
University of New Mexico

On Extension of Metricspace to Neutro Hypermetricspace

Kianoosh Polvan∗

Department of Mathematics, University of Payame Noor, Tehran, Iran.

K.kianoosh@pnu.ac.ir
∗Correspondence: K.kianoosh@pnu.ac.ir, P.O. Box 19395-4697

Abstract. Polvan introduced the impression of strong neutro metricspaces. He demonstrtated this impression

depending on the neutro precepts from the neutro function one of the impressions of Smarandache. In this study,

we introduce an extension of neutro metricspaces as neutro hypermetricspaces and investigated their qualities.

We show that neutro hypermetricspaces are an extension of metricspaces and analyzed the relations between

metricspaces and neutro hypermetricspaces. The basic impressions such as open positive-ball subsets and open

negative-ball subsets are defined and are presented by some finite and finite neutro hypermetricspaces. Based

on the open positive-ball subsets and open negative-ball subsets, we demonstrate the impressions of neutro

negative-open sets and neutro positive-open sets, respectively.

Keywords: (Neutro) hypermetricspace, neutro-negative-open set, neutro-positive-open set, unified set.

—————————————————————————————————————————-

1. Introduction

M. K. EL Gayyar, introduced the notion of neutrosophic topological structures. He pre-

sented it in two different types of impressions of neutrosophic topological space, closure inte-

rior [6]. Florentin Smarandache [8] et al. introduced an impression of generalized neutrosophic

bipolar vague sets (N.B.V.S) and vague topology in topological spaces. Neutrosophic vague

theory is a pragmatic manner to practice fragmentary and erratic information. Indeed, they

interpolated the perception of an N.B.V.S as a combination of N. S, B. S, and V. S. Some

researchers have presented the N. S in neutro metricspace and other neutro algebras such

as [1–5, 7–12]. We interpolate the new thought of hypermetricspace as a generalization of

metricspaces and present their qualities. In the real world, there is no exact size and most

sizes are approximate. For example, we say the length of a wall that has a fracture and is

somewhat angled is between 100 and 102 meters, or we say the weight of a package is between

200 and 201 kg. These approximations indicate that the sizes are not exact and fall within
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a range. These real issues motivate us to interpolate supermeters. In addition, sometimes

we can’t measure some objects and we say that this size is not known to us. Sometimes we

cannot take the distance of an object from itself to zero, because an object fills a volume in

three-dimensional space and we have a distance on this object itself. These issues make us

interpolate the cloud meter to have a more realistic model of the world around us. In this

study, we extended the metricspace to neutro hypermetricspace and considered the relations

between of their precepts. We have shown that the open sets in neutro hypermetricspaces are

different, for instance, we show that there exist two types of neutro-open sets negative-open

set and positive-open set. In a final show, the union of neutro-open sets is not a neutro set

necessarily.

2. Preliminaries

Here we address the needs of our work.

Definition 2.1. [9] Assume ν : Q2 → R, with Q ̸= ∅. Then, (Q, ν) is called a neutro

metricspace, if obtain

(NM -1) (o, o′ ∈ Q so oνo′ ≥ 0),
(
o1, o2 ∈ Q so o1νo2 < 0 or inconclusive

)
;

(NM -2) (o ∈ Q so oνo = 0),
(
o′ ∈ Q such that, o′νo′ ̸= 0 or inconclusive

)
;

(NM -3) (o, o′, o′′ ∈ Q, such that oνo′′ ≤ oνo′ + o′νo′′),
(
o1, o2, o3 ∈ Q, such that o1νo3 >

o1νo2 + o2νo3 or inconclusive
)
;

(NM -4) (o, o′ ∈ Q, such that oνo′ = o′νo),
(
o1, o2 ∈ Q, such that o1νo2 ̸= o2νo1 or inconclusive)

.

Definition 2.2. [7] Assume ν : Q2 → R≥0, with Q ̸= ∅. Then, (Q, ν) is called a strong

neutro, if

(NM -1)
(
o ∈ Q so oνo = 0) and

(
o′ ∈ Q so o′νo′ ̸= 0 or inconclusive

)
;

(NM -2)
(
o, o′, o′′ ∈ Q, such that oνo′′ ≤ oνo′ + o′νo′′ and

(
o1, o2, o3 ∈ Q, such that 01νo3 >

o1νo2 + o2νo3 or inconclusive
)
;

(NM -3)
(
o, o′ ∈ Q, such that oνo′ = o′νo and

(
o1, o2 ∈ Q, such that o1νo2 ̸= o2νo1 or incon-

clusive
)
.

3. Hypermetricspace

In this section, we interpolate the notation of hypermetricspace as an extension of metric-

spaces and present their qualities.

Definition 3.1. Presume ϑ : M × M → P ∗(R) be a map and M ̸= ∅. Then (M,ϑ) is a

hypermetricspace, if

(Hm-1) obtain r ≥ 0, s.t [0, r] ⋐ ϑ(x, y);
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(Hm-2) ϑ(x, x) = {0};
(Hm-3) ϑ(x, z) ⋐ ϑ(x, y) + ϑ(y, z);

(Hm-4) ϑ(x, y) = ϑ(y, x);

which for any A,B ∈ P ∗(R),A ⋐ B iff for any a ∈ B obtain b ∈ B so b− a ≥ 0(a ≤ b) and ϑ is

called a hypermeter on M .

For each set {Ai}ni=1 of subset of R, recall,
n∑

i=1

Ai = {a1 + a2 + a3 + . . . + an | ai ∈ Ai}.

Then get the following results.

Theorem 3.2. Presume (Q, ϑ) be a hypermetricspace. Then for each x, y ∈ Q, A,B ∈ P ∗(R);

(i) {0} ⋐ ϑ(x, y),

(ii) ϑ(x, y) ⋐ ϑ(x, y),

(iii) if A ⊆ B, then A ⋐ B,

(iv) A ⋐ A+B.

Proof. (i) For each x, y ∈ Q, [0, 0] ⊆ ϑ(x, y), {0} ⊆ ϑ(x, y). Hence 0 ∈ ϑ(x, y) and so {0} ⋐
ϑ(x, y).

(ii) Presume x, y ∈ Q, since for each a ∈ ϑ(x, y), a ≤ a, we get that ϑ(x, y) ⋐ ϑ(x, y).

(iii) For each x ∈ A, x ∈ B and x ≤ x, we get that A ⋐ B.

(iv) Since A ⊆ A+B, by item (iii), A ⋐ A+B.

Corollary 3.3. Presume (Q, ϑ) be a hypermetricspace. Then for each x, y, z ∈ Q, Ai ∈
P ∗(R), 1 ≤ i ≤ n;

(i) Ai ⋐ Ai,

(ii) Ai ⋐
n∑

i=1

Ai,

(iii) ϑ(x, y) ⋐ ϑ(x, y) + ϑ(y, z).

Example 3.4. (i) Any metricspace (Q, ϑ) is a hypermetricspace.

(Hm-1) For each x, y ∈ Q, since 0 ≤ ϑ(x, y), for r = 0, we get that [0, r] ⋐ ϑ(x, y). Clearly

(Hm-2) and (Hm-4) are valid.

(Hm-3) For each x, y, z ∈ Q, since ϑ(x, z) ≤ ϑ(x, y)+ϑ(y, z), based Theorem 3.2, ϑ(x, z) ⋐
ϑ(x, y) + ϑ(y, z).

(ii) Presume Q = {a, b, c, d}. Then (Q, d) is a hypermetricspace as Table 2.
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ϑ a b c d

a {0} [0, 1] [0, 2] [0, 3]

b [0, 1] {0} [0, 2] [0, 3]

c [0, 2] [0, 2] {0} [0, 3]

d [0, 3] [0, 3] [0, 3] {0}
Table 1. Hypermetricspace(Q, ϑ).

For each intervals In(a, b), In(c, d), recall that In(a, b) + In(c, d) = In(a+ c, b+ d), which

In(w, y) = [w, y] and get the following results.

Theorem 3.5. Any non–avoid subset of R can be a hypermetricspace.

Proof. Presume ∅ ̸= A ⊆ R be arbitrary. For each x, y ∈ A, define ϑ : R × R → P ∗(R) by

ϑ(x, y) = [0, |max{x, y} −min{x, y}|]. For each (x1, y1), (x2, y2) ∈ A2, since (x1, y1) = (x2, y2)

implies that (0, |max{x1, y1} −min{x1, y1}|) = (0, |max{x2, y2} −min{x2, y2}|), we get that

ϑ(x1, y1) = ϑ(x2, y2) and so ϑ is well-defined. Moreover,

(Hm-1) Presume x, y ∈ A. Then for r =
|max{x, y} −min{x, y}|

2
, we get that [0, r] ⋐

[|x|, |y|].
(Hm-2) Presume x ∈ A. Computations show that ϑ(x, x) = [0, |max{x, x} −min{x, x}|] =

[0, 0] = {0}.
(Hm-3) Presume x, y, z ∈ A. Then

ϑ(x, z) = [0, |max{x, z} −min{x, z}|]

⋐ [0, |max{x, y} −min{x, y}|+ |max{y, z} −min{y, z}|]

⋐ [0, |max{x, y} −min{x, y}|] + [0, |max{y, z} −min{y, z}|] = ϑ(x, y) + ϑ(y, z).

(Hm-4) Presume x, y ∈ A. Then

ϑ(x, y) = [0, |max{x, y} −min{x, y}|] = [0, |max{y, x} −min{y, x}|] = ϑ(y, x).

It follows that (A, ϑ) is a hypermetricspace.

Presume Q be a non-avoid set. We say that Q is a reproduced hypermetricspace, if obtain a

hypermeter ϑ on Q, such that (Q, ϑ) is a hypermetricspace. In addition, we denote Hm(Q) =

{ϑ | ϑ is a hypertmeter on Q}, as the set of all hypermeters on Q and will get the following

result.

Theorem 3.6. For each non-avoid set Q,

(i) Q is a reproduced hypermetricspace.

(ii) |Hm(Q)| = 2ℵ(ℵ = card(R)).
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Proof. Presume Q be a non-avoid set.

(i), (ii) For each x, y ∈ Q, and for each r ∈ R, define ϑr(x, y) =

{0} ifx = y,

[0, r] ifx ̸= y,
. It is

clear that (Q, ϑr) is a hypermetricspace. Hence |Hm(Q)| = 2ℵ(ℵ = card(R)).

Presume (Q, ϑ) be a hypermetricspace and ϵ ∈ R>0. So Bϵ(x) = {y ∈ Q | Sup(ϑ(x, y)) < ϵ},
is called an open ball of radius ϵ and center x ∈ Q.

Example 3.7. Consider the hypermetricspace (Q, ϑ) in Example 3.4. For each 0 < ϵ < 1, and

each x ∈ Q, Bϵ(x) = {x}, B1(a) = {a}, B2(a) = {a, b}, B3(a) = {a, b, c}, B4(ϵ) = {a, b, c, d}
and for each ϵ ≥ 4, Bϵ(a) = Q.

Theorem 3.8. Presume (Q, ϑ) be a hypermetricspace and ϵ ∈ R>0.

(i) Inf{ϑ(x, y) | x, y ∈ Q} = 0.

(ii) x ∈ Bϵ(x).

(iii) Q =
∪
x∈Q

Bϵ(x).

(iv) If Sup{ϑ(x, y) | x, y ∈ Q} = ϵ, then for each ϵ′ > ϵ,Bϵ(x) = Bϵ′(x).

(v) There exists ϵ ∈ R>0 so Bϵ(x) = Q.

Proof. (i) For each x, y ∈ Q and each r ∈ R≥0, [0, r] ⊆ ϑ(x, y), implies that [0, r] ⋐ ϑ(x, y). It

follows that obtain z ∈ ϑ(x, y) so z ≤ 0. It follows that (−∞, 0] is the set of all lower bounds

of ϑ(x, y) and so Inf{ϑ(x, y) | x, y ∈ Q} = 0.

(ii) Since ϵ > 0 and obtain r ∈ R≥0, [0, r] ⋐ ϑ(x, y), for each x ∈ Q, Bϵ(x) = {y ∈
Q | Sup(ϑ(x, y)) < ϵ} ̸= ∅. In addition, by Theorem 3.2, {0} ⋐ ϑ(x, x) ≤ Sup(ϑ(x, y)) < ϵ,

includes that x ∈ Bϵ(x).

(iii) For each x ∈ Q, by item (i), {x} ⊆ Bϵ(x) and so Q =
∪
x∈Q

{x} ⊆ Bϵ(x). Hence

Q =
∪
x∈Q

Bϵ(x).

(iv) Presume Sup{ϑ(x, y) | x, y ∈ Q} = ϵ. Then for each x, y ∈ Q, ϑ(x, y) ≤ Sup(ϑ(x, y)) <

ϵ and so Bϵ(x) = {y ∈ Q | Sup(ϑ(x, y)) < ϵ} = Q. So for each ϵ′ > ϵ,Bϵ(x) = {y ∈
Q | Sup(ϑ(x, y)) < ϵ′} = Q.

(v) By item (iv), consider ϵ = Sup{ϑ(x, y) | x, y ∈ Q}, then Bϵ(x) = {y ∈ Q | Sup(ϑ(x, y)) <
ϵ} = Q.
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3.1. On neutro hypermetricspace

In this subsection, we interpolate the new impression of neutro hypermetricspace as an ex-

tension of neutro metricspaces and in general as an extension of metricspaces. We analyze

the qualities of neutro hypermetricspaces with respect to joint of sumsets and presented the

relation of neutro hypermetricspaces and neutro metricspaces.

Definition 3.9. Presume ϑ : M ×M → P ∗(R) be a map and M ̸= ∅.The structure (M,ϑ) is

called a neutro hypermetricspace, if

(Hm-1) (∃ r ≥ 0, x, y ∈ M, so [0, r] ⋐ ϑ(x, y)) and (∃ s ≤ 0, z, w ∈ M so [s, 0] ⋐
ϑ(z, w) or inconclusive);

(Hm-2) (∃ x ∈ Q, such that ϑ(x, x) = {0}) and (∃ y ∈ Q, such that ϑ(y, y) ̸=
{0} or inconclusive);

(Hm-3) (∃ x, y ∈ Qsuch that ϑ(x, z) ⋐ ϑ(x, y)+ϑ(y, z)) and (∃ z, w, u ∈ Q, such that ϑ(z, w) ≻
ϑ(z, u) + ϑ(u,w) or inconclusive);

(Hm-4) (∃ x, y ∈ Q, such that ϑ(x, y) = ϑ(y, x)) and (∃ w, z ∈ Q, such that ϑ(z, w) ̸=
ϑ(w, z) or inconclusive);

which for each A,B ⊆ R, A ⋐ B iff for each a ∈ A obtain b ∈ B sob− a ≥ 0(a ≤ b) and A ≻ B

obtain a ∈ A so for each b ∈ B a > b. We will call ϑ as a neutro hypermeter on Q.

Example 3.10. Presume Q = {a, b, c, d, e}. Then (Q, ϑ) is a neutro hypermetricspace as

Table 2.

ϑ a b c d e

a {0} [0, 1] [−2, 0] [0, 3] [−3, 0]

b [0, 1] {0} [0, 2] [0, 3] [0, 3]

c [0, 2] [0, 2] {0} [0, 3] [0, 3]

d [0, 3] [0, 3] [0, 3] {−2,−3} [0, 3]

e [0, 3] [0, 3] [0, 3] [0, 3] {4, 5}
Table 2. Neutro hypermetricspace (Q, ϑ).

We see that ϑ(a, a) = {0}, ϑ(d, d) ̸= {0}, ϑ(a, d) = ϑ(d, a), ϑ(a, b) ⋐ ϑ(a, d) + ϑ(d, b) and

ϑ(e, e) ≻ ϑ(e, a) + ϑ(a, e). Hence (Q, ϑ) is a neutro hypermetricspace.

Presume n ∈ N and f : Rn → R be odd bounded continuous map. Then define ϑ : Rn×Rn →
P ∗(Rn) by ϑ((r1, r2, . . . , rn), (s1, s2, . . . , sn)) = Range(f(r1, r2, . . . , rn) + f(s1, s2, . . . , sn)) and

ϑ((π, π, . . . , π), (2π, 2π, . . . , 2π)) ̸= ϑ((2π, 2π, . . . , 2π), (π, π, . . . , π)).

Theorem 3.11. Presume n ∈ N. Then (Rn, ϑ) is a hypermetricspace.
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Proof. Since f is bounded, obtain m ∈ R, so for each (r1, r2, . . . , rn) ∈ Rn,m ≤
f(r1, r2, . . . , rn) ≤ M . Presume (r1, r2, . . . , rn), (s1, s2, . . . , sn) ∈ Rn be arbitrary. Then

define ϑ((r1, r2, . . . , rn), (s1, s2, . . . , sn)) =

n∑
i=1

Range(f(xi)). Since the map f is odd con-

tinuous, obtain (t1, t2, . . . , tn) ∈ Rn and (w1, w2, . . . , wn) ∈ Rn sof(t1, t2, . . . , tn) ≤ 0 and

f(w1, w2, . . . , wn) ≥ 0. Since f is bounded, obtain (t1, t2, . . . , tn) ∈ Rn and (w1, w2, . . . , wn) ∈
Rn so that Range(f(t1, t2, . . . , tn) + f((w1, w2, . . . , wn)) = {0}, obtain (z1, z2, . . . , zn) ∈ Rn

and (u1, u2, . . . , un) ∈ Rn so that Range(f(z1, z2, . . . , zn) + f((u1, u2, . . . , un) = [0, 2M ]

and obtain (v1, v2, . . . , vn) ∈ Rn and (q1, q2, . . . , qn) ∈ Rn so that Range(f(v1, v2, . . . , vn) +

f(g(q1, q2, . . . , qn) = [−2m, 0]. Hence (Rn, ϑ) is a hypermetricspace.

Example 3.12. Define ϑ : R× R → P ∗(R), by ϑ(x, y) = Rang(|Sinx|+ Cosy) as Figure 1.

Figure 1. |sin(x)|+ cos(y)

Using Figure 1, for each π/2 ≤ x ≤ 3π/4 and 3π/4 ≤ y ≤ π, [−1, 0] ⋐ ϑ(x, y), for each 0 ≤
x, y ≤ π/2, [0, 1] ⋐ ϑ(x, y), ϑ(π/3, π/6) = ϑ(π/6, π/3), ϑ(π/2, π) ̸= ϑ(π, π/2), ϑ(3π/4, 3π/4) =

0, ϑ(π/4, π/4) ̸= 0, and ϑ(
√
2,
√
3) ̸= ϑ(

√
3,
√
2). In addition, for each x, y, which ϑ(y, y) ≥ 0,

we get that ϑ(x, z) ⋐ ϑ(x, y) + ϑ(y, z) and for each x, y, which ϑ(y, y) ≤< 0, we get that

ϑ(x, z) ≻ ϑ(x, y) + ϑ(y, z). Hence (R, ϑ) is a hypermetricspace.

Presume (Q, ϑ) be a neutro hypermetricspace, ϵ ∈ R>0 and δ ∈ R<0. Then Bϵ(x) =

{y ∈ Q | sup(ϑ(x, y)) < ϵ}, is called an open positive-ball of radius ϵ and center x ∈ Q and

Bδ(x) = {y ∈ Q | inf(ϑ(x, y)) > δ}, means by open negative-ball of radius δ and center x ∈ Q.

Example 3.13. (i) Consider the neutro hypermetricspace (Q, ϑ) in Example 3.10.

Then B1(a) = {a, c, e}, B2(a) = {a, b, c, e}, B3(a) = {a, b, c, e}, B4(a) = Q, B−1(a) =

{a, b, d}, B−2(a) = {a, b, d}, B−3(a) = {a, b, c, d} and B−4(a) = Q.

(ii) Consider the neutro hypermetricspace (Q, ϑ) in Example 3.12. Then for each x ∈ R,

B2(x) = ∅, B−2(x) = R, B1(x) = {y ∈ R | |sinx|+ cos(y) > 1} = {y ∈ R | |sinx| > 1− cos(y)}.
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Theorem 3.14. Presume (Q, ϑ) be a neutro hypermetricspace, ϵ ∈ R>0 and δ ∈ R<0. Then

Bϵ(x) = {y ∈ Q | ϑ(x, y) ≺ [0, ϵ]}.

Proof. (i) Presume y ∈ Bϵ(x). Then ϑ(x, y) ⋐ [0, ϵ] and so for each z ∈ ϑ(x, y), obtain

a ∈ [0, ϵ] so z ≤ a < ϵ. Hence sup(ϑ(x, y)) < ϵ and so y ∈ {y ∈ Q | sup(ϑ(x, y)) < ϵ}. Presume

y ∈ {y ∈ Q | sup(ϑ(x, y)) < ϵ}. Then sup(ϑ(x, y)) < ϵ and so ϑ(x, y) < sup(ϑ(x, y)) < ϵ. It

follows that ϑ(x, y) < ϵ and so y ∈ Bϵ(x). Hence Bϵ(x) = {y ∈ Q | sup(ϑ(x, y)) < ϵ}.

Theorem 3.15. Presume (Q, ϑ) be a neutro hypermetricspace, ϵ ∈ R>0 and δ ∈ R<0.

(i) For each x ∈ Q, Bϵ ̸= ∅ and Bδ ̸= ∅.
(ii) If Inf{ϑ(x, y) | x, y ∈ Q} = δ, then for each δ′, δ′′ < δ,Bδ′(x) = Bδ′′(x).

(iii) If Sup{ϑ(x, y) | x, y ∈ Q} = ϵ, then for each ϵ′, ϵ′′ > ϵ,Bϵ′′(x) = Bϵ′(x).

(iv) There exist ϵ ∈ R>0, δ ∈ R<0 soBϵ(x) ∪Bδ(x) = Q.

Proof. (i) Presume x ∈ Q. Since (Q, ϑ) is a neutro hypermetricspace, for each y ∈ Q, obtain,

r > 0, so [0, r] ⋐ ϑ(x, y) and obtain s ≤ 0, so [s, 0] ⋐ ϑ(x, y) or indeterminate. It follows that

Bϵ(x) = {y ∈ Q | sup(ϑ(x, y)) < ϵ} ̸= ∅ and Bδ(x) = {y ∈ Q | inf(ϑ(x, y)) > δ} ̸= ∅.
(ii) Since Inf{ϑ(x, y) | x, y ∈ Q} = δ, for each x, y ∈ Q, δ ≤ ϑ(x, y). Now for each δ′ < δ,

we get that for each x, y ∈ Q, δ′ < ϑ(x, y) and so Bδ′(x) = {y ∈ Q | inf(ϑ(x, y)) > δ′} = Q.

It follows that for each δ′, δ′′ < δ,Bδ′(x) = Bδ′′(x).

(iii) Presume Sup{ϑ(x, y) | x, y ∈ Q} = ϵ. Then for each x, y ∈ Q, ϑ(x, y) ≤ ϵ. Now for

each ϵ < ϵ′ and for each x, y ∈ Q, ϑ(x, y) < ϵ′. Thus Bϵ′(x) = {y ∈ Q | sup(ϑ) < ϵ′} = Q and

so for each ϵ′, ϵ′′ > ϵ,Bϵ′′(x) = Bϵ′(x).

(iv) It is clear by items (ii), (iii).

Corollary 3.16. Presume (Q, ϑ) be a neutro hypermetricspace, x ∈ Q, ϵ, ϵ′ ∈ R>0 and δ, δ′ ∈
R<0.

(i) If ϵ < ϵ′, then Bϵ(x) ⊆ Bϵ′(x).

(ii) If δ < δ′, then Bδ′(x) ⊆ Bδ(x).

Definition 3.17. Presume (Q, ϑ) be a neutro hypermetricspace and U ⊆ Q. Then U is

called a neutro positive-open set, if obtain x ∈ U and ϵ ∈ R>0 so Bϵ(x) ⊆ U and obtain

y ∈ U, ϵ′ ∈ R>0 such that Bϵ′(x) ̸⊆ U . Moreover, U is called a neutro negative-open set, if

obtain x ∈ U and δ ∈ R<0 so Bδ(x) ⊆ U and obtain y ∈ Y, δ′ ∈ R>0 such that Bδ′(x) ̸⊆ U . We

say that U is a neutro-open set, if it is a neutro positive-open set and a neutro negative-open

set.
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Example 3.18. (i) Presume Q = {a, b, c, d}. Then (Q, ϑ) is a netro hypermetricspace as

Table 3.

ϑ a b c d

a {0} [−1, 1] [−2, 2] [−3, 3]

b [0, 1] {0} [0, 2] [0, 3]

c [0, 2] [0, 2] {0} [0, 3]

d [−3, 3] [0, 3] [0, 3] {5, 6}
Table 3. Neutro hypermetricspace (Q, ϑ).

We see that ϑ(a, a) = {0}, ϑ(d, d) ̸= {0}, ϑ(a, d) = ϑ(d, a), ϑ(a, b) ⋐ ϑ(a, c) + ϑ(c, b) and

ϑ(d, d) ≻ ϑ(d, a) + ϑ(a, d). Hence (Q, ϑ) is a neutro hypermetricspace. Then U = {a, b} is

a neutro-open set, since B 1
2
(a) ⊆ U,B3(a) ̸⊆ U, we get U is a neutro positive-open set. In

addition, B−1
2
(a) ⊆ U,B−3(a) ̸⊆ U, we get U is a neutro negative-open set. Hence, U is a

neutro-open set.

(ii) Consider the neutro hypermetricspace (Q, ϑ) in Example 3.10 and U = {d}. Then U

is not a neutro negative-open set, since for each δ ∈ R<0, Bδ(d) = Q ̸⊆ U . Hence U is not a

neutro-open set.

Theorem 3.19. Presume (Q, ϑ) be a neutro hypermetricspace. Then

(i) ∅ is a neutro-open set.

(ii) Q is not a neutro-open set.

Proof. (i) Immediate by definition.

(ii) Since for each x ∈ Q, ϵ ∈ R>0, and each δ ∈ R<0, have Bϵ(x) ⊆ Q and Bδ(x) ⊆ Q, we

get that Q is not a neutro-open set.

Theorem 3.20. Presume (Q, ϑ) be a neutro hypermetricspace and ∅ ̸= U ⊆ Q. If {Ui}i∈I is

a set of neutro-open sets, then
∩
i∈I

Ui is a neutro-open set.

Proof. Presume {Ui}i∈I be a set of neutro-open sets of Q. If
∩
i∈I

Ui = ∅, then by item (i),∩
i∈I

Ui is a neutro-open set. Suppose that
∩
i∈I

Ui ̸= ∅ and u, u′ ∈
∩
i∈I

Ui. It implies that

for each i ∈ I, u, u′ ∈ Ui. Since for each i ∈ I, Ui is a neutro positive-open set, obtain

ϵi ∈ R>0 so Bϵi(u) ⊆ Ui and obtain u′ ∈ Ui, ϵ
′i ∈ R>0 such that Bϵ′i(u

′) ̸⊆ Ui. Now,

consider ϵ = min{ϵi | i ∈ I}, then based Corollary 3.16, for each i ∈ I,Bϵ(u) ⊆ Bϵi(u). Thus

Bϵ(u) ⊆
∩
i∈I

Bϵi(u) ⊆
∩
i∈I

Ui. In addition, consider ϵ′ = max{ϵi | i ∈ I}, then based Corollary
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3.16, for each i ∈ I,Bϵ′i(u) ⊆ Bϵ′(u). Thus Bϵ′(u) ̸⊆
∩
i∈I

Bϵ′i(u) ̸⊆
∩
i∈I

Ui. It follows that

{Ui}i∈I is a neutro positive-open set. In a similar way, each one can see that {Ui}i∈I is a

neutro negative-open set and so {Ui}i∈I is a neutro-open set in Q.

Example 3.21. Presume Q = {a, b, c, d}. Then (Q, ϑ) is a neutro hypermetricspace as Table

4.

ϑ a b c d

a {0} [−1, 1] [−2, 5] [1, 3]

b [−1, 1] {0} [−3, 2] [−4, 3]

c [−2, 5] [−5,−4] {0} [−5, 3]

d [−3, 3] [−3, 3] [−4, 3] {0,−1,−2}
Table 4. Neutro hypermetricspace (Q, ϑ).

We see that ϑ(a, a) = {0}, ϑ(d, d) ̸= {0}, ϑ(a, d) = ϑ(d, a), ϑ(a, b) ⋐ ϑ(a, c) + ϑ(c, b) and

ϑ(d, b) ≻ ϑ(d, c)+ϑ(c, b). Hence (Q, ϑ) is a neutro hypermetricspace. Then U1 = {a}(B1(a) ⊆
U1 and B2(a) ̸⊆ U1), U2 = {b}(B1(b) ⊆ U2 and B2(b) ̸⊆ U2), U3 = {c}(B1(c) ⊆ U3 and B5(c) ̸⊆
U3) and U4 = {d}(B1(d) ⊆ U4 andB4(d) ̸⊆ U4) are neutro-open sets, whileQ = U1∪U2∪U3∪U4

is not a neutro-open set.

Theorem 3.22. Presume (Q, ϑ) be a neutro hypermetricspace. Then obtain ϵ ∈ R>0 and

δ ∈ R<0 and x ∈ Q, such that

(i) Bϵ(x) is a neutro-open set, provided Bϵ(x) ̸= Q;

(ii) Bδ(x) is a neutro-open set, provided Bδ(x) ̸= Q.

Proof. (i) Since (Q, ϑ) is a neutro hypermetricspace, obtain x, y, z ∈ Q soϑ(x, z) ⋐ ϑ(x, y) +

ϑ(y, z). Presume y ∈ Bϵ(x). Then sup(ϑ(x, y)) < ϵ. Consider ρ = ϵ − sup(ϑ(x, y)) and z ∈
Bρ(y). Thus sup(ϑ(x, z)) < sup(ϑ(x, y)) + sup(ϑ(y, z)) < sup(ϑ(x, y)) + ϵ− sup(ϑ(x, y)) = ϵ.

Hence sup(ϑ(x, z)) < ϵ and so obtain ρ ∈ R>0 soBρ(y) ⊆ Bϵ(x). Also obtain x, y, z ∈ Q so

ϑ(x, z) ≻ ϑ(x, y) + ϑ(y, z). Consider ρ = ϵ+ sup(ϑ(x, y)) and z ∈ Bρ(y), then Bρ(y) ̸⊆ Bϵ(x).

Therefore, Bϵ(x) is a neutro-open set.

(ii) It is similar to the item (i).

4. Conclusions

In the real world there is no exact size and most sizes are approximate. For example, we say

the length of a wall that has a fracture and is somewhat angled is between 100 and 102 meters,

or we say the weight of a package is between 200 and 201 kg. These approximations indicate
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that the sizes are not exact and fall within a range. These real issues motivate us to interpolate

supermeters. In addition, sometimes it is not possible for us to measure some objects and we

say that this size is not known to us. Sometimes we cannot take the distance of an object

from itself to zero, because an object fills a volume in three-dimensional space and we have a

distance on this object itself. These issues make us interpolate the cloud meter to have a more

realistic modeling of the world around us. Hence, we connect the notations of metricspaces

and neutro hypermetricspaces. All the basic impressions such as neutro open balls and neutro

open sets are interpolated and investigated. We intend to amplify these impressions in the

next works in others neutro structures.
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