl); νΩ1 (θi, τl) =

νΩ2 (θi, τl); rΩ1 (θi, τl) = rΩ2 (θi, τl); ηΩ1 (θi, τl) = ηΩ2 (θi, τl);

This implies that Ω1 = Ω2

(4) When Ω1 ⊆ Ω2 ⊆ Ω3, wen can have

pΩ1 (θi, τl) + µΩ1 (θi, τl) ≤ pΩ2 (θi, τl) + µΩ2 (θi, τl) ≤ pΩ3 (θi, τl) + µΩ3 (θi, τl);

qΩ1 (θi, τl) + νΩ1 (θi, τl) ≥ qΩ2 (θi, τl) + νΩ2 (θi, τl) ≥ qΩ3 (θi, τl) + νΩ3 (θi, τl);

rΩ1 (θi, τl) + ηΩ1 (θi, τl) ≥ rΩ2 (θi, τl) + ηΩ2 (θi, τl) ≥ rΩ3 (θi, τl) + ηΩ3 (θi, τl);

So, SimCot 2 (Ω1,Ω3) ≤ SimCot 2 (Ω1,Ω2) and SimCot 2 (Ω1,Ω3) ≤ SimCot 2 (Ω2,Ω3).

The Theorem 4.12 is proved.

4.5. Entropy measures of Temporal complex neutrosophic set

When Zadeh [3] first proposed the entropy metric, it was intended to quantify fuzziness in

information. A measure of the uncertainty and fuzziness present in any set: fuzzy set, complex

fuzzy set, neutrophilic, etc.—is the entropy measure. Since the TCNS can handle ambiguous

and uncertain data in this work, finding a TCNS’s entropy is particularly important.

Definition 4.13. A function E qualifies as a TCNS - Entropy measure on a finite set U if E:

TCNS(U) → [0, 1] and it satisfies the following properties:

(a) E (Ω) = 0 if Ω is a crisp set

(b) E (Ω) = 1 if pΩ (θ, τ) = 0.5;qΩ (θ, τ) = 0.5;rΩ (θ, τ) = 0.5 and µΩ (θ, τ) = π;νΩ (θ, τ) =

π;ηΩ (θ, τ) = π for ∀τ ∈ τ̃ ;∀θ ∈ U .

(c) E (Ω1) ≤ E (Ω2) if Ω2 is more uncertain that Ω1, that is | pΩ1(θ, τ)− 0.5 |≥
| pΩ2(θ, τ)− 0.5 |; | qΩ1(θ, τ)− 0.5 |≥ | qΩ2(θ, τ)− 0.5 |; | rΩ1(θ, τ)− 0.5 |≥
| rΩ2(θ, τ)− 0.5 | and

| µΩ1(θ, τ)− π |≥ | µΩ2(θ, τ)− π |; | νΩ1(θ, τ)− π |≥ | νΩ2(θ, τ)− π |; | ηΩ1(θ, τ)− π |≥
| ηΩ2(θ, τ)− π |
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(d) E (Ω) = E (Ωc), Ωc is a TCNS complement of Ω

Theorem 4.14. Let a Temporal Complex Neutrosophic Set Ω on U. A TCNS - The following

equation suggests entropy metric of Ω:

E (Ω) = tan

(
π

6 ∗ nU ∗ nτ

nU∑
i=1

nτ∑
l=1

eil(Ω)

)
(10)

Where

eil(Ω) =


pΩ (θi, τl) (1− pΩ (θi, τl)) + qΩ (θi, τl) (1− qΩ (θi, τl))

+ rΩ (θi, τl) (1− rΩ (θi, τl)) +

(
µΩ (θi, τl)

2π

)(
1− µΩ (θi, τl)

2π

)
+

(
νΩ (θi, τl)

2π

)(
1− νΩ (θi, τl)

2π

)
+

(
ηΩ (θi, τl)

2π

)(
1− ηΩ (θi, τl)

2π

)


Proof.

E (Ω) must strictly adhere to all conditions outlined in Definition 4.13.

(a) Assume that E (Ω) = 0, it implies that p (θi, τl) = 0; q (θi, τl) = 0; r (θi, τl) = 0;

µ (θi, τl) = 0; v (θi, τl) = 0; r (θi, τl) = 0or p (θi, τl) = 1; q (θi, τl) = 1; r (θi, τl) = 1; µ (θi, τl) =

2π; v (θi, τl) = 2π; r (θi, τl) = 2π;

(b) E (Ω) = 1, if and only if p (θi, τl) = 0.5; q (θi, τl) = 0.5; r (θi, τl) = 0.5; µ (θi, τl) = π;

v (θi, τl) = π; r (θi, τl) = π

(c) Assum Ω1, Ω2 and Ω2 more uncertain than that Ω2. It implies that, if pΩ1(θ, τ) ≤
pΩ2(θ, τ) ≤ 0.5; qΩ1(θ, τ) ≤ qΩ2(θ, τ) ≤ 0.5; rΩ1(θ, τ) ≤ rΩ2(θ, τ) ≤ 0.5 or pΩ1(θ, τ) ≥
pΩ2(θ, τ) ≥ 0.5; qΩ1(θ, τ) ≥ qΩ2(θ, τ) ≥ 0.5; rΩ1(θ, τ) ≥ rΩ2(θ, τ) ≥ 0.5 for each θi ∈ X.

Hence,

pΩ1 (θi, τl) (1− pΩ1 (θi, τl)) ≤ pΩ2 (θi, τl) (1− pΩ2 (θi, τl))

qΩ1 (θi, τl) (1− qΩ1 (θi, τl)) ≤ qΩ2 (θi, τl) (1− qΩ2 (θi, τl));

rΩ1 (θi, τl) (1− rΩ1 (θi, τl)) ≤ rΩ2 (θi, τl) (1− rΩ2 (θi, τl));

and
µΩ1

(θi,τl)

2π

(
1− µΩ1

(θi,τl)

2π

)
≤ µΩ2

(θi,τl)

2π

(
1− µΩ2

(θi,τl)

2π

)
;

νΩ1(θi,τl)
2π

(
1− νΩ1

(θi,τl)

2π

)
≤ νΩ2(θi,τl)

2π

(
1− νΩ2

(θi,τl)

2π

)
;

ηΩ1(θi,τl)
2π

(
1− ηΩ1(θi,τl)

2π

)
≤ ηΩ2

(θi,τl)

2π

(
1− ηΩ2(θi,τl)

2π

)
;

which implies E (Ω1) ≤ E (Ω2)

(d) E (Ω) = E (Ωc) is trivial

Example 4.15. Let U = {θ1, θ2};τ̃ = {τ1, τ2, τ3} and Ω1 and Ω2 are two TCNS in U
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Ω1 (θ1) =


〈
0.1ej0.2, 0.6ej0.45, 0.3ej0.56

〉
,
〈
0.8ej0.77, 0.2ej0.86, 0.4ej0.65

〉
,〈

0.6ej0.52, 0.2ej0.2, 0.36ej0.2
〉


Ω1 (θ2) =


〈
0.5ej0.12, 0.2ej0.65, 0.5ej0.85

〉
,
〈
0.3ej0.8, 0.7ej0.23, 0.1ej0.32

〉
,〈

0.74ej0.6, 0.5ej0.15, 0.66ej0.41
〉


Ω2 (θ1) =


〈
0.6ej0.8, 0.9ej0.25, 0.4ej0.52

〉
,
〈
0.6ej0.62, 0.5ej0.24, 0.3ej0.18

〉
,〈

0.3ej0.82, 0.3ej0.6, 0.4ej0.71
〉


Ω2 (θ2) =


〈
0.3ej0.22, 0.4ej0.56, 0.6ej0.26

〉
,
〈
0.1ej0.38, 0.5ej0.43, 0.5ej0.24

〉
,〈

0.2ej0.29, 0.4ej0.72, 0.5ej0.65
〉


Entropy values can be estimated by applying Definition 7 as follows: EΩ1 = 0.44476; EΩ2 =

0.47580;

5. Multi-Criteria Decision Making

Consider that Ã, C̃, D̃ are sets of alternatives, requirements and decision makers; where

Ã = {A1, A2, ..., AnA} and C̃ = {C1, C2, ..., CnC} and D̃ = {D1, D2, ..., DnD}. With regard

to the decision maker Did ; id = 1, 2, ..., nD, the evaluation description of an alternatives Aia ;

ia = 1, 2, ..., nA on an attribute Cic ; ic = 1, 2, ..., nC in given time period τl; l = 1, 2, ..., nτ

is represented by matrix U id (τl) =
(
θidiaic (τl)

)
m×n

. where θidiaic (τl) chosen as the language

identifier of CNS by given period τl.

Let

θiaicid (τl) =
〈
piaicid (τl) e

jµiaicid
(τl), qiaicid (τl) e

jνiaicid
(τl), riaicid (τl) e

jηiaicid
(τl)
〉

Step 1. In the absence of any pre-existing information regarding criterion weights, we

proceed to calculate the weight wic of criterion Cic as follows:

Equation (11) can be used to evaluate the decision makers’ averaged rating.

θiaic =
1

nD ∗ nτ

nτ

⊕
l=1

nD

⊕
ia=1

xiaicid (τl) =
〈
T̃iaic , Ĩiaic , F̃iaic

〉
(11)

The weight wic of criterion Cic is calculated by Equation (12)

wic =

(
1− ECic

)
nc −

∑nc
i=1 ECic

(12)

Where ECic
= 1

nA

∑nA
ia=1E (θiaic); each E (θiaic) is calculated using Equation (10)
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Step 2. The temporal complex neutrosophic positive ideal solution and temporal complex

neutrosophic negative ideal solution are represented by two values, TCN − PIS and TCN −
NIS, respectively, and are determined in the following way:

TCN − PIS =
{
θ,
〈
max (piaic (θ, τ̃)) e

jmax(µiaic (θ,τ̃)), 0, 0
〉}

(13)

TCN −NIS ={
θ,
〈
0,min (qiaic (θ, τ̃)) e

jmin(νiaic (θ,τ̃)),min (riaic (θ, τ̃)) e
jmin(ηiaic (θ,τ̃))

〉} (14)

Step 3 For alternatives to TCN − PIS and TCN − NIS, we can analyze the weighted

similarity index using Theorems 4.3-4.12. And equation (15) is used to calculate the weighted

similarity measure S+
ia

and S−
ia

of Aia (ia = 1, 2, ..., nA)-(16)

S+
ia

=
nA

⊕
ia=1

wicSim (θiaic , TCN − PIS) (15)

S−
ia

=
nA

⊕
ia=1

wicS (θiaic , TCN −NIS) (16)

Step 4. We determine the relative closeness of alternative Aia to the ideal solution using

the following calculation

RRia =
S−
ia

S+
ia
+ S−

ia

(17)

Step 5. Through a comparison based on relative closeness values, we have identified the

most promising alternatives, listed in descending order of their suitability.

6. A case study for choosing a tourist destination

A practical use of recommended metrics to a decision problem analyzing a real-world sce-

nario is shown in this section. The case study is a particular illustration of the challenge

of selecting a travel destination in Vietnam. This model can be applied to travel companies

supporting and advising tourists.

6.1. Problem description

The viability and efficacy of the suggested decision technique are illustrated by an example

provided by Lan et al. [17] regarding the selection of a tourism location in Vietnam. Figure

1 presents an MCDM model for choosing a tourism destination in Vietnam. Assume for the

moment that a business is looking for a tourism attraction in Vietnam. For example, Li;

i = 1, 2, 3, 4, 5 is one of the five tourist locations that the company recommended. There are

twenty sub-criteria that are specific to each place and three group criterion that determine

which site is the best tourist destination. This enables a more precise evaluation of the different

locations.
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Figure 1. Selection a tourism location in Vietnam

Table 1. Language variables

Label Number

Very low (VL)
〈
0.15ej0.55, 0.65ej0.45, 0.65ej0.35

〉
Low (L)

〈
0.25ej0.65, 0.55ej0.55, 0.65ej0.45

〉
Medium (M)

〈
0.40ej0.75, 0.50ej0.65, 0.45ej0.55

〉
High (H)

〈
0.55ej0.85, 0.45ej0.75, 0.35ej0.65

〉
Very high (VH)

〈
0.65ej0.95, 0.25ej0.85, 0.25ej0.75

〉
Three experts with varying backgrounds and specialties have been invited to conduct a

thorough study of the four locations. The estimates made by the expert are represented as

TCN numbers.

6.2. Solution approach using the proposed measures

TCNS is a technology that helps characterize periodic, ambiguous information that we

encounter in our daily lives. In order to show that the suggested similarity measures are useful

in resolving real-world issues, such as selecting tourism sites in multi-criteria decision-making

problems, we provide a real-world instance in the TCNS environment in this section.
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Table 2. Similarity measure Values at step 3

Measures
Ideal

solution

Alternatives

L1 L2 L3 L4 L5

SimD

S+ 0.63893 0.63931 0.63727 0.63702 0.63459

S− 0.65671 0.65388 0.65677 0.66025 0.66090

Simj

S+ 0.46947 0.46989 0.46768 0.46740 0.46479

S− 0.48892 0.48580 0.48899 0.49283 0.49354

SimCos

S+ 0.58630 0.58890 0.58585 0.58270 0.58158

S− 0.55933 0.55967 0.56067 0.56004 0.56200

SimCot 1

S+ 0.64133 0.62623 0.63643 0.66239 0.65205

S− 0.59517 0.57743 0.59477 0.62114 0.61690

SimCot 2

S+ 0.718926 0.71437 0.71740 0.72466 0.72094

S− 0.78670 0.76771 0.78476 0.81370 0.80613

Step 1. Equations 11 and 12 can be used for calculating the weight of each of the twenty

criteria.

w1 = 0.04920;w2 = 0.05787;w3 = 0.05274;w4 = 0.04981;w5 = 0.03842;

w6 = 0.04216;w7 = 0.04805;w8 = 0.05547;w9 = 0.05323;w10 = 0.04190;

w11 = 0.04967;w12 = 0.0439;w13 = 0.04418;w14 = 0.04968;w15 = 0.05861;

w16 = 0.05000;w17 = 0.053227;w18 = 0.05968;w19 = 0.05397;w20 = 0.05745;

Step 2. The positive ideal solution (TCN-PIS) and negative ideal solution (TCN-NIS) of

the temporal complex neutrosophic should be estimated. Here’s how the values are derived:

TCN − PIS =


〈
0.696238. ej0.916667, 0, 0

〉
,
〈
0.696238.ej0.916667, 0, 0

〉
,〈

0.696238.ej0.916667, 0, 0
〉
,
〈
0.696238.ej0.916667, 0, 0

〉


TCN −NIS =



〈
0, 0.30411.ej0.583333, 0.279672.e0.483333

〉
,〈

0, 0.30411.ej0.583333, 0.279672.e0.483333
〉
,〈

0, 0.30411.ej0.583333, 0.279672.e0.483333
〉
,〈

0, 0.30411.ej0.583333, 0.279672.e0.483333
〉


Step 3. Determine TCN-PIS and TCN-NIS’s similarity metrics for five different places as

shown in Table 2.

Step 4. Calculate the proximity of the optimal solution to five different places. They are

described in Table 3.

Step 5. Table 3 displays the five places that are ordered according to their relative prox-

imity.
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Table 3. The relative proximity of places determined via similarity metrics

Mesuares
Alternatives

L1 L2 L3 L4 L5

SimD

RR 0.50686 0.50563 0.50753 0.50895 0.51015

In Order 4 5 3 2 1

SimJ

RR 0.51015 0.50832 0.51114 0.51324 0.51500

In Order 4 5 3 2 1

SimCos

RR 0.48823 0.48728 0.48902 0.49009 0.49144

In Order 4 5 3 2 1

SimCot 1

RR 0.48134 0.47973 0.48308 0.48393 0.48615

In Order 4 5 3 2 1

SimCot 2

RR 0.52251 0.51800 0.52242 0.52894 0.52789

In Order 3 5 4 1 2

6.3. Result and Discussion

In this section, We validate the proposed model’s efficacy through comparison with Ali

et al.’s models (2020) [38] in temporal complex neutrosophic environments. In Table 3, the

ranking results of 5 locations at four different periods, τ1, τ4, τ3, τ4, are suitably explained for

the problem of selecting a tourist destination. According to Table 4, the rankings of five

locations at four times each of τ1, τ4, τ3, and τ4 are L5 ≻ L4 ≻ L1 ≻ L3 ≻ L2; L5 ≻ L4 ≻
L3 ≻ L1 ≻ L2; L5 ≻ L4 ≻ L3 ≻ L1 ≻ L2 and L5 ≻ L4 ≻ L1 ≻ L3 ≻ L2 and in all four

time periods L5is assigned as the optimal location. In the meantime, the suggested method’s

overall outcome at four different periods based on the metrics: Dice, Jaccard, Cosine, and

Cotangent similarity, respectively, are L5 ≻ L4 ≻ L3 ≻ L1 ≻ L2; L5 ≻ L4 ≻ L3 ≻ L1 ≻ L2;

L5 ≻ L4 ≻ L3 ≻ L1 ≻ L2; L4 ≻ L5 ≻ L1 ≻ L3 ≻ L2. The best location according to the

combined results of the Cosine, Jaccard, and Dice similarity measures is L5; the best location

according to the Cotangent similarity measure is L4.

This finding demonstrates how the benefits and practical application of the suggested mea-

sures handle time-related decision-making challenges in a TCNS. Furthermore, in TCN con-

texts, it is more flexible and generalized than the technique of Ali et al. [38]. The ability to

handle periodic and temporal factors in the data effectively is one of TCNS’s advantages over

standard CNS. The proposed approach has the considerable advantage of taking into account

the impact of temporal aspects in CNS disorders while also reducing information loss. In other

words, we argue that new similarity and distance measures will provide decision-makers with

various options based on their optimistic and pessimistic behavior during the decision-making

process.

Luong Thi Hong Lan, Nguyen Tho Thong, Nguyen Long Giang 
and Florentin Smarandache, A New Development of Entropy and Similarity
Measures in Temporal Complex Neutrosophic Environments for 
Tourist Destination Selection

Neutrosophic Sets and Systems, Vol. 70, 2024                                                                              290



Table 4. Results of Ali et al. method for locations at four periods

Measures
Alternitives

L1 L2 L3 L4 L5

τ1
RR 0.81427 0.80866 0.81220 0.81627 0.81948

In Order 3 5 4 2 1

τ2
RR 0.81330 0.81059 0.81335 0.81762 0.82221

In Order 4 5 3 2 1

τ3
RR 0.81413 0.80887 0.81348 0.81707 0.82197

In Order 4 5 3 2 1

τ4
RR 0.81316 0.80860 0.81309 0.81665 0.81934

In Order 3 5 4 2 1

7. Conclusion, Limitations, and Future Works

TCNS theory is a valuable tool for solving problems concerning the uncertain, temporal,

and periodical factors of decision-making. In this paper, we have introduced four similarity

measures: Dice, Jaccard, Cosine, and cotangent in the context of the TCNS. Furthermore, we

have established an entropy measure of TCNS to ascertain the weights of unknown attributes in

MCDM. Next, based on suggested entropy and similarity metrics in the TCNS environment,

a new MCDM technique has also been devised. Lastly, the TCN environment provides a

numerical example of decision-making issues when selecting a tourist location in Vietnam.

It is provided to highlight the benefits and real-world suitability of the suggested actions.

It is demonstrated through the case study that the suggested TCNS entropy and similarity

measurements can yield credible outcomes for decision-making issues. However, the proposed

measures only use the discrete temporal variables and apply to only a practical problem of

tourist destinations chosen in Vietnam. Hence, in future follow-up research, we can use TCNS

to account for continuous time variables and apply our model to other real-life problems,

including selecting workers, medical treatment, logistics center choosing, etc.
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