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Abstract:  In the age of modern technology, the use of the internet has become imperative. 

However, this widespread access presents a double-edged sword and opens doors for hackers and 

scammers to exploit vulnerabilities and engage in illegal activities. Accordingly, scholars and 

stakeholders are attempting to solve this matter. Large Language Models (LLMs) have provided 

highly effective methodologies and solutions in various cybersecurity sectors. Hence, we exhibited 

the efficacy of LLMs in several information and communication technologies (ICT) such as the 

Internet of Things (IoT), cloud computing, blockchain technology (BCT)…etc which are attacked 

and threatened. Accordingly, the objective of our study is to illustrate how LLMs are supporting 

ICT, especially BC to be secure against attacks. Another study’s objective is to aid the stakeholders 

and enterprises that seek resilience and sustainability by recommending the most secure BC 

platform to adopt in critical sectors. Wherein, LLMs support BC in many directions as developing 

secure smart contracts and scanning the smart contract to protect it from any subversive acts by 

identifying anomalous activities. Hence, we suggested a soft opting model to rank the alternatives 

of BC platforms and recommend optimal BC. Also, the process of constructing this model requires 

leveraging several techniques. We applied for the first time SuperHyperSoft (SHS) as an extension 

of Hypersoft to treat various attributes and sub-attributes for BC based on LLMs. Multi-criteria 

decision-making (MCDM)techniques are utilized for their ability to treat conflicting sub-attributes. 

Hence, entropy and multi-objective optimization based on simple ratio analysis (MOOSRA) are 

utilized as techniques of MCDM. These techniques are working under the authority of the Single 

Value Neutrosophic (SVN) technique to support MCDM techniques in ambiguous situations.  

Keywords: Large Language Models (LLMs); SuperHyperSoft; Blockchain; Cybersecurity; Multi-

Criteria Decision Making (MCDM); Single Value Neutrosophic (SVN) 

 

 

1. Introduction 

The desire for sustainability and development on a global scale is seen as the driving force 

behind change and the growing rate of technological advancement. Indeed, in the recent 

interval, a new phenomenon dubbed Industry 4.0 [1] and eventually, Industry 5.0 has evolved. 
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These digital transformations permit devices and humans to communicate by utilizing smart 

devices as sensors in the Industrial Internet of Things (IIoT)[2] to collect data and process it 

through big data analytical (BDA) and store it in blockchain technology (BCT). Despite the 

importance of the technologies of Industry 4.0 in transferring and exchanging data, it is 

vulnerable to attacks. Accordingly, [3] indicated that the usage of cutting-edge technologies has 

expanded over the past several decades, leading to a significant increase in cyber-attacks and 

threats. This issue affects all stakeholders who utilize IoT systems, either directly or indirectly. 

Malicious assaults may cause enormous financial difficulties and incalculable losses, including 

data corruption, system breakdowns, privacy breaches, reputational damage, lost customers, 

dependability, and market share, especially for large enterprises. Wherein [4] claimed that only 

16% of experts believe that their business is well-prepared to handle cybersecurity threats, even 

though 75% see cybersecurity as a priority. 

Hence, [5]  stated that it becomes imperative to have sophisticated and efficient detecting 

techniques. Similarly[6], as cyber threats evolve, the cybersecurity field can also benefit from 

state-of-the-art tools. These tools can support cybersecurity practitioners who are always 

looking for ways to apply new regulations or fortify technological defenses against the leakage 

of private data, illegal access, and other types of data abuse. According to the perspective of [7], 

it is imperative to develop proactiv5[5[5e technology for cyber defense. Wherein the defense is 

represented in harnessing various cutting-edge technologies such as Machine Learning (ML) 

techniques [5] and deep learning (DL) techniques [8] which are capable of automatically 

identifying, thwarting, also responding to various cyberattacks[9]. As well the new 

developments in transformers and large language models (LLMs)[10], which have 

demonstrated remarkable capabilities in natural language understanding, generation, and 

reasoning, have made significant strides in several security tasks, including threat detection, 

automated vulnerability analysis, intelligent defense mechanisms [11]. LLMs have a number of 

advantages, from customization and transparency to cutting-edge performance. LLMs are 

classified into open-source models like Llama [12] and Mixtral [13] or closed-source models 

like ChatGPT and Gemini[14]. They do, however, all have their limitations. Code-based LLMs, 

such as CodeLlama [15] and StarCoder [16, 17], are especially useful for tasks including 

automated code review, secure code development, and bug discovery. Their use in threat 

intelligence, binary analysis, IT operations, vulnerability detection, program repair, and anomaly 

detection highlights their revolutionary influence on cybersecurity. 

  

1.1 Journey of Language Models Toward Large Language Models: Provenance 

Contemporary techniques of artificial intelligence and machines have amalgamated to learn how 

to comprehend and communicate through human language [18] where a term of language 

modeling (LM) is the consequence of this amalgamation. This term has appeared in many 
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studies as [19] LM predominantly strives to forecast the probability of future or omitted tokens 

by modeling the generative probability of word sequences. As well [20] described the language 

model's evolution phases. The first phase formed in statistical language models (SLMs) 

[21]this model was initially introduced in the 1990s, and as it was constructed using the Markov 

assumption, its goal was to anticipate the next word based on the most recent context. The 

other side of it is bigram and trigram language models  [19] where SLMs with a predetermined 

context length n that's why it's called n-gram language models. Generally, this is not a sufficient 

model, but newer versions have appeared due to some problems that this model suffered from. 

Worthwhile[22], neural networks (NNs) serve to predict the probability distribution of the 

following word in a sequence given the words that came before it as manner in phase two of 

Neural Language Models (NLMs). Wherein, the models of NLs are employed in this phase 

as multi-layer perceptron (MLP), Recurrent neural networks (RNNs), and (LSTM) [23]to 

provide a cohesive, comprehensive solution for different NLP. Phase three entails building 

what are known as pre-trained language models (PLMs) [24], which are contextualized 

word embeddings that seek to capture the meaning and context of words in a phrase or text. 

Nonetheless, several investigations have [25] examined the performance limitations PLMs 

encounter when training progressively broader PLMs. Thereby, Generative Pre-Trained 

Transformer -3 (GPT-3) and Generative Pre-Trained Transformer -4 (GPT-4) were developed 

to address the deficiencies in phase three. Due to[26], these models can be refined for certain 

downstream tasks, such as question answering or language translation, after being trained on 

vast volumes of text data. Accordingly, such models belong to transformer language models 

[19], in another formula LLMs are considered motivators for phase four. Due to its ability to 

comprehend natural language and complete challenging tasks. 

 

1.2 Motivations and incentives of study 

Each phase finds a way to address the faults of the one before it, based on the discussion from 

the preceding subsection. In the final phase of LMs, GPT-3 as the model belongs to LLMs can 

solve a series of complex tasks that GPT-2 can't solve[27]. One of PLM's drawbacks[28], is it 

cannot generalize to unseen activities without task-specific training, although LLMs can do so 

without the need for task-specific training. As a result, LLMs serve as the study's focal point 

and foundation; further motivations will be covered. 

A. First incentive: we conducted bibliometric analysis for various LMs. This analysis has 

been conducted on the Web of Science (WoS) database for various published studies from 

2020 until 2024. Hence, we conducted a set of queries. Wherein these queries entailed the 

various techniques for different phases of LMs that were utilized in published studies.  
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B. These queries were conducted as in Fig 1 

Fig 1. Methodologies of Techniques of Language Models Queries 

 

The findings of conducted queries are illustrated in Fig 2 which comprises the queries’ 

conclusions. This Fig indicated that the techniques of LLMs are constantly increasing over 

the years. In confirmation of this, in 2024 these techniques achieved the highest use in 

publishing studies compared to the other models of LMs. 

A. Second incentive: business environment and its chain, other domains such as healthcare, 

transportation, education…etc. are transforming their traditional strategies, planning, and 

operations into digital. In this light, [29] demonstrated that the urgency for effective 

security precautions has increased as individuals and enterprises depend on digital 

technology for essential infrastructure, interactions, and business. Thereby [30] stated that 

it is challenging for security practitioners to successfully identify, locate, and protect against 

them due to the magnitude and diversity of cyber threats. To address these issues, [31] 

suggested LLMs and [5] confirmed that LLMs help to swiftly find relevant threat 

intelligence, allowing consultants to decide on actions. Accordingly, [32]discussed various 

roles and contributions of LLMs in cybersecurity. Also [33] suggested Bidirectional 

Encoder Representations from Transformers (BERT) as an intrusion detection model and 

BERT outperforms other ML techniques in attack detection on a reputable dataset. 
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Fig 2. Queries’ Findings for Language Models since 2020-2024 

 

1.3 Scientific Contributions and Novelty: 

This study attempts to solve the issue of cybersecurity by covering certain aspects as the 

following: 

Theoretically: we conducted surveys in previous studies that related to our scope. We are trying 

to discuss and determine the main issues of security that threaten the enterprises economically 

and personally. Accordingly, we are studying the extent to which methods can solve this matter. 

The findings of our study are deployed in the next aspect (i.e. scientifically). 

Scientifically: the findings of surveys are discussed by exhibiting the importance of generative 

artificial intelligence (AI)-LLMs for securing ICT technologies, especially BC. Also, evaluating 

the BC that adopting the models of LL is vital. Therefore, we proposed a soft opting model to 

evaluate these BC. 

(a) Techniques of Statistical Language Models (b) Techniques of Neural Language Model 

(c) Techniques of Pretrained Language Model (d) Techniques of Large Language Model 
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Practically: we applied the constructed model for two objectives. The first objective is aiding 

decision makers (DMs) and stakeholders at a loss to choose the secure BC by recommending 

secure BC based on LLMs. The second objective is to validate the accuracy of our model.  

2. Empowering ICT technologies in the realm of LLMs 

This section exhibits the role of LLMs in ICT technologies as security tools in various forms. 

2.1  Cloud Computing Paradigm and IoT 

Many scholars as[34, 35] described cloud computing (CC) as the multi-service paradigm for 

storing and retrieving data, computational capacity, and applications, such as internet-based on-

demand services. CC has been harnessed successfully in several contexts Given that it offers a 

wide range of services such as control and management through various methodologies such 

as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service 

(SaaS). 

 

 

Fig 3. Role of Large Language Model in Securing Cloud-IoT against Threat 
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This paradigm integrated with other Contemporary technologies such as machine learning (ML) 

[36]to enhance the privacy, trust, and security of the cloud paradigm. But Cao et al., [37]had an 

alternative viewpoint and demonstrated that ML techniques are restricted to vulnerability 

analysis and categorization. Accordingly, the authors in [37] proposed LLMs as solvers for 

vulnerabilities of ML for securing the cloud. In the same vein [38] harnessed the CC paradigm 

in the internet of Vehicles (IoV) to store and process data collected from smart equipment as 

sensors in the Cloud paradigm and vice versa for retrieving data from the cloud. Wherein, LLMs 

play an important role as cybersecurity tools to countermeasure any threats and through [39] 

LLMs preserve resilience by facing hostile assaults, illegal access attempts, and data leaks. Fig 3 

exhibits the role of LLMs which is discussed in [11] in securing data collected from IoT 

equipment and preventing hackers and spoofers from intrusion of information through 

unauthorized access. Also, LLMs are protecting information from encrypting, losing, and 

fraudulent vital information. 

2.2 Blockchain Technology 

Latterly, BCT is growing in popularity as a technology for promoting different domains[40]. As 

well, [41] indicated that Financial institutions brought in BCT to bolster their cybersecurity and 

investments. Distributed ledger (DL) technology allows BC to store transactions immutably. 

As stated by [42], BC security is an elaborate process that aims to protect the availability, 

integrity, and confidentiality of data processed and stored inside a blockchain network. 

Nevertheless, [43]admitted that the integrity and responsibilities of BC are in danger from 

several security flaws and threats. These threats formed in various forms as in [44] (see Fig 4) 

that exhibit vulnerabilities that jeopardize BC security. 

 

Fig 4. Blockchain Vulnerabilities 
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To eliminate and avoid the issues of vulnerability that jeopardize BC security, LLMs such as 

GPTScan [45], and AuditGPT [46] are introduced as auditors in smart contracts to detect and 

recognize vulnerabilities. As well, LLMs were introduced as detectors for unusual transactions 

and deceitful actions via leveraging BLOCKGPT[47]. 

 

3. Methodology  

According to the influential role of LLMs as protectors against threats and risks, the evaluation 

of their roles in contemporary technology to be a secure technology is an important process. 

Accordingly, choosing the most secure technology amongst the set of alternatives to other 

technologies to serve the enterprises’ objectives is crucial.  This process requires prioritizing 

between the alternatives based on a set of conflicting criteria. Hence, MCDM techniques have 

been harnessed in this process due to their ability to treat such problems [48]. Yet experts may 

run into the issue of being unable to cope with uncertainties when using MCDM techniques, 

which prevents experts from being able to make an appropriate decision. To avert this issue, 

the SuperHyperSoft (SHs) technique is integrated with SVNSs to support experts when using 

MCDM techniques during the evaluation process amongst alternatives. Another impulse for 

this integration is to serve the study’s objectives by constructing a soft opting model. These 

objectives entailed selecting and recommending the most secure BC platform that deploys 

LLMs as ChatGPT for developing smart contracts. The accuracy and security of smart 

contracts, which implement agreements without the need for middlemen, are crucial in BC. 

Overall, the procedures of recommending a secure BC platform based on a soft opting model 

are conducted through the following subsections. 

laying forth the assessment process's aspects 

3.1 Laying forth the assessment process's main aspects 

1. The alternatives of BC platforms are determined to be nominated in the evaluation 

process. 

2. The main attributes and sub-attributes are determined to evaluate BC platforms based 

on them. 

3. The expert panel is forming to contribute to the evaluation process for BC platforms 

based on attributes and sub-attributes. 

3.2 Generative of attributes and sub-attributes weights: SVNSs-Entropy 

The objective of this procedure is to generate weights for BC platforms’ attributes and sub-

attributes. Hence, the entropy of MCDM techniques is combined with SVNSs to generate 

weights. The generated weights are harassing in the next procedure of alternatives ranking. 

We implement a series of phases to accomplish the objective. 
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4. Transforming the utilized linguistic terms of DMs into Neutrosophic values based on 

the SVN scale which is mentioned in [49]. Thereby, Neutrosophic decision matrices 

are constructed based on the rating of DMs. 

5.  The score function in Eq.(1) is embraced for converting the constructed matrices into 

crisp matrices. 

𝒔(ℴij)  =
(2+ 𝛼 − 𝛽 −𝜃  )

3
                (1) 

Where 𝛼, 𝛽, 𝜃 refer to truth, false, and indeterminacy respectively. 

6. Aggregate the crisp matrices into a compiled matrix based on Eq.(2). 

℘ij = 
(∑ ℴij)
N
j=1  

Z
                                  (2) 

Where ℴij refers to the value of the criterion in the matrix, and Z refers to the number of decision-

makers. 

7. Eq.(3) is utilized in the compiled matrix to normalize it to construct a normalized 

matrix. 

ℕor
ij =

℘ij
∑ ℘ij
m
j=1

                                                                   (3)  

Where ∑ ℘ij
m
j=1  indicates the sum of each criterion in the compiled matrix per column. 

8. Eq.s(4),(5) are contributed to compute entropy. 

 Enj=−h∑ ℕorij 
m
i=1

lnℕorij                                              (4)   

       where, 

        h =
1

ln (N)
                                    (5) 

      N refers to utilized alternatives 

9. Finally, the weights of attributes are generated by employing Eq. (6)  

 ωj=
1 − Enj

∑ (1 − Enj)
n
j=1

                                                 (6) 

 

3.3 Recommending the most secure BC platform: SuperHyperSoft and SVNSs-MOOSRA 

Herein, three techniques are integrated to rank BC platforms. Each technique plays a vital role 

in solving the problem of selection. SHS is utilized to determine and employ a power set of 

attributes to obtain the most secure and appropriate BC platform. While SVNSs are harnessed 

for supporting MOOSRA in uncertain environments and ambiguity of information during the 

ranking process. 
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3.3.1 SuperHyperSoft (SHS) 

SHs introduced by Smarandache [50] this technique is considered an extension of HyperSoft 

and consists of several HyperSoft Sets. SHS was utilized in this study as the methodology for 

representing the determined attributes and sub-attributes for selecting the secure BC platform 

based on the selected attributes and sub-attributes. 

- Suppose the universe set ℜ= { BC 1, BC 2,… BC n} which was determined in the 

previous procedure. Moreover, P (ℜ) is the powerset of ℜ. As well, A1, A2, A3 are 

utilized attributes where BC platforms have been evaluated over these attributes. 

Hence, P(A1), P(A2), and P(A3) are powersets of A1, A2, A3 . 

- Let F: P(A1) × P(A2) × P(A3)  →  P(ℜ), where × indicates to Cartesian product. 

Hence, this is called SHs over ℜ. 

- In this study Cartesian product for attributes and sub −

attributes formed as 

P(A1) × P(A2) × P(A3) = {{{A11}, {A12}, {A11, A12}} ×

{{A21}, {A22}, {A21, A22}, } ×

{{A31}, {A32}, {A33}, {A31, A32}, {A31 , A33}, {A32, A33}, {A31, A32, A33}}}. 

− According to Eq. (7), P(A1) × P(A2) × P(A3) = 

 

 

{
 
 
 
 

 
 
 
 

𝒔𝟏 ̃  (𝑨𝟏𝟏, 𝑨𝟐𝟏, 𝑨𝟑𝟏); 𝒔�̃� (𝑨𝟏𝟏 , 𝑨𝟐𝟏, 𝑨𝟑𝟐); 𝒔�̃� (𝑨𝟏𝟏, 𝑨𝟐𝟏, 𝑨𝟑𝟑);

𝒔�̃� (𝑨𝟏𝟏, 𝑨𝟐𝟏 , {𝑨𝟑𝟏, 𝑨𝟑𝟐}); 𝒔�̃� (𝑨𝟏𝟏 , 𝑨𝟐𝟏, {𝑨𝟑𝟏, 𝑨𝟑𝟑}); 𝒔�̃� (𝑨𝟏𝟏, 𝑨𝟐𝟏, {𝑨𝟑𝟐, 𝑨𝟑𝟑});

𝒔�̃� (𝑨𝟏𝟏, 𝑨𝟐𝟏, {𝑨𝟑𝟏, 𝑨𝟑𝟐, 𝑨𝟑𝟑}); 𝒔�̃� (𝑨𝟏𝟏 , 𝑨𝟐𝟐, 𝑨𝟑𝟏); … 𝒔𝟏�̃� (𝑨𝟏𝟏, 𝑨𝟐𝟐, {𝑨𝟑𝟏 , 𝑨𝟑𝟐, 𝑨𝟑𝟑});

𝒔𝟏�̃� (𝑨𝟏𝟏, {𝑨𝟐𝟏 , 𝑨𝟐𝟐}, 𝑨𝟑𝟏); … 𝒔𝟐�̃� (𝑨𝟏𝟏, {𝑨𝟐𝟏, 𝑨𝟐𝟐}, {𝑨𝟑𝟏, 𝑨𝟑𝟐, 𝑨𝟑𝟑}); 𝒔𝟐�̃�  (𝑨𝟏𝟐, 𝑨𝟐𝟏, 𝑨𝟑𝟏);⋯

𝒔𝟐�̃� (𝑨𝟏𝟐, 𝑨𝟐𝟏, {𝑨𝟑𝟏 , 𝑨𝟑𝟐, 𝑨𝟑𝟑}); 𝒔𝟐�̃� (𝑨𝟏𝟐, 𝑨𝟐𝟐 , 𝑨𝟑𝟏);⋯𝒔𝟑�̃� (𝑨𝟏𝟐, 𝑨𝟐𝟐, {𝑨𝟑𝟏, 𝑨𝟑𝟐, 𝑨𝟑𝟑});

𝒔𝟑�̃� (𝑨𝟏𝟐, {𝑨𝟐𝟏 , 𝑨𝟐𝟐}, 𝑨𝟑𝟏);  ⋯ 𝒔𝟒�̃� (𝑨𝟏𝟐, {𝑨𝟐𝟏, 𝑨𝟐𝟐}, {𝑨𝟑𝟏, 𝑨𝟑𝟐, 𝑨𝟑𝟑}); 𝒔𝟒�̃� ({𝑨𝟏𝟏, 𝑨𝟏𝟐}, 𝑨𝟐𝟏, 𝑨𝟑𝟏);⋯

𝒔𝟒�̃� ({𝑨𝟏𝟏, 𝑨𝟏𝟐}, 𝑨𝟐𝟏, {𝑨𝟑𝟏 , 𝑨𝟑𝟐, 𝑨𝟑𝟑}); 𝒔𝟓�̃� ({𝑨𝟏𝟏, 𝑨𝟏𝟐}, 𝑨𝟐𝟐 , 𝑨𝟑𝟏);⋯𝒔𝟓�̃� ({𝑨𝟏𝟏, 𝑨𝟏𝟐}, 𝑨𝟐𝟐, {𝑨𝟑𝟏, 𝑨𝟑𝟐, 𝑨𝟑𝟑});

𝒔𝟓�̃� ({𝑨𝟏𝟏, 𝑨𝟏𝟐}, {𝑨𝟐𝟏 , 𝑨𝟐𝟐}, 𝑨𝟑𝟏);⋯ 𝒔𝟔�̃� ({𝑨𝟏𝟏, 𝑨𝟏𝟐}, {𝑨𝟐𝟏, 𝑨𝟐𝟐}, {𝑨𝟑𝟏, 𝑨𝟑𝟐 , 𝑨𝟑𝟑}). }
 
 
 
 

 
 
 
 

(7) 

 

 

3.3.2 SVNSs-MOOSRA 

Multi-objective optimization based on simple ratio analysis (MOOSRA)[51] is implemented 

under the authority of SVNSs based on SHS for ranking BC platforms that adopt ChatGPT- 

LLMs for developing secured smart contracts. After that recommend the most secure BC 

platform which implements the secured smart contract. Overall, the ranking procedures have 

been conducted as follows: 
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10. Constructing Neutrosophic decision matrices for each DM to evaluate BC platforms 

based on sub-attributes determined by SHS. 

11. Transforming Neutrosophic decision matrices into de-neutrosophic decision matrices 

through using Eq.(1). 

12. Eq.(2) is utilized for the second time to aggregate these matrices into an aggregated 

matrix. 

13. Normalizing the aggregated matrix based on Eq.(8). 

Norij

=
℘ij

[∑ ℘ij
m
j ]

1/2
                                                                                  (8) 

 

14. Compute a weighted decision matrix based on Eq.(9). 

weighted −matrixij=Norij

∗ ωj                                                                             (9) 

15. Calculating ratio as in Eq.(10) to obtain final rank for alternatives. 

             Ratio =

∑ Norij
B
j=1

∑ Norij
NB
j=1

                                                                                     (10)

  

 

4. Implementation of the constructed soft opting model: Case-study 

Herein we implemented our constructed soft opting model in realistic to validate the efficacy 

of the constructed model. 

4.1  Problem Description 

We exhibit the problem that our constructed model is supposed to be applied through the 

following scenario. 

Scenario 1 

One of the most significant technologies being utilized right now across a variety of sectors 

in BC, particularly in sectors with a long history and significant consumer data. This is because 

of the utilization of robust encryption techniques such as hash. Yet, because of the extensive 

usage of the Internet and its applications, hackers may now easily forge hash mining to alter 

and steal data, as well as smart contracts that expose the money and data of consumers to 

jeopardy. 

Hence, the business sectors exploit generative AI capabilities as LLMs to bolster the efficiency 

of BC as ChatGPT, PaLM…etc. these models of LLM support enterprises to be proactive 

and become resilient. Therefore, any business aiming for sustainability and resilience must 
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implement the strongest BC practices involving LLMs. Accordingly, businesses may face the 

problem of applying the strongest and most secure BC platform. We exhibit the problem of 

four enterprises that need to make accurate decisions for selecting the most secured BC 

platform based on LLMs amongst five alternatives of BC platforms. 

  

Action: the businesses should follow the methodology for selecting the optimal and most 

secured BC which deploys the robust security models based on LLM. Herein, this 

methodology entails implementing the constructed soft opting model to aid stakeholders in 

deciding the optimal decision with various propositions toward securing businesses based on 

robust BC. 

4.2 Toward Most Secure BC platform-based LLMs: Procedures 

Herein, the process of recommending optimal BC has been conducted into two subsections 

for generating attributes’ weights. These weights are used in another subsection to recommend 

optimal BC platforms. 

4.1.1 Generating attributes’ weights 

Entropy based on SVNSs is implemented to serve the target of this subsection. 

1. Three Neutrosophic decision matrices are constructed based on members of the panel to 

evaluate five BC platforms based on four attributes (see Fig 4). These matrices are 

transformed into de-neutrosophic matrices based on Eq.(1). 

2. These matrices aggregated into the single matrix is an aggregated matrix as listed in Table 1 

based on Eq.(2). 

3. Table 2 exhibits the normalized matrix which is calculated based on Eq.(3). 

4. Eq.(4) is implemented to compute entropy. 

5. The final attributes’ weights are obtained in Fig5 through executing Eq.(6) which indicates 

that A2 has the highest weight otherwise, A1 has the lowest value. 
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Fig 4. Attributes and Sub-attributes of BC based on LLMs 

 

 

 

 

Table 1. Aggregated decision matrix 

 A1 A2 A3 A4 

BC1 0.604444444 0.5722222 0.42666667 0.672222222 

BC2 0.816666667 0.5777778 0.71666667 0.9 

BC3 0.538888889 0.38 0.5 0.537777778 

BC4 0.705555556 0.8055556 0.65 0.816666667 

BC5 0.644444444 0.7111111 0.81666667 0.838888889 

 

 

Table 2. Normalized matrix 

 

 

 

 

 

 

 

 A1 A2 A3 A4 

BC1 0.182611615 0.18781911 0.137191854 0.178518737 

BC2 0.24672709 0.189642597 0.230439443 0.239008557 

BC3 0.162806311 0.124726477 0.160771704 0.14281499 

BC4 0.213158778 0.264405543 0.209003215 0.216878135 

BC5 0.194696207 0.233406273 0.262593783 0.222779581 
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Fig 5. Attributes weights 

 

 

 

 

 

4.2.2 Ranking BC Platforms  

Based on the methodology of SHS we can suppose a set of propositions for sub-

attributes to rank BC based on LLMs : 

- let F({Sufficient, Non-sufficient}, {Impenetrable, Penetrable},{Low},{Non-

Adjustable}). 

- According to Eq.(7), there are four propositions for sub-attributes. in other words, 

there are four hypersofts: 

proposition 1: Sufficient, Impenetrable, Low, Non-Adjustable. 

proposition 2: Sufficient, Penetrable, Low, Non-Adjustable 

proposition 3: Non-sufficient, Impenetrable, Low, Non-Adjustable 

proposition 4: Non-sufficient, Penetrable, Low, Non-Adjustable 

After that, we can implement SVNSs-MOOSRA to rank BC platforms and obtain the 

most secure BC. 

According to Proposition 1: 

- Three neutrosophic decision matrices are constructed for evaluating BC platforms 

based on sub-attributes according to the proposition. 

- deneutrosophic these matrices based on Eq.(1). 

- Aggregated these matrices into an aggregated matrix based on Eq.(2) as in Table 3. 

- Table 4 represents the normalized matrix according to Eq.(8). 

- Table 5 for the weighted normalized matrix is generated based on Eq.(9). 
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The final ranking for BC platforms is exhibited in Fig 6 which indicates that BC4 is the 

most secure platform. 

 

Table 3. Aggregated matrix 

 A11 A21 A31 A42 

BC1 0.644444 0.56 0.353333 0.605556 

BC2 0.498889 0.76 0.386667 0.777778 

BC3 0.42 0.498889 0.538889 0.666667 

BC4 0.598889 0.877778 0.732222 0.458889 

BC5 0.565556 0.665556 0.632222 0.671111 

 

 

Table 4. Normalized matrix. 

 

  

 

 

 

 

 

Table 5. Weighted Normalized matrix 

 

 

 

 

 

 

 A11 A21 A31 A41 

BC1 0.522865 0.365028 0.288437 0.420175 

BC2 0.40477 0.495395 0.315648 0.539675 

BC3 0.340764 0.325194 0.439911 0.462578 

BC4 0.485904 0.572167 0.597735 0.318408 

BC5 0.458859 0.433833 0.516102 0.465662 

 A11 A21 A31 A42 

BC1 0.040783461 0.095272375 0.04384238 0.050421043 

BC2 0.031572024 0.129298223 0.047978453 0.064760973 

BC3 0.026579566 0.084875588 0.066866523 0.055509405 

BC4 0.037900492 0.149335667 0.090855749 0.038208974 

BC5 0.035791003 0.113230461 0.078447529 0.055879468 
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Fig 6. Final ranking for BC platforms 

 

According to Proposition 2: 

- Table 6 represents the normalized matrix according to Eq.(8). 

- Table 7 for the weighted normalized matrix is generated based on Eq.(9). 

Table 6. Normalized matrix 

 

 

 

 

 

 

 

 

Table 7. Weighted Normalized matrix 

 

 

 

 

 

 

According to Proposition 3: 

− Table 8 represents the normalized matrix according to Eq.(8). 

 A11 A22 A31 A42 

BC1 0.404239135 0.452016567 0.288436709 0.420175361 

BC2 0.546168684 0.518707536 0.315647719 0.539674775 

BC3 0.360397023 0.44460646 0.439911333 0.462578379 

BC4 0.471860019 0.358649211 0.597735192 0.318408118 

BC5 0.430990254 0.447570503 0.516102162 0.465662235 

 A11 A22 A31 A42 

BC1 0.031530653 0.041585524 0.04384238 0.050421043 

BC2 0.042601157 0.047721093 0.047978453 0.064760973 

BC3 0.028110968 0.040903794 0.066866523 0.055509405 

BC4 0.036805082 0.032995727 0.090855749 0.038208974 

BC5 0.03361724 0.041176486 0.078447529 0.055879468 
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− Table 9 for the weighted normalized matrix is generated based on Eq.(9). 

Table 8. Normalized matrix 

 

 

 

 

 

 

 

Table 9. Weighted Normalized matrix 

 

 

 

 

 

 

 

According to Proposition 4: 

− Table 10 represents the normalized matrix according to Eq.(8). 

− Table 11 for the weighted normalized matrix is generated based on Eq.(9). 

Table 10. Normalized matrix 

 

 

 

 

 

 

 

Table 11. Weighted Normalized matrix 

 A12 A22 A31 A42 

BC1 0.008151413 0.041585524 0.04384238 0.050421043 

BC2 0.020863736 0.047721093 0.047978453 0.064760973 

BC3 0.026200971 0.040903794 0.066866523 0.055509405 

BC4 0.02911219 0.032995727 0.090855749 0.038208974 

BC5 0.023774955 0.041176486 0.078447529 0.055879468 

 A12 A21 A31 A42 

BC1 0.159831631 0.365028256 0.288436709 0.420175361 

BC2 0.409092866 0.49539549 0.315647719 0.539674775 

BC3 0.513744529 0.325193823 0.439911333 0.462578379 

BC4 0.570827254 0.572167306 0.597735192 0.318408118 

BC5 0.466175591 0.433833185 0.516102162 0.465662235 

 A12 A21 A31 A42 

BC1 0.008151413 0.0335826 0.04384238 0.050421043 

BC2 0.020863736 0.045576385 0.047978453 0.064760973 

BC3 0.026200971 0.029917832 0.066866523 0.055509405 

BC4 0.02911219 0.052639392 0.090855749 0.038208974 

BC5 0.023774955 0.039912653 0.078447529 0.055879468 

 A12 A22 A31 A42 

BC1 0.159831631 0.452016567 0.288436709 0.420175361 

BC2 0.409092866 0.518707536 0.315647719 0.539674775 

BC3 0.513744529 0.44460646 0.439911333 0.462578379 

BC4 0.570827254 0.358649211 0.597735192 0.318408118 

BC5 0.466175591 0.447570503 0.516102162 0.465662235 
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− After we applied the four propositions or four hypersoftsets, we concluded that BC5 

is the most secure and appropriate for utilizing against any attack as shown in Fig 7.  

 

Fig 7. Final ranking for BC platforms based on various propositions 

 

5 Conclusion 

In this study, we attempt to solve the problem of attacks and exploiting vulnerabilities, 

especially in digital technologies. Hence, we focused on BC as one of the important 

technologies for many sectors Especially financial sectors and transactions that require 

customer information. Thus, fraudulent and dubious actions endanger financial establishments 

as well as people by corrupting and leaking data through encryption. Accordingly, LLMs can be 

harnessed to protect transactions and DL from any manipulation. through applying PaLM, 

BLOCKGPT, GPTu-tor….etc to scan smart contracts, detecting and recognizing unusual and 

abnormal activities as well, these models can develop secured smart contracts. Hence, we 

exhibit the importance of adopting LLMs in BC to make any business proactive and resilient 

against any crisis that is facing any sector. 

Yet, stakeholders may face the problem of which BC platform can use. Hence, we constructed 

a soft opting model to aid them in recommending the most appropriate and secure BC. In these 

models, we applied for the first time SHS for supporting a set of propositions of sub-attributes. 
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Proposition 1 3.567919345 3.224916037 3.212458773 7.278183073 4.070707907

Proposition 2 0.81921361 0.805280465 0.985108788 1.792870809 1.154640836

Proposition 3 1.321866692 1.092614962 1.184480583 2.131501191 1.485921015

Proposition 4 1.359079545 1.117128703 1.693184911 2.81199578 2.015754035
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Entropy is applied to generate weights for attributes and sub-attributes which are proposed by 

SHS to utilize in MOOSRA for recommending optimal BC based on LLMs. 

The findings of a soft opting model indicated that BC 4 is the most secure platform to adopt 

in enterprises. 
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