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Abstract. In this study, motivated by the notion of statistical convergence in intuitionistic fuzzy metric space,

we present the ideas of statistical convergence and cauchy sequences with regard to the neutrosophic metric

spaces. This study also discusses the statistical completeness on neutrosophic metric space with an example

and results.
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—————————————————————————————————————————-

1. Introduction

In 2004, utilising the intuitionistic fuzzy set [1], Fuzzy Metric Spaces (FMS) has been

widened to Intuitionistic Fuzzy Metric Space (IFMS) by Park [13]. Park used continuous

triangular norms as well as continuous triangular conorms to describe this idea. For FMS,

Changqing et al. [4] developed Statistical Convergence (SC) sequences in 2020. On IFMS,

similar ideas were used by several auhtors and their work, who achieved considerable outcomes.

Fast [5] established the concept of SC in 1951, garnering interest from researchers across both

purely mathematical and practical disciplines. FMS and IFS were used for investigating

several new breakthroughs, including fixed point theories and convergence by Granados et.

al [7]. In NMS, similar outcomes can be derived by Jeyaraman et al [9]. In [10], Kramosil

and Michalek presented the idea of FMS. Fuzzy sets were first presented by Zadeh [21],

and numerous writers have since addressed their notions under numerous contexts, including

FMS.
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The concept of generalization of convergence, denoted by SC, is defined as follows: Let

M ⊆ IN, where IN represents the set of all positive integers. For every n ∈ IN, M(n) is

defined as {λ ≤ n : λ ∈ M}. The natural (or asymptotic) density of M, denoted by ∆(M), is

defined by ∆(M) = lim
n→∞

|M(n)|
n

if the limit exists, where |M(n)| represents the cardinality of

the set M(n). The value of ∆(M) lies in the interval [0, 1] and satisfies ∆(IN\M) = 1−∆(M)

if ∆(M) exists.

For instance, ∆(Iϱ) = 1, ∆(P) = 1
2 where P denotes the set of even positive integers,

and ∆(B) = 0 where B is a finite subset of IN. A set M is considered statistically dense if

∆(M) = 1. A sequence (ζn) ⊂ IR is said to be SC to ζ0 ∈ IR if for every e > 0, the condition

∆({n ∈ IN : |ζn − ζ0| < e}) = 1 is satisfied, where IR denotes the set of all real numbers.

Numerous significant results on SC have been presented by various authors ( [?]- [19]).

in this work, convergent and SC relations in NMS are then investigated. On NMS, we

also investigate SCa sequences and statistical completeness.

2. Preliminaries

Definition 2.1. [7] Let κ, ϱ, and φ be fuzzy sets on Ω2 × (0,∞), where ⊙ is a continuous

triangular norm and ⊕ is a continuous triangular conorm. We say that (κ, ϱ, φ) forms a

Neutrosophic Metric (NM) on Ω if κ and ϱ satisfy the following conditions:

(1) κ(ζ, ξ,ϖ) + ϱ(ζ, ξ,ϖ) + φ(ζ, ξ,ϖ) ≤ 3;

(2) 0 < κ(ζ, ξ,ϖ) < 1, 0 < ϱ(ζ, ξ,ϖ) < 1 and 0 < φ(ζ, ξ,ϖ) < 1;

(3) κ(ζ, ξ,ϖ) > 0;

(4) κ(ζ, ξ,ϖ) = 1 ⇐⇒ ζ = ξ;

(5) κ(ζ, ξ,ϖ) = κ(ξ, ζ,ϖ);

(6) κ(ζ, ξ,ϖ)⊙ κ(ξ, ṽ, u) ≤ κ(ζ, ṽ,ϖ + u);

(7) κ(ζ, ξ, .) : (0,∞) → (0, 1] is continuous;

(8) ϱ(ζ, ξ,ϖ) > 0;

(9) ϱ(ζ, ξ,ϖ) = 0 ⇐⇒ ζ = ξ;

(10) ϱ(ζ, ξ,ϖ) = ϱ(ξ, ζ,ϖ);

(11) ϱ(ζ, ξ,ϖ)⊕ ϱ(ξ, ṽ, u) ≥ ϱ(ζ, ṽ,ϖ + u);

(12) ϱ(ζ, ξ, .) : (0,∞) → (0, 1] is continuous.

(13) φ(ζ, ξ,ϖ) > 0;

(14) φ(ζ, ξ,ϖ) = 0 ⇐⇒ ζ = ξ;

(15) φ(ζ, ξ,ϖ) = φ(ξ, ζ,ϖ);

(16) φ(ζ, ξ,ϖ)⊕ φ(ξ, ṽ, u) ≥ φ(ζ, ṽ,ϖ + u);

(17) φ(ζ, ξ, .) : (0,∞) → (0, 1] is continuous.
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A 6-tuple (Ω, κ, ϱ, φ,⊙,⊕) is called NMS.

The functions κ(ζ, ξ,ϖ) , ϱ(ζ, ξ,ϖ) and φ(ζ, ξ,ϖ) denote nearness degree, non-nearness degree

and indeterminacy degree of ζ to ξ at ϖ, respectively.

Example 2.2. Let Ω = IR, ϑ⊙ω = ϑω and ϑ⊕ω = min{ϑ+ω, 1} for all ϑ, ω ∈ [0, 1]. Define

κ, ϱ and φ by κ(ζ, ξ,ϖ) = ϖ
ϖ+|ζ−ξ| , ϱ(ζ, ξ,ϖ) = |ζ−ξ|

ϖ+|ζ−ξ| , φ(ζ, ξ,ϖ) = |ζ−ξ|
ϖ and for all ζ, ξ ∈ Ω

and ϖ > 0. Then (IR, κ, ϱ,⊙,⊕) is a NMS.

Definition 2.3. Let (Ω, κ, ϱ, φ,⊙,⊕) be a NMS and ϖ > 0, v ∈ (0, 1) and ζ ∈ Ω. The set

Bζ(v, ϖ) = {ξ ∈ Ω : κ(ζ, ξ,ϖ) > 1− v, ϱ(ζ, ξ,ϖ) < v, φ(ζ, ξ,ϖ) < v} is described as an open

sphere with center ζ and radius v with regard to ϖ.

Example 2.4. Let Ω = IR, ϑ⊙ω = ϑω and ϑ⊕ω = min{ϑ+ω, 1} for all ϑ, ω ∈ [0, 1]. Define

κ, ϱ and φ by κ(ζ, ξ,ϖ) = ϖ
ϖ+|ζ−ξ| , ϱ(ζ, ξ,ϖ) = |ζ−ξ|

ϖ+|ζ−ξ| , φ(ζ, ξ,ϖ) = |ζ−ξ|
ϖ and for all ζ, ξ ∈ Ω

and ϖ > 0. Then (IR, κ, ϱ,⊙,⊕) is an NMS.

Now define a sequence (ζn) by ζn =

{
1√
n
, n = λ3, λ ∈ IN;

0, otherwise

Then, for every v ∈ (0, 1) and for any ϖ > 0. we have (ζn). Here (ζn) ∈ Bζ(0, ϖ).

Definition 2.5. Let (Ω, κ, ϱ, φ,⊙,⊕) be a NMS.

(i) A sequence (ζn) is known to be convergent to ζ if for all ϖ > 0 and v ∈ (0, 1) there exists

n0 ∈ IN so that κ(ζn, ζ,ϖ) > 1− v, ϱ(ζn, ζ,ϖ) < v and φ(ζn, ζ,ϖ) < v for every n ≥ n0.

It is symbolised as ζn → ζ as n → ∞.

(ii) ⊙κ(ζn, ζ,ϖ) → 1, ϱ(ζn, ζ,ϖ) → 0 and φ(ζn, ζ,ϖ) → 0 as n → ∞ for each ϖ > 0.

(iii) (ζn) is known to be a Cauchy sequence if, for ϖ > 0 and v ∈ (0, 1), there is n0 ∈ IN such

that κ(ζn, ζm, ϖ) > 1− v, ϱ(ζn, ζm, ϖ) < v and φ(ζn, ζm, ϖ) < v for all n,m ≥ n0.

(iv) (Ω, κ, ϱ, φ,⊙,⊕) is called (κ, ϱ, φ)-complete if every Cauchy sequence is convergent.

Example 2.6. Let Ω = IR, ϑ⊙ω = ϑω and ϑ⊕ω = min{ϑ+ω, 1} for all ϑ, ω ∈ [0, 1]. Define

κ, ϱ and φ by κ(ζ, ξ,ϖ) = ϖ
ϖ+|ζ−ξ| , ϱ(ζ, ξ,ϖ) = |ζ−ξ|

ϖ+|ζ−ξ| , φ(ζ, ξ,ϖ) = |ζ−ξ|
ϖ and for all ζ, ξ ∈ Ω

and ϖ > 0. Then (IR, κ, ϱ,⊙,⊕) is an IFMS.

Now define a sequence (ζn) by ζn =

{
1
3√n

, n = λ2, λ ∈ IN;

0, otherwise

Then, for every v ∈ (0, 1) and for any ϖ > 0,

κ(ζn, 0, ϖ) ≤ 1− v, ϱ(ζn, 0, ϖ) ≥ v, φ(ζn, 0, ϖ) ≥ v.

ζn is both convergent and Cauchy sequence in Ω.

Definition 2.7. Let (Ω, κ,⊙) be a FMS.
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(1) A sequence (ζn) ⊂ Ω is termed SC to ζ0 ∈ Ω if, for every v ∈ (0, 1) and ϖ > 0, the

condition ∆({n ∈ IN : κ(ζn, ζ0, ϖ) > 1− v, ϱ(ζn, 0, ϖ) < v}) = 1 holds.

(2) A sequence (ζn) ⊂ Ω is referred to as SCa if, for every v ∈ (0, 1) and ϖ > 0, there

exists an m ∈ IN such that ∆({n ∈ IN : κ(ζn, ζm, ϖ) > 1− v, ϱ(ζn, ζm, ϖ) < v}) = 0.

Example 2.8. Let Ω = IR, ϑ⊙ω = ϑω and ϑ⊕ω = min{ϑ+ω, 1} for all ϑ, ω ∈ [0, 1]. Define

κ, ϱ and φ by κ(ζ, ξ,ϖ) = ϖ
ϖ+|ζ−ξ| , ϱ(ζ, ξ,ϖ) = |ζ−ξ|

ϖ+|ζ−ξ| , φ(ζ, ξ,ϖ) = |ζ−ξ|
ϖ and for all ζ, ξ ∈ Ω

and ϖ > 0. Then (IR, κ, ϱ,⊙,⊕) is an IFMS.

Now define a sequence (ζn) by ζn =

{ √
n
2 , n = λ3, λ ∈ IN;

0, otherwise

Then, for every v ∈ (0, 1) and for any ϖ > 0, let M = {n ≤ m : κ(ζn, 0, ϖ) ≤ 1−v, ϱ(ζn, 0, ϖ) ≥
v, φ(ζn, 0, ϖ) ≥ v} =

{
n ≤ m : ϖ

ϖ+|ζn| ≤ 1− v, |ζn|
ϖ+|ζn| ≥ v, |ζn|ϖ ≥ v

}
= {n ≤ m : |ζn| ≥ vϖ

1−v >

0} = {n ≤ m : ζn =
√
n
2 } = {n ≤ m : n = λ2, λ ∈ IN}, and we obtain 1

m |M| ≤ 1
m |{n ≤ m :

n = λ3, n ∈ IN}| ≤
3√m
m → 0,m → ∞. As a result, we have (ζn) is SC to 0 with regard to the

NMS (Ω, κ, ϱ, φ,⊙,⊕).

3. Statical Convergence in Neutrosophic Metric Spaces

Definition 3.1. Let (Ω, κ, ϱ, φ,⊙,⊕) be a NMS. A sequence (ζn) ⊂ Ω is called SC to ζ0 ∈ Ω

with respect to NM obtained that, for every v ∈ (0, 1) and ϖ > 0, ∆({n ∈ IN : κ(ζn, ζ0, ϖ) >

1− v, ϱ(ζn, ζ0, ϖ) < v, φ(ζn, ζ0, ϖ) < v}) = 1.

We assert that (ζn) is SC to ζ0. We can observe as ∆({n ∈ IN : κ(ζn, ζ0, ϖ) > 1 −
v, ϱ(ζn, ζ,ϖ) < v, ϱ(ζn, ζ,ϖ) < v}) = 1

⇔ limn→∞
|{k≤n:κ(ζλ,ζ0,ϖ)>1−v,ϱ(ζλ,ζ0,ϖ)<v,φ(ζλ,ζ0,ϖ)<v}|

n = 1

Example 3.2. Let Ω = IR, ϑ⊙ω = ϑω and ϑ⊕ω = min{ϑ+ω, 1} for all ϑ, ω ∈ [0, 1]. Define

κ, ϱ and φ by κ(ζ, ξ,ϖ) = ϖ
ϖ+|ζ−ξ| , ϱ(ζ, ξ,ϖ) = |ζ−ξ|

ϖ+|ζ−ξ| , φ(ζ, ξ,ϖ) = |ζ−ξ|
ϖ and for all ζ, ξ ∈ Ω

and ϖ > 0. Then (IR, κ, ϱ,⊙,⊕) is an IFMS.

Now define a sequence (ζn) by ζn =

{
1, n = λ2, λ ∈ IN;

0, otherwise

Then, for every v ∈ (0, 1) and for any ϖ > 0, let M = {n ≤ m : κ(ζn, 0, ϖ) ≤ 1−v, ϱ(ζn, 0, ϖ) ≥
v, φ(ζn, 0, ϖ) ≥ v} =

{
n ≤ m : ϖ

ϖ+|ζn| ≤ 1− v, |ζn|
ϖ+|ζn| ≥ v, |ζn|ϖ ≥ v

}
= {n ≤ m : |ζn| ≥ vϖ

1−v >

0} = {n ≤ m : ζn = 1} = {n ≤ m : n = λ2, λ ∈ IN}, and we obtain 1
m |M| ≤ 1

m |{n ≤ m : n =

λ2, n ∈ IN}| ≤
√
m
m → 0,m → ∞. As a result, we have (ζn) is SC to 0 with regard to the

NMS (Ω, κ, ϱ, φ,⊙,⊕).

Lemma 3.3. Let (Ω, κ, ϱ, φ,⊙,⊕) be an NMS . Then, for every v ∈ (0, 1) and ϖ > 0.

These are comparable to each other:

(i) (ζn) is SC to ζ0;

(ii) ∆({n ∈ IN : κ(ζn, ζ0, ϖ) ≤ 1− v}) = ∆({ϱ(ζn, ζ0, ϖ) ≥ v,∆({φ(ζn, ζ0, ϖ) ≥ v}) = 0;
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(iii) ∆({n ∈ IN : κ(ζn, ζ0, ϖ) > 1− v}) = ∆({ϱ(ζn, ζ0, ϖ) < v,∆({φ(ζn, ζ0, ϖ) < v}) = 1.

Proof: Utilizing Definition (3.1) and we possess a lemma regarding density characteristics.

Theorem 3.4. Let (Ω, κ, ϱ, φ,⊙,⊕) be NMS. When a sequence (ζn) is SC with regards to

the NM, then the SC limit is unique.

Proof: Let us consider (ζn) be SC to ζ1 and ζ2. Given v ∈ (0, 1), take ϖ > 0 such that

(1ϖ)⊙ (1ϖ) > 1v and ϖ ⊕ϖ < v.

Then classify the following sets, for any ϵ > 0:

Mκ1(ϖ, ϵ) := {n ∈ IN : κ(ζn, ζ1, ϵ) > 1−ϖ}
Mκ2(ϖ, ϵ) := {n ∈ IN : κ(ζn, ζ2, ϵ) > 1−ϖ}
Mϱ1(ϖ, ϵ) := {n ∈ IN : ϱ(ζn, ζ1, ϵ) < ϖ}
Mϱ2(ϖ, ϵ) := {n ∈ IN : ϱ(ζn, ζ2, ϵ) < ϖ}
Mφ1(ϖ, ϵ) := {n ∈ IN : φ(ζn, ζ1, ϵ) < ϖ}
Mφ2(ϖ, ϵ) := {n ∈ IN : φ(ζn, ζ2, ϵ) < ϖ}
Since (ζn) is SC with respect to ζ1 and ζ2, we get

∆{Mκ1(ϖ, ϵ)} = ∆{Mϱ1(ϖ, ϵ)} = ∆{Mφ1(ϖ, ϵ)} = 1 and ∆{Mκ2(ϖ, ϵ)} = ∆{Mϱ2(ϖ, ϵ)} =

1, for every ϵ > 0.

Let Kκϱφ(ϖ, ϵ) := {Mκ1(ϖ, ϵ) ∪ Mκ2(ϖ, ϵ)} ∩ {Mϱ1(ϖ, ϵ) ∪ Mϱ2(ϖ, ϵ)} ∩ {Mφ1(ϖ, ϵ) ∪
Mφ2(ϖ, ϵ)}.
Therefore, ∆{Mκϱφ(ϖ, ϵ)} = 1 which implies that ∆{IN\Mκϱφ(ϖ, ϵ)} = 0.

When n ∈ IN\Mκϱφ(t, ϵ), then there are two potential outcomes:

n ∈ IN\{Mκ1(ϖ, ϵ)∪Mκ2(ϖ, ϵ)} or n ∈ IN\{Mϱ1(ϖ, ϵ)∪Mϱ2(ϖ, ϵ)} or n ∈ IN\{Mφ1(ϖ, ϵ)∪
Mφ2(ϖ, ϵ)}.
Let us consider n ∈ IN\{Mκ1(ϖ, ϵ) ∪Mκ2(ϖ, ϵ)}.
Then we achieve κ(ζ1, ζ2, ϵ) ≥ κ

(
ζ1, ζn,

ϵ
2

)
⊙ κ

(
ζn, ζ2,

ϵ
2

)
> (1−ϖ)⊙ (1−ϖ) > 1− v.

Therefore, κ(ζ1, ζ2, ϵ) > 1v and since v > 0 is arbitrary, we achieve κ(ζ1, ζ2, ϵ) = 1 for all ϵ > 0,

which infers ζ1 = ζ2.

Let us consider n ∈ IN\{Mϱ1(ϖ, ϵ) ∪Mϱ2(ϖ, ϵ)}.
Then, ϱ(ζ1, ζ2, ϵ) ≤ ϱ(ζ1, ζn, ϵ)⊕ ϱ(ζn, ζ2, ϵ) < ϖ ⊕ϖ < v.

Since v > 0 is arbitrary, we obtain ϱ(ζ1, ζ2, ϵ) = 0 for all ϵ > 0, which suggests ζ1 = ζ2.

Now let us consider n ∈ IN\{Mφ1(ϖ, ϵ) ∪Mφ2(ϖ, ϵ)}.
Then, φ(ζ1, ζ2, ϵ) ≤ φ(ζ1, ζn, ϵ)⊕ φ(ζn, ζ2, ϵ) < ϖ ⊕ϖ < v.

Since v > 0 is arbitrary, we obtain φ(ζ1, ζ2, ϵ) = 0 for all ϵ > 0, which refers ζ1 = ζ2.

Theorem 3.5. Consider the sequence (ζn) in the Neutrosophic Metric Space NMS

(Ω, κ, ϱ, φ,⊙,⊕). If (ζn) converges to ζ0 with respect to the Neutrosophic Metric NM, then

(ζn) is SC to ζ0 in the context of the NM.
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Proof: Let (ζn) be a sequence convergent to ζ0. Then, for every v ∈ (0, 1) and ϖ > 0, there

exists an n0 ∈ IN such that κ(ζn, ζ0, ϖ) > 1 − v, ϱ(ζn, ζ0, ϖ) < v, and φ(ζn, ζ0, ϖ) < v. We

obtain |{λ ≤ n : κ(ζn, ζ0, ϖ) > 1− v, ϱ(ζn, ζ0, ϖ) < v andφ(ζn, ζ0, ϖ) < v}| ≥ nn0 .

Hence, the set {λ ≤ n : κ(ζn, ζ0, ϖ) > 1− v , ϱ(ζn, ζ0, ϖ) < v and ϱ(ζn, ζ0, ϖ) < v} has a finite

number of terms.

Then, lim
n→∞

|{λ ≤ n : κ(ζn, ζ0, ϖ) > 1− v, ϱ(ζn, ζ0, ϖ) < v, φ(ζn, ζ0, ϖ) < v}|
n

≥ lim
n→∞

nn0
n

= 1.

Consequently, ∆({n ∈ IN : κ(ζn, ζ0, ϖ) > 1− v, ϱ(ζn, ζ0, ϖ) < v, φ(ζn, ζ0, ϖ) < v}) = 1.

The converse of the theorem need not true.

Example 3.6. Let Ω = [1, 3], and define the operations ϑ⊙ω = ϑω and ϑ⊕ω = min{ϑ+ω, 1}
for all ϑ, ω ∈ [0, 1]. Define κ, ϱ, and φ by the following formulas: κ(ζ, ξ,ϖ) = ϖ

ϖ+|ζ−ξ| ,

ϱ(ζ, ξ,ϖ) = |ζ−ξ|
ϖ+|ζ−ξ| , and φ(ζ, ξ,ϖ) = |ζ−ξ|

ϖ for all ζ, ξ ∈ Ω and ϖ > 0. Then (IR, κ, ϱ, φ,⊙,⊕)

forms a Neutrosophic Metric Space (NMS).

Now define a sequence (ζn) by ζn =

{
2, n = λ2, λ ∈ IN;

1, otherwise
.

We can see that (ζn) is not convergent to 1.

We need to show that (ζn) is SC to 1.

Let v ∈ (0, 1) and ϖ > 0. M = {n ∈ IN : κ(ζn, 1, ϖ) > 1v, ϱ(ζn, 1, ϖ) < v, φ(ζn, 1, ϖ) < v}.
Case 1. v ∈

(
0, 1

ϖ+1

]
. If n ̸= λ2 for all λ ∈ IN, then κ(ζn, 1, ϖ) = 1 > 1−v, ϱ(ζn, 1, ϖ) = 0 <

v and φ(ζn, 1, ϖ) = 0 < v. If n = λ2 for some λ ∈ IN, then κ(ζn, 1, ϖ) = ϖ
ϖ+1 = 1 1

ϖ+1 ≤ 1v ,

ϱ(ζn, 1, ϖ) = 1
ϖ+1 ≥ v and φ(ζn, 1, ϖ) = 1

ϖ+1 ≥ v.

Now, let n ∈ IN. If n = λ2
0 for an λ0 ∈ IN, then lim

n→∞

|M(n)|
n

= lim
λ0→∞

λ2
0λ0

λ2
0

= 1. If n ̸= λ2 for

all λ ∈ IN, Therefore, it follows that λ1 ∈ IN such that n = λ2
1l with l ∈ IN and 1 ≤ l ≤ λ1.

limn→∞ |M(n)|n = limλ1→∞
λ2
1l(λ1l)

λ2
1l

= limλ1→∞
λ2
1λ1l+1

λ2
1l

= 1.

Case 2. v ∈
(

1
ϖ+1 , 1

)
. If n ̸= λ2 for all λ ∈ IN, then κ(ζn, 1, ϖ) = 1 > 1−v , ϱ(ζn, 1, ϖ) = 0 <

v and φ(ζn, 1, ϖ) = 0 < v. If n = λ2 for some λ ∈ IN, then κ(ζn, 1, ϖ) = ϖ
ϖ+1 = 1 1

ϖ+1 > 1v ,

ϱ(ζn, 1, ϖ) = 1
ϖ+1 < v and φ(ζn, 1, ϖ) = 1

ϖ+1 < v.

Hence, κ(ζn, 1, ϖ) > 1 − v, ϱ(ζn, 1, ϖ) < v and φ(ζn, 1, ϖ) < v for all n ∈ IN. Therefore,

lim
n→∞

|M(n)|
n

= lim
n→∞

n

n
= 1.

Therefore, ∆({n ∈ IN : κ(ζn, 1, ϖ) > 1 − v, ϱ(ζn, 1, ϖ) < v, φ(ζn, 1, ϖ) < v}) = 1 for all

v ∈ (0, 1) and ϖ > 0.

Theorem 3.7. Consider the sequence (ζn) in the Neutrosophic Metric Space NMS

(Ω, κ, ϱ, φ,⊙,⊕). The sequence (ζn) is SC to ζ0 if and only if there exists an increasing index

sequence P = {ni}i∈IN of natural numbers such that (ζni) converges to ζ0 and ∆(P) = 1.

Proof: Given that the sequence (ζn) statistically converges to ζ0, define Mκϱφ(j,ϖ) := {n ∈
IN : κ(ζn, ζ0, ϖ) > 1 − 1

j , ϱ(ζn, ζ0, ϖ) < 1
j , and φ(ζn, ζ0, ϖ) < 1

j } for any ϖ > 0 and j ∈ IN.

J. Johnsy and M. Jeyaraman, Statistical Convergence Sequences in Neutrosophic Metric Spaces

Neutrosophic Sets and Systems, Vol. 70, 2024                                                                              300



We establish that Mκϱφ(j+1, ϖ) ⊂ Mκϱφ(j,ϖ) for all ϖ > 0 and j ∈ IN. Since (ζn) is SC to

ζ0,

∆(Mκϱφ(j,ϖ)) = 1 (1)

Take u1 ∈ Mκϱφ(1, ϖ). Since ∆(Mκϱφ(2, ϖ)) = 1 (by Equation (1)) we have a number

u2 ∈ (Mκϱφ(2, ϖ)(u2 > u1) such that
|{λ≤n:κ(ζλ,ζ0,ϖ)>1− 1

2
,ϱ(ζλ,ζ0,ϖ)< 1

2
,φ(ζλ,ζ0,ϖ)< 1

2
}|

n > 1
2 , for

every n ≥ u2.

According to Equation (1), ∆(Mκϱφ(3, ϖ)) = 1. We can select u3 ∈ Mκϱφ(3, ϖ) (where

u3 > u2) such that for all n ≥ u3, the fraction
|{λ≤n:κ(ζλ,ζ0,ϖ)>1− 1

3
,ϱ(ζλ,ζ0,ϖ)< 1

3
,φ(ζλ,ζ0,ϖ)< 1

3
}|

n > 2
3 .

We proceed in this manner.

Subsequently, we can construct an increasing sequence of indices {uj}j∈IN from natural num-

bers such that each uj belongs to Mκϱφ(j,ϖ).

|{λ ≤ n : κ(ζλ, ζ0, ϖ) > 1− 1
j , ϱ(ζλ, ζ0, ϖ) < 1

j , φ(ζλ, ζ0, ϖ) < 1
j }|

n
>

j − 1

j
, (2)

for all n ≥ uj , where j ranges over IN. We define the increasing index sequence P as:

P := {n ∈ IN : 1 < n < u1} ∪

 ⋃
j∈IN

{n ∈ IN : uj ≤ n < uj+1} ∩Mκϱφ(j,ϖ)

 .

By Equation (2) and Mκϱφ(j + 1, ϖ) ⊂ Mκϱφ(j,ϖ), we write

|{λ ≤ n : λ ∈ P}|
n

≥
|{λ ≤ n : κ(ζλ, ζ0, ϖ) > 1− 1

j , ϱ(ζλ, ζ0, ϖ) < 1
j , φ(ζλ, ζ0, ϖ) < 1

j }|
n

>
j − 1

j

for all n, (uj ≤ n < uj+1).

Given that j → ∞, at which n → ∞, we have limn→∞
|{λ≤n:λ∈P}|

n = 1, i.e., ∆(P) = 1.

Now, we demonstrate the convergence of (ζni) to ζ0. Let v ∈ (0, 1) and ϖ > 0. Choose

N0 > u2 sufficiently large such that there exists an index s0 ∈ IN satisfying us0 ≤ N0 < us0+1

and 1
s0

< v. Consider nm ≥ N0 where nm ∈ P. By the definition of P, there exists s ∈ IN

such that us ≤ nm < us+1 and nm ∈ Mκϱφ(s,ϖ) (with s ≥ s0). Thus,

κ(ζnm , ζ0, ϖ) ≥ κ
(
ζnm , ζ0,

1
s0

)
≥ κ

(
ζnm , ζ0,

1
s

)
> 1− 1

s ≥ 1− 1
s0

> 1− v, ϱ(ζnm , ζ0, ϖ) > 1
s0

< v

and φ(ζnm , ζ0, ϖ) > 1
s0

< v. Therefore, (ζni) converges to ζ0.

On the otherhand, Let’s suppose there exists a sequence of increasing indices P = {ni}i∈IN
of natural numbers such that ∆(P) = 1 and (ζni) converges to ζ0. Take v ∈ (0, 1) and

ϖ > 0. Then, there exists a number n0 ∈ IN such that for every n ≥ n0, the conditions

κ(ζni , ζ0, ϖ) > 1− v, ϱ(ζni , ζ0, ϖ) < v, and φ(ζni , ζ0, ϖ) < v are satisfied.

Let us define Mκϱφ(v, ϖ) := {n ∈ IN : κ(ζni, ζ0, ϖ) ≤ 1 − v or ϱ(ζni, ζ0, ϖ) ≥
v andφ(ζni, ζ0, ϖ) ≥ v}. We have Mκϱφ(v, ϖ) ⊂ IN\{nn0 , nn0+1, nn0+2, . . . }. Since ∆(P) = 1,

we have ∆(IN\{nn0 , nn0+1, nn0+2, . . . }) = 0, so we deduce ∆(Mκϱφ(v, ϖ)) = 0. Hence,

∆({n ∈ IN : κ(ζn, ζ0, ϖ) < 1− v, ϱ(ζn, ζ0, ϖ) < v andφ(ζn, ζ0, ϖ) < v}) = 1.

Therefore, (ζn) SC to ζ0.
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Corollary 3.8. If (ζn) is a sequence within an NMS (Ω, κ, ϱ, φ,⊙,⊕) that is both SC to ζ0

and convergent, then (ζn) converges to ζ0.

Definition 3.9. Let (Ω1, κ1, ϱ1, φ1,⊙1,⊕1) and (Ω2, κ2, ϱ2, φ2,⊙2,⊕2) be two NM spaces.

(i) A map χ : Ω1 → Ω2 is termed an isometry if for every ζ, ξ ∈ Ω1 and ϖ > 0, κ1(ζ, ξ,ϖ) =

κ2(χ(ζ), χ(ξ), ϖ) , ϱ1(ζ, ξ,ϖ) = ϱ2(χ(ζ), χ(ξ), ϖ) and φ1(ζ, ξ,ϖ) = φ2(χ(ζ), χ(ξ), ϖ).

(ii) (Ω1, κ1, ϱ1, φ1,⊙1,⊕1) and (Ω2, κ2, ϱ2, φ2,⊙2,⊕2) are termed isometric if there exists a

bijective mapping (an isometry) from Ω1 to Ω2.

(iii) A neutrosophic completion of (Ω1, κ1, ϱ1,⊙1,⊕1) is defined as a complete NMS

(Ω2, κ2, ϱ2,⊙2,⊕2) such that (Ω1, κ1, ϱ1,⊙1,⊕1) is isometrically embedded as a dense

subspace within Ω2.

(iv) (Ω1, κ1, ϱ1,⊙1,⊕1) is termed completable if it can be extended to form a complete NMS.

Proposition 3.10. Suppose (ζn) is a sequence in a completable NMS (Ω, κ, ϱ, φ,⊙,⊕). If

(ζn) is a Cauchy sequence in Ω and it is statistically dense around ζ0, then (ζn) converges to

ζ0.

Proof: Let (Ω1, κ1, ϱ1, φ1,⊙1,⊕1) be the completion of (Ω, κ, ϱ, φ,⊙,⊕). Consequently,

there exists ζ1 ∈ Ω1 such that the sequence (ζn) converges to ζ1. We have κ1(ζn, ζ0, ϖ) =

κ(ζn, ζ0, ϖ), ϱ1(ζn, ζ0, ϖ) = ϱ(ζn, ζ0, ϖ) and φ1(ζn, ζ0, ϖ) = φ(ζn, ζ0, ϖ) for all ϖ > 0 and

n ∈ IN.

Let v ∈ (0, 1) and ϖ > 0. Since ∆({n ∈ IN : κ(ζn, ζ0, ϖ) > 1 − v, ϱ(ζn, ζ0, ϖ) <

v andφ(ζn, ζ0, ϖ) < v}) = 1, we obtain ∆({n ∈ IN : κ1(ζn, ζ0, ϖ) > 1 − v, ϱ1(ζn, ζ0, ϖ) <

vandφ1(ζn, ζ0, ϖ) < v}) = 1. Hence, we see that (ζn) statistically converges to ζ0 ∈ Ω1 with

respect to (κ1, ϱ1, φ1). By Corollary (3.8), we have ζ1 = ζ0.

4. Statically Complete NMS

Definition 4.1. Consider a sequence (ζn) ⊂ Ω, where (Ω, κ, ϱ, φ,⊙,⊕) is a NMS. The

sequence is termed a SCa if, for every v ∈ (0, 1) and ϖ > 0, there exists m ∈ IN such that

∆({n ∈ IN : κ(ζn, ζm, ϖ) > 1− v, ϱ(ζn, ζm, ϖ) < v, φ(ζn, ζm, ϖ) < v}) = 1.

Example 4.2. In Example(2.4), M = {n ≤ m : κ(ζn, 0, ϖ) ≤ 1 − v, ϱ(ζn, 0, ϖ) ≥
v, φ(ζn, 0, ϖ) ≥ v} =

{
n ≤ m : ϖ

ϖ+|ζn| ≤ 1− v, |ζn|
ϖ+|ζn| ≥ v, |ζn|ϖ ≥ v

}
= {n ≤ m : |ζn| ≥

vϖ
1−v > 0} = {n ≤ m : ζn = 1} = {n ≤ m : n = λ3, λ ∈ IN}, and we obtain

1
m |M| ≤ 1

m |{n ≤ m : n = λ3, n ∈ IN}| ≤
3√m
m → 0,m → ∞. As a result, we have (ζn) is

SC to 0 with regard to the NMS (Ω, κ, ϱ, φ,⊙,⊕).

Theorem 4.3. Let (ζn) denote a sequence within the framework of NMS (Ω, κ, ϱ, φ,⊙,⊕).

The following statements are equivalent:
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(i) (ζn) is classified as a SCa sequence.

(ii) There exists a progressively increasing index sequence M = {ni}i∈IN of natural numbers

such that (ζni) is characterized by being Cauchy and achieving ∆(M) = 1.

Proof: Direct

Theorem 4.4. Consider a sequence (ζn) within the framework of NMS (Ω, κ, ϱ, φ,⊙,⊕). If

(ζn) is SC with respect to theNM, then (ζn) is SCa with respect to the NM .

Proof: If (ζn) is statistically convergent to ζ0 and for given v ∈ (0, 1) and ϖ > 0,

there exists v1 ∈ (0, 1) such that (1 − v1) ⊙ (1 − v1) > 1 − v and v1 ⊕ v1 < v. We have

∆({n ∈ IN : κ(ζn, ζ0, ϖ) > 1− v, ϱ(ζn, ζ0, ϖ) < v, φ(ζn, ζ0, ϖ) < v}) = 1. Refer Theorem (3.4),

there exists an increasing index sequence {ni}i∈IN so that (ζni) is convergent to ζ0. Hence,

there exists ni0 ∈ {ni}i∈IN : κ
(
ζni , ζ0,

ϖ
2

)
> 1 − v1, ϱ

(
ζni , ζ0,

ϖ
2

)
< v1 and φ

(
ζni , ζ0,

ϖ
2

)
< v1

for all ni ≥ ni0 .

Since κ
(
ζn, ζni0 , ϖ

)
≥ κ

(
ζn, ζ0,

ϖ
2

)
⊙ κ

(
ζ0, ζni0 ,

ϖ
2

)
≥ (1− v1)⊙ (1− v1) > 1− v ,

ϱ
(
ζn, ζni0 , ϖ

)
≤ ϱ

(
ζn, ζ0,

ϖ
2

)
⊕ ϱ

(
ζ0, ζni0 ,

ϖ
2

)
< v1 ⊕ v1 < v and

φ
(
ζn, ζni0 , ϖ

)
≤ φ

(
ζn, ζ0,

ϖ
2

)
⊕ φ

(
ζ0, ζni0 ,

ϖ
2

)
< v1 ⊕ v1 < v, we have ∆({n ∈ IN :

κ(ζn, ζni0 , ϖ) > 1 − v, ϱ(ζn, ζni0 , ϖ) < v, φ(ζn, ζni0 , ϖ) < v}) = 1. Therefore, (ζn) is statis-

tically Cauchy with respect to the NM .

Remark 4.5. Given that a sequence in a NMS is Cauchy, it consequently meets the criteria

to be classified as SCa.

Definition 4.6. The NMS (Ω, κ, ϱ, φ,⊙,⊕) is termed statistically complete if every SCa

sequence in Ω is also SC.

Theorem 4.7. If (Ω, κ, ϱ, φ,⊙,⊕) is a NMS where Ω is statistically complete, then it is also

complete according to the NM.

Proof: The proof follows a similar approach to Theorem (4.4).

5. Conclusion

This paper has discussed and proved some results of SC and SCa on NMS. Additionally

looked at the attributes of statistical completeness on NMS. Our results can be extended to

other spaces and be used to arrive at more results in fixed point theory.
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