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Abstract. The safety system of nuclear power plants is very crucial for protecting the environment and the

living world. In this article, we have addressed the nuclear power plant safety system in a neutrosophic envi-

ronment. Here, we have mathematically presented a nuclear power plant safety system in terms of neutrosophic

differential equations. We have thoroughly examined and discussed both analytically and numerically the so-

lution of the nuclear power plant safety model considering the underlying model parameter as single-valued

triangular neutrosophic number. We have focused to find out probability of the nuclear power plant’s safety

system working normally and shutdown in safe mode when the model parameters are imprecise in nature. It

has been observed that the normal operation and shutdown probability of nuclear power plant safety systems

under uncertain conditions are predicted with robust accuracy.
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—————————————————————————————————————————-

1. Introduction

Safety measures in Nuclear Power Plants (NPP) have become essential for reducing risks to hu-

man health and the critical environmental hazards. Good precautionary safety strategies can

help safeguard all the workers involved in NPPs from the incidence of catastrophic accidents

and significantly protect the environment from the risks of unintentional radiation exposure.

Recently, several research studies have been carried out on the safety issues of NPPs. Jyotish

et. al. [1] used reachability graphs to analyse the failure mode of different components of the

safety system involved in the NPPs and evaluated the system through mathematical mod-

elling. Hyvärinen et. al. [2] argued that comprehensive understanding of the safety of nuclear

reactors is very much essential and incorporated defense-in-depth knowledge to improve the
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NPP safety systems. Bao et. al. [3] has suggested an improved framework to assess the risk of

digital control systems of a nuclear power plant by integrating three typical risk stages, namely

‘qualitative hazard analysis’, ‘quantitative reliability’ and ‘consequence analyses’. Zhang et.

al. [4] recommended multi-criterion and multi-context evaluations to enhance the safety of

nuclear power plants. So and Kim [5] shows that the ‘Chernoff-bound’ can be used to estimate

the higher level of the failure probability in a NPP safety system incorporating the concept

of passive safety system. Wu et. al. [6] developed safety archetype identification and used be-

haviour modelling to get ride off human dependability in NPP operations. Marton et. al. [7]

pointed out that the ageing impact on the reliability of system equipment has to be appraised

to guarantee the safety standards of an NPP. They presented a risk impact evaluation model

incorporating several operation safety factors like ageing & obsolescence of system equipment,

self-assessment of maintenance plans, surveillance requirements, wear-out phase of the equip-

ment lifetime, etc., where the model parameters are estimated through long-term historical

data. Ahn et. al. [8] have designed and improved operator support system used in NPPs

through artificial intelligence algorithm that validates operational system activity and alert

human errors to ward off the adverse effect of the integrity of power plant. Ayodeji et. al. [9]

proposed deep learning for assessing the dependability, explainability, and research potential of

nuclear power reactors. Singh and Singh [10] addressed on the dependability measurement of

NPP control and instrumentation systems. Abdel-Basset et. al. [11] described an effective risk

assessment and mitigation strategy for solar power plants based on real data. Abdel-Basset et.

al. [12] investigated the assessment of sustainable flue gas treatment systems for the iron and

steel industry using a novel multi-stage technique based on spherical fuzzy MCDM. Abdel-

Basset et. al. [13] presented a conceptual framework for assessing the optimal sustainability

of electric car charging stations for green energy in smart cities. Mondal et. al. [14] examined

the design and assessment of a picture fuzzy mining safety system using picture fuzzy differ-

ential equations. Although a substantial number of research works have been carried out on

the various aspects of safety issues of nuclear power plats, but the majority these studies was

performed in the crisp environment.

The safety system of an NPP is a complex phenomenon [15] and many factors like human

operations error, human-machine interaction, assessment of prospective risk, and evaluation

of reliability & engineering-resilience are involved, which are inherently imprecise in nature.

Thus, it is very much realistic to analyze the NPP model system in an imprecise environ-

ment. To handle various types of uncertainty and indistinctness, the theories of impreciseness

have been geared up in which the structure of neutrosophic numbers is the latest addition.

In the year 1998 Smarandache [16] first demonstrate the impression of the neutrosophic set
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as a compatible mixture of three independent membership functions: truthness, falsity and

doubtfulness. Indeed, neutrosophic set was a genuine and sensible extension of intuitionistic

set introduced by Atanassov [17]. Purba et. al. [18] discussed about the fuzzy probability-

based event tree analysis, which is used in the NPP probabilistic safety assessment. Moreover,

Purba [19] incorporated fuzzy based probability to assess reliability of NPP safety model sys-

tem. Sleem and Elhenawy [20] investigated the energy efficiency and material cost reductions

realised by the evolution of solar panels used in photovoltaic systems using the neutrosophic

model. Sallam and Mohamed [21] highlighted the neutrosophic MCDM approach for analysing

onshore wind for power generation and ecological sustainability. Mondal et. al. [22] addressed

safety measures of oil and gas sector by using an FDE system. On the other hand, Melliani and

Chadli [23] introduced intuitionistic fuzzy differential equations (IFDE) by use of the deriva-

tives of degrees of membership and non-membership functions. Amma et. al. [24] developed

diagonally implicit block backward differential formulae to provide a numerical solution to the

IFDE problem. Man et. al. [25] provided a clear procedure for resolving a fuzzy heat equation

that is based on IFDE. Melliani et. al. [26] utilized the homotrophy analysis approach to

provide an approximate solution to the IFDE using the linear differential operator. But all

these work did not consider refusal terms which is common in real life problems. Smaran-

dache use the word “indeterminacy” to capture the refusal terms in the concept neutrosophic

numbers and subsequently, in order to simulate indeterminacy, NDE was created. Sumathi

and Priya [27] presented a novel viewpoint on the NDE. Sumathi and Sweety [28] discussed

a novel method for solving differential equations using the trapezoidal neutrosophic number.

Son et. al. [29] discussed an equation with a linear quadratic regulator that is controlled by

granular neutrosophic fractional differential equations. Alamin et. al. [30] discussed solution

and interpretation of neutrosophic homogeneous difference equations. Parikh and Shani [31]

researched on the Sumudu Transform in order to solve the NS initial conditions of the second

ODE. Mondal et. al. [32] developed a model outlining the use of the NDE in mining safety.

Parikh et. al. [33] investigated using an analytical and numerical approach in an NS context to

solve a first-order initial value issue. Acharya et. al. [34] investigated an NDE method for sim-

ulating glucose transport in the circulation using neutrosophic sets. Garai et. al. [35] discussed

softmax function based neutrosophic aggregation operators and application in multi-attribute

decision making problem.

In reality, in many situations, it was observed that the collected data are insufficient and

transmit some misinformation. In such situations, incorporating neutrosophic numbers of-

fers better results. Although some studies have been done on NPP safety model system in

fuzzy environments, but have not noticed any work in this regard in the neutrosophic environ-

ments. In this article, we have mathematically described the nuclear power plant safety model
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system(NPPSMS) [36], in terms of neutrosophic differential equations (NDE). We have thor-

oughly examined and discussed both analytically and numerically the solution of the model

system considering the underlying model parameter as single-valued triangular neutrosophic

number and focused to find out probability shutting down the NPP in safe mode.

1.1. Motivation

The safety system of NPP is very much essential and crucial as it has a high risk impact both

on the biotic and abiotic elements of environment. Many uncertain information & factors are

involved in the NPP system. Naturally, several ambiguities and uncertainties are associated

with the underlying parameters involved in the mathematical model of NPP safety system.

Now with the introduction of the neutrosophic set by Smarandache [16], we have noticed

that a neutrosophic data set can handle imprecise data more efficiently where doubtfulness is

inherently and independently embedded into the data set. Moreover, as per our knowledge,

no study of the NPP model system has been carried out in the NS environment. Thus, we

mathematically formulate the NPP system in terms of neutrosophic differential equations and

analyze it both analytically and numerically.

1.2. Novelty

Despite the fact that some patterns are followed, fresh attention and new efforts have been

made by way of ourselves, which is stated as below:

• NPP safety issues has been first time addressed in the neutrosophic set environment. Here,

we have mathematically presented NPP safety system in terms of neutrosophic differential

equations.

• Both analytical and numerical solutions of the NPP safety model system have been obtained

in crisp as well as neutrosophic environment using classical method, zadeh’s extension principle,

and generalised hukuhara differentiability(GHii) and results are compared.

1.3. Structure of this paper

The remaining portions of this article are ornamented as follows: Section-2 gives some prelim-

inaries concept and definition. Section-3 contains first order linear homogeneous neutrosophic

differential equation. Section-4 contains description of NPPSMS. Section-5 contains analytical

solution of the NPPSMS model system. Section-6 contains numerical solution of the NPPSMS

and consequently, conclusions are discussed in Section-7.
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Table 1. List of abbreviation with description

Abbreviation Description

CS crisp set

FS fuzzy set

IFS intuitonistic fuzzy set

CSNs crisp number

NS neutrosophic set

SVNS single valued neutrosophic set

TSVNNs triangular single valued neutrosophic number

ODE Ordinary differential equation

FDE fuzzy differential equation

IFDE intutionistic fuzzy differential equation

NDE neutrosophic differential equation

IC initial condition

NPPSMS nuclear power plant safety model system

ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂

ˆ̂̂

ˆ̂̂

1.4. List of abbreviation

2. Preliminaries

2.1. Definition of NS [32]

Let V represent an universal set. A NS ÃNS of V be defined by ÃNS=⟨(u; µT (u), νI(u),

σF (u)) : ˆ̂̂u ∈ V⟩ where µT (u), νI(u), σF (u) be outlined as the truth membership, inde-

terminacy membership, falsity membership grade of ˆ̂̂u in ÃNS which are real standard or

non-standard subsets of −]0, 1[+ & µT (u) + νI(u) + σF (u) ⩽ 3+.

2.2. Definition of SVNS [32]

Let V be a Universal set. A SVNS ÃNS of V be defined by ÃNS=⟨(u; µT (u), νI(u), σF (u)) :

u ∈ V⟩ where µT (u), νI(u), σF (u) be outlined as the truth membership, indeterminacy mem-

bership, falsity membership grade of ˆ̂̂u in ÃNS which are subset of [0, 1] & µT (u) + νI(u) +

σF (u) ⩽ 3.

2.3. Definition of TSVNNs [32]

A TSVNNs is denoted by ÃNS=⟨a1, ˆ̂̂a2, ˆ̂̂a3; fµ, fν , fσ⟩ whose truth, indeterminacy and falsity

membership functions are defined by
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ˆ̂̂µT (u)=



ˆ̂̂

ˆ̂̂(
ˆ̂̂u−a1
a2− ˆ̂̂a1

)fµ when ˆ̂̂a1 ⩽ ˆ̂̂u ⩽ ˆ̂̂a2

fµ when ˆ̂̂u = ˆ̂̂a2

(
ˆ̂̂ ˆ̂̂

ˆ̂̂
ua3−

a3− ˆ̂̂a2
)fµ when ˆ̂̂a2 ⩽ ˆ̂̂u ⩽ ˆ̂̂a3

0 when ˆ̂̂u ⩽ ˆ̂̂a1 or ˆ̂̂u ⩾ ˆ̂̂a3

ˆ̂̂νI(u) =



ˆ̂̂ ˆ̂̂ ˆ̂̂a2−u)+(u− ˆ̂̂

ˆ̂̂
a1)fν

a2− ˆ̂̂a1
when ˆ̂̂a1 ⩽ ˆ̂̂u ⩽ ˆ̂̂a2

fν when ˆ̂̂u = ˆ̂̂a2
ˆ̂̂(u− ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂
u)fνa2)+(a3−

a3− ˆ̂̂a2
when ˆ̂̂a2 ⩽ ˆ̂̂u ⩽ ˆ̂̂a3

1 when ˆ̂̂u ⩽ ˆ̂̂a1 or ˆ̂̂u ⩾ ˆ̂̂a3

ˆ̂̂σF (u) =



ˆ̂̂ ˆ̂̂ ˆ̂̂(a2−u)+(u− ˆ̂̂

ˆ̂̂
a1)fσ

a2− ˆ̂̂a1
when ˆ̂̂a1 ⩽ ˆ̂̂u ⩽ ˆ̂̂a2

fσ when ˆ̂̂u = ˆ̂̂a2
ˆ̂̂(u− ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂
u)fσa2)+(a3−

a3− ˆ̂̂a2
when ˆ̂̂a2 ⩽ ˆ̂̂u ⩽ ˆ̂̂a3

1

ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂

ˆ̂̂

when ˆ̂̂u ⩽ ˆ̂̂a1 or ˆ̂̂u ⩾ ˆ̂̂a3

where µT (u) + νI(u) + σF (u) ⩽ 3 & wµ ∈ (0, 1], wν , wσ ∈ [0, 1).

2.4. Cut Set [32]

Let, ÃNS be any SVNS, then (r, β, γ)-cut of SVNS is denoted by A(r, β, γ) and it is defined

by A(r, β, γ)=⟨u ∈ V : µT (u) ⩾ r, νI(u) ⩽ β, σF (u) ⩽ γ; 0 < r ⩽ 1, 0 ⩽ β < 1, 0 ⩽ γ < 1⟩.
Now the basic arithmetic operation on TSVNNs can be written as:

Consider two TSVNNs, ÃNS=⟨a1, ˆ̂̂a2, ˆ̂̂a3; fµ, fν , fσ⟩; B̃NS=⟨ ˆ̂̂b1, ˆ̂̂
b2,

ˆ̂̂
b3; gµ, gν , gσ⟩, the

following operation are:

ˆ̂̂

ˆ̂̂

ˆ̂̂

• Addition:

ÃNS+B̃NS = ⟨[(a1 + ˆ̂̂
b1, ˆ̂̂a2 +

ˆ̂̂
b2, ˆ̂̂a3 +

ˆ̂̂
b3); fµ ∧ gµ, fν ∨ gν , fσ ∨ gσ]⟩

• Substraction:

ÃNS-B̃NS = ⟨[(a1 − ˆ̂̂
b3, ˆ̂̂a2 − ˆ̂̂

b2, ˆ̂̂a3 − ˆ̂̂
b1); fµ ∧ gµ, fν ∨ gν , fσ ∨ gσ]⟩

• Multiplication:

ÃNS .B̃NS = ⟨[(a1 ˆ̂̂b1, ˆ̂̂a2
ˆ̂̂
b2, ˆ̂̂a3

ˆ̂̂
b3); fµ ∧ gµ, fν ∨ gν , fσ ∨ gσ]⟩

• Division:
ÃNS

B̃NS
=
〈[( ˆ̂̂a1

ˆ̂̂
b3

,
ˆ̂̂a2
ˆ̂̂
b2

,
ˆ̂̂a3
ˆ̂̂
b1

)
; fµ ∧ gµ, fν ∨ gν , fσ ∨ gσ

]〉
Where ∧ = Min,∨ = Max

3. First Order linear homogeneous neutrosophic differential equation: [32]

Let us consider an ODE
dY
dt

= LY, t ∈ [0,∞) (1)
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with IC Y(t0)=Y0. Now the above ODE will be treated as NDE when at-least one of the

parameter L or initial condition Y0 are considered as SVNNs.

Now, the classical technique [37], Zadeh’s extension principle [38], generalised Hukuhara

differentiability(GHii) [39], and other approaches can each be used to solve the NDE men-

tioned above.

3.1. Definition of strong solution

Let ỸNS(t) be the classical solution (as described in [37]) and its cut be Y(t, r, β, γ)=

⟨[Y1(t, r),Y2(t, r)], [Y ′
1(t, β),Y ′

2(t, β)], [Y ′′
1 (t, γ), Y ′′

2 (t, γ)]⟩.
The solution is strong if

(i)
dY1(t, r)

dr
> 0,

dY2(t, r)

dr
< 0 ∀ r ∈ (0, 1], Y1(t, 1) ⩽ Y2(t, 1)

(ii)
dY ′

1(t, β)

dβ
< 0,

dY ′
2(t, β)

dβ
> 0 ∀ β ∈ [0, 1), Y ′

1(t, 0) ⩽ Y ′
2(t, 0)

(iii)
dY ′′

1 (t, γ)

dγ
< 0,

dY ′′
2 (t, γ)

dγ
> 0 ∀ γ ∈ [0, 1), Y ′′

1 (t, 0) ⩽ Y ′′
2 (t, 0)

A weak solution would result from anything less.

4. Description of NPPSMS

The design, production, operation, and maintenance of several types of nuclear power power-

producing cost billions of dollars per year. Around 436 commercial nuclear reactors were

operational in 2011 and produced 16% of the world’s electricity. NPPSMS frequently have

issues with dependability, safety, human factors, and human error. For instance, human error

was responsible for almost 27% of commercial NPPSMS breakdowns in the US between 1990

and 1994.

Here, we proposed to study on NPPSMS. [36] in terms of a NDE. Following are our key areas

of focus in this paper:

• Establish a model for NPPSMS.

• Determine the model’s solution in a CS environment.

• Determine the model’s solution in the NS environment.

4.1. Mathematical formulation of NPPSMS

4.2. Acceptation

(I) Every event exists independently of the others.
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(II) In the finite time period δt, the probability of changing from one system state to

another is given by the expression Ψδt, where Ψ is the rate of change between system

states.

(III) A single transition from one system state to another taking place more than once in

the finite time interval δt is extremely unlikely, that is (Ψδt)(Ψδt) → 0.

4.3. Notation

t time interval.

δt finite time interval.

λs is the continuous failure rate of the NPPSMS.

P0(t) is the probability that the NPPSMS is working normally.

P1(t) is the probability that the NPPSMS will collapse.

P0(t+ δt) is the probability that the NPPSMS will be in the off-state at time t+ δt.

P1(t+ δt) is the probability that the NPPSMS will collapse at any given time t+ δt.

j = 0 represents the normal position.

j = 1 is the collapse state.

Pj(t) denotes the probability of being in position j at time interval t.

λsδt is the probability that NPPSMS will collapse within the time period δt.

(1 - λsδt) is the probability that there won’t be a collapse in the time frame δt.

Assume that a system utilised by the NPPSMS may either be in a functioning condition or

a collapsing state. The system’s constant failure rate is λs. The diagram of the system state

space is shown in Fig-1. The statuses of the NPPSMS are indicated by the numbers 0 and

1 in the boxes. State 0 denotes the NPPSMS in normal operation, whereas State 1 denotes

NPPSMS shutdown. Let λs indicate the constant failure rate from state 0 to state 1. The

meaning of t, δt, P0(t + δt), P1(t + δt), P0(t), P1(t), λsδt and (1 - λsδt) already discussed in

section-4.3. Suppose that the NPPSMS is operated under the conditions of normal operation,

independent occurrence of system failure, and constant rate of system failure.
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Figure 1. Nuclear power plant system state space diagram

Now using the notation of section-4.2, it is clear that at the initial time, P0(0)=1 and P1(0)=0.

Now, the first two equations may be constructed using the fundamentals of probability theory:

P0(t+ δt) = P0(t)(1− λsδt) (2)

P1(t+ δt) = P0(t)(λsδt) + P1(t)(1− oδt) (3)

Now, from equation (2) we get

P0(t+ δt)− P0(t) = −λsP0(t)δt (4)

Now using definition of differentiability from equation (4), we get

lim
δt→0

P0(t+ δt)− P0(t)

δt
= −λsP0(t)

∴
dP0(t)

dt
= −λsP0(t) (5)

Similarly from equation (3), we get

dP1(t)

dt
= λsP0(t) (6)

So, the required NPPSMS model system as follows

∴
dP0(t)

dt
= −λsP0(t) (7)

dP1(t)

dt
= λsP0(t) (8)

with IC: P0(0) = 1 & P1(0) = 0.
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5. Analytical solution of the NPPSMS model system

There are two approaches to solving equations (7) and (8): in a CS environment and in an

imprecise one. To solve imprecise environments, NS environments are employed. The details

of everything are provided below.

Crisp Solution of the NPPSMS model system: Taking the input value λs as crisp

number, we get following solutions:

P0(t) = e−λst (9)

P1(t) = 1− e−λst (10)

NS Solution of the NPPSMS model system:

Taking the input value λ̃s
NS

as triangular neutrosophic number, let, ˜P0(t)
NS

, ˜P1(t)
NS

be the

NS solution of the model system whose r, β, γ-cut values are as follows:

P0(t, r, β, γ)=⟨[P01(t, r),P02(t, r)], [P ′
01(t, β), P ′

02(t, β)], [P ′′
01(t, γ), P ′′

02(t, γ)]⟩
P1(t, r, β, γ)=⟨[P11(t, r), P12(t, r)], [P ′

11(t, β), P ′
12(t, β)], [P ′′

11(t, γ), P ′′
12(t, γ)]⟩

Consequently, following significant computation, we may write,

P01(t, r) =
et
√

A1(r)A2(r)

2
1−

√
A2(r)

A1(r)

)
+

e−t
√

A1(r)A2(r)

2
1 +

√
A2(r)

A1(r)

)
(11)

P02(t, r) =
e−t

√
A1(r)A2(r)

2

√
A1(r)

A2(r)
+ 1

)
+

et
√

A1(r)A2(r)

2
1−

√
A1(r)

A2(r)

)
(12)

P ′
01(t, β) =

e−t
√

A′
1(β)A′

2(β)

2

√
A′
2(β)

A′
1(β)

+ 1

)
− et

√
A′
1(β)A′

2(β)

2

√
A′
2(β)

A′
1(β)

− 1

)
(13)

P ′
02(t, β) =

e−t
√

A′
1(β)A′

2(β)

2

√
A′
1(β)

A′
2(β)

+ 1

)
+

et
√

A′
1(β)A′

2(β)

2
1−

√
A′
1(β)

A′
2(β)

)
(14)

P ′′
01(t, γ) =

e−t
√

A′′
1 (γ)A′′

2 (γ)

2

√
A′′
2(γ)

A′′
1(γ)

+ 1

)
− et

√
A′′
1 (γ)A′′

2 (γ)

2

√
A′′
2(γ)

A′′
1(γ)

− 1

)
(15)

P ′′
02(t, γ) =

e−t
√

A′′
1 (γ)A′′

2 (γ)

2

√
A′′
1(γ)

A′′
2(γ)

+ 1

)
+

et
√

A′′
1 (γ)A′′

2 (γ)

2
1−

√
A′′
1(γ)

A′′
2(γ)

)
(16)

P11(t, r) = 1− e−t
√

A1(r)A2(r)

2

√
A1(r)

A2(r)
+ 1

)
− et

√
A1(r)A2(r)

2
1−

√
A1(r)

A2(r)

)
(17)

P12(t, r) = 1− e−t
√

A1(r)A2(r)

2

√
A2(r)

A1(r)
+ 1

)
+

et
√

A1(r)A2(r)

2

√
A2(r)

A1(r)
− 1

)
(18)

P ′
11(t, β) = 1− e−t

√
A′
1(β)A′

2(β)

2

√
A′
1(β)

A′
2(β)

+ 1

)
− et

√
A′
1(β)A′

2(β)

2
1−

√
A′
1(β)

A′
2(β)

)
(19)
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P ′
12(t, β) = 1− e−t

√
A′
1(β)A′

2(β)

2

√
A′
2(β)

A′
1(β)

+ 1

)
+

et
√

A′
1(β)A′

2(β)

2
(

√
A′
2(β)

A′
1(β)

− 1

)
(20)

P ′′
11(t, γ) = 1− e−t

√
A′′
1 (γ)A′′

2 (γ)

2

√
A′′
1(γ)

A′′
2(γ)

+ 1

)
− et

√
A′′
1 (γ)A′′

2 (γ)

2
1−

√
A′′
1(γ)

A′′
2(γ)

)
(21)

P ′′
12(t, γ) = 1− e−t

√
A′′
1 (γ)A′′

2 (γ)

2

√
A′′
2(γ)

A′′
1(γ)

+ 1

)
+

et
√

A′′
1 (γ)A′′

2 (γ)

2

√
A′′
2(γ)

A′′
1(γ)

− 1

)
(22)

Where ⟨[A1(r), A2(r)], [A′
1(β), A′

2(β)], [A′′
1(γ), A′′

2(γ)]⟩ is the cut set of λ̃S
NS

. Solution is

strong or weak if it satisfies the condition of NDE.

6. Numerical solution of the NPPSMS

Assume that 0.0002 failures occur per hour on a system that is utilised in an NPPSMS.

Determine how likely it is that the NPPSMS will function correctly and fail throughout an

800-hour mission in (i) the CS environment and (ii) the NS environment.

6.1. Crisp Solution

When we take respective input values λs=0.0002; t=800-h, we get the following output results

P0(800)=0.852144 and P1(800)=0.147856.

6.2. NS Solution

We numerically solve the model system in the NS environment. Here, we take, λ̃s
NS

=

⟨0.0001, 0.0002, 0.0003; 0.9, 0.6, 0.5⟩, and t=800-h. We get the numerical values of ⟨r, β, γ⟩-
cut of probability of NPPSMS working normally [ P0(t, r, β, γ)] and probability of NPPSMS

failed [P1(t, r, β, γ)] for r ∈ (0, 1] and β, γ ∈ [0, 1) that are shown in Table-2. From Table-2

it is observed that when r increases, the values of P01(t, r) and P11(t, r) are increasing but

the values of P02(t, r) and P12(t, r) are decreasing. If both the values of β and γ increase then

the values of P ′
02(t, β), P ′

12(t, β), P ′′
02(t, γ), P ′′

12(t, γ) increase whereas values of P ′
01(t, β)

and P ′
11(t, β); P ′′

01(t, γ) and P ′′
11(t, γ) decrease. We developed the solution’s graph, which

is depicted in Figure-2. Figure-2(a) present the graph of truth, indeterminacy and falsity

membership function of the nuclear power plant system when it is working normally mode

and Figure-2(b) present the graph of truth, indeterminacy and falsity membership function

of the nuclear power plant system when it is failed mode. So the triangular single valued

neutrosophic value of the probability of NPPSMS working normally in 800 hours time interval

is ˜P0(800)
NS

=⟨0.768847, 0.852144, 0.929359; 0.9, 0.6, 0.5⟩, where truth (µP0(u)), indetermi-

nacy (ηP0(u)) and falsity (νP0(u)) membership functions are respectively as follows:
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µP0(u) =



(u−0.768847
0.083297 ).0.9 when 0.768847 ⩽ u ⩽ 0.852144

0.9 when u = 0.852144

(0.929359−u
0.077215 ).0.9 when 0.852144 ⩽ u ⩽ 0.929359

0 when u ⩽ 0.768847 or u ⩾ 0.929359

ηP0(u) =



0.390836−0.4.u
0.083297 when 0.768847 ⩽ u ⩽ 0.852144

0.6 when u = 0.852144

0.4u−0.294529
0.077215 when 0.852144 ⩽ u ⩽ 0.929359

1 when u ⩽ 0.768847 or u ⩾ 0.929359

νP0(u) =



0.467721−0.5.u
0.083297 when 0.768847 ⩽ u ⩽ 0.852144

0.5 when u = 0.852144

0.5u−0.387465
0.077215 when 0.852144 ⩽ u ⩽ 0.929359

1 when u ⩽ 0.768847 or u ⩾ 0.929359

where µP0(u) + ηP0(u) + νP0(u) ⩽ 3

Also the triangular single valued neutrosophic value of the probability of nuclear power plant

system failed in 800 hours time interval is ˜P1(800)
NS

=⟨0.070641, 0.147856, 0.231153; 0.9, 0.6,
0.5⟩, where truth(µP1(u)), indeterminacy(ηP1(u)) and falsity(νP1(u)) membership functions are

respectively as follows:

µP1(u) =



(u−0.070641
0.077215 ).0.9 when 0.070641 ⩽ u ⩽ 0.147856

0.9 when u = 0.147856

(0.231153−u
0.083297 ).0.9 when 0.147856 ⩽ u ⩽ 0.231153

0 when u ⩽ 0.070641 or u ⩾ 0.231153

ηP1(u) =



0.105471−0.4.u
0.077215 when 0.070641 ⩽ u ⩽ 0.147856

0.6 when u = 0.147856

0.4u−0.009164
0.083297 when 0.147856 ⩽ u ⩽ 0.231152

1 when u ⩽ 0.0.070641 or u ⩾ 0.231153

νP1(u) =



0.112536−0.5.u
0.077215 when 0.070641 ⩽ u ⩽ 0.147856

0.5 when u = 0.147856

0.5u−0.032280
0.083297 when 0.147856 ⩽ u ⩽ 0.231152

1 when u ⩽ 0.0.070641 or u ⩾ 0.231153
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where µP1(u) + ηP1(u) + νP1(u) ⩽ 3.

From the table values and graph, we see that P01(t, r), P11(t, r) are increasing function and

(a) Depicts the truth, indeterminacy and falsity

membership function graph of the probability of nu-

clear power plant system working normally at time

(t=800).

(b) Depicts the truth, indeterminacy and falsity

membership function graph of the probability of nu-

clear power plant system failed at time (t=800).

Figure 2. Depicts the truth, indeterminacy and falsity membership function

graph of the probability of nuclear power plant system at time t=800 when

parameter λs is TSVNNs.

(a) Depicts the 3D plot of the the truth, indetermi-

nacy and falsity membership function graph of the

probability of nuclear power plant system working

normally at time interval between 795 hrs to 805 hrs.

(b) Depicts 3D plot of the truth, indeterminacy and

falsity membership function graph of the probabil-

ity of nuclear power plant system failed at time in-

terval between 795 hrs to 805 hrs.

Figure 3. Depicts the 3D plot of the truth, indeterminacy and falsity mem-

bership function graph of the probability of nuclear power plant system at time

interval between 795 hrs to 805 hrs when parameter λs is TSVNNs.

P02(t, r), P12(t, r) are decreasing function, whereas P ′
01(t, β), P ′′

01(t, γ), P ′
11(t, β), P ′′

11(t, γ)
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Table 2. Values of P0(t, r, β, γ) and P1(t, r, β, γ)

when λ̃s
NS

is a TSVNNs.
r, β, γ P01(t, r) P02(t, r) P ′

01(t, β) P ′
02(t, β) P ′′

01(t, γ) P ′′
02(t, γ) P11(t, r) P12(t, r) P ′

11(t, β) P ′
12(t, β) P ′′

11(t, γ) P ′′
12(t, γ)

0 0.768847 0.929359 0.965531 0.725082 0.929359 0.768847 0.070641 0.231153 0.274918 0.034470 0.231153 0.070641

0.1 0.778386 0.921096 0.947654 0.747134 0.914427 0.785968 0.078904 0.221614 0.252866 0.052346 0.210432 0.085573

0.2 0.787856 0.912752 0.929359 0.768847 0.899235 0.802862 0.087248 0.212144 0.231153 0.070641 0.197138 0.100765

0.3 0.797256 0.904328 0.910653 0.790213 0.883788 0.819526 0.095672 0.202744 0.209787 0.089347 0.180474 0.116212

0.4 0.806585 0.895825 0.891543 0.811223 0.868090 0.835954 0.104175 0.193415 0.188777 0.018260 0.164046 0.131910

0.5 0.815843 0.887243 0.872038 0.831870 0.852144 0.852144 0.112757 0.184157 0.168130 0.108457 0.147856 0.147856

0.6 0.825028 0.878583 0.852144 0.852144 0.835954 0.868090 0.121417 0.174972 0.147856 0.147856 0.131910 0.164046

0.7 0.834141 0.869846 0.831870 0.872038 0.819526 0.883788 0.130154 0.165859 0.127962 0.168130 0.116212 0.180474

0.8 0.843179 0.861033 0.811223 0.891543 0.802862 0.899235 0.138967 0.156821 0.108457 0.188777 0.100765 0.197138

0.9 0.852144 0.852144 0.790213 0.910653 0.785968 0.914427 0.147856 0.147856 0.089347 0.209787 0.08573 0.214032

1.0 0.861033 0.843179 0.768847 0.929359 0.768847 0.929359 0.156821 0.138967 0.070641 0.231153 0.070641 0.231153

are decreasing functions and P ′
02(t, β), P ′′

02(t, γ), P ′
12(t, β), P ′′

12(t, γ) are increasing functions.

Hence, the solutions are strong solution.

6.3. Comparison study

Table 3. Comparison analysis

Method P0(t) P1(t)

Zadeh’s extension principle Strong solution Strong solution

Generalized Hukuhara differentiability(GHii) Weak solution Weak solution

Classical method Strong solution Strong solution

After completing the lengthy calculation task and consulting Table-3, We found that the so-

lutions will be of a strong variety of our NPPSMS is solved by employing Zadeh’s extension

principle approach. Once again, the result will be weak if the model is solved using the Gen-

eralized Hukuhara Differentiability(GHii) method. We used the classical technique to solve

our problem, resulting in a strong solution. Now it turns out that we are getting robust solu-

tions with both Zadeh’s extension principle and classical methods. But, ⟨r, β, γ⟩-cut solution
cannot be obtained directly while we are using Zadeh’s extension principle; instead, we must

depend on crisp solution. On the other hand, we may obtain the ⟨r, β, γ⟩-cut solution without

depending on the crisp solution when we use the classical method. Thus, the solution pro-

duced using the classical approach appears to be quite good. Comparing the numerical results

from these two procedures reveals that the classical method’s approach is the most acceptable.

Based on all these findings, the classical technique is the most acceptable and error-free.

We will now perform a comparative analysis between the results obtained in crisp and neutro-

sophic environments. In a crisp environment, for λs=0.0002; t=800-h, the probability value of

Debapriya Mondal1, Totan Garai2, Gopal Chandra Roy 3 and Shariful Alam4, Evaluating
the nuclear power plant safety system under neutrosophic environment



Neutrosophic Sets and Systems, Vol. 72, 2024 300

normal operation of a NPPSMS is 0.852144, and the probability value of failure is 0.147856.

We take the value of parameter λs as a single-valued triangular neutrosophic number in-

stead of a crisp number. So the maximum tolerance is assumed to be 50% on both sides

while shifting the value of the parameter from a crisp environment to a neutrosophic environ-

ment. Here, the maximum truth membership value is assumed to be 0.9, with the minimum

indeterminacy and falsity membership values being 0.6 and 0.5, respectively. Now in the

neutrosophic environment, for the values of λ̃s
NS

=⟨0.0001, 0.0002, 0.0003; 0.9, 0.6, 0.5⟩,
and t=800-h., the single valued triangular neutrosophic value of the probability of nor-

mal operation of the NPPSMS is ˜P0(800)
NS

=⟨0.768847, 0.852144, 0.929359; 0.9, 0.6, 0.5⟩,
and the single valued triangular neutrospheric value of the probability of failure is

˜P1(800)
NS

=⟨0.070641, 0.147856, 0.231153; 0.9, 0.6, 0.5⟩. Here, the values in the neutro-

sophic environment are much more flexible compared to the crisp environment. Also, the

value of the probability of normal operation of a NPPSMS in a neutrosophic environment

indicates that the maximum permissible tolerances on its left and right sides are 9.77% and

9.06%, respectively; the maximum truth membership value is 0.9; and the minimum indetermi-

nacy and falsity membership values are 0.6 and 0.5, respectively. Again, the failure probability

value of the NPPSMS indicates that the maximum allowable tolerances on its left and right

sides are 52.22% and 56.34%, the maximum truth membership value is 0.9, and the minimum

indeterminacy and falsity membership values are 0.6 and 0.5, respectively. These conclusive

findings show that the neutrosophic environment is more flexible, realistic, and acceptable

than the crisp environment.

7. Conclusion

In this article we have discussed the definition of NS, SVNS, TSVNNs, and ⟨r, β, γ⟩-cut set

of SVNS. We have also explored the idea of a first-order linear homogeneous neutrosophic

differential equation and discussed its robustness in view of strong and weak nature of it’s

solutions. Then, we argued and pointed out the need of analyzing NPP safety system in NS-

environment and mathematically formulate an NPPSMS model system in terms of a single-

valued triangular neutrosophic differential equation. We have used TSVNNs to analyse and

quantitatively discuss the solutions of the NPPSMS above model system with appropriate

emphasis on the model parameter rates of failure λs. We have obtained the solutions of

the model system both in crisp and NS environment. Robust solutions of the NPPSMS

model system have been found in both crisp and NS environments. Moreover, solutions are

compared by applying there distinct methods namely Zadeh’s extension principle, Generalized

Hukuhara differentiability (GHii) and Classical method. It is observed that solutions obtained

by Classical method are reliable with less error. However, we have noticed one limitation in
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our model system. The initial conditions of the model cannot be treated as single-valued

triangular neutrosophic numbers. If the initial conditions are assumed to be single-valued

triangular neutrosophic numbers, then it contradicts the theory of basic probability. A special

advantage of our nuclear power plant safety model is that it can provide robust solutions in

any imprecise environment as it is composed of only one parameter.

As an future extension of this work, neutrosophic differential equation can be utilized incorpo-

rating other powerful fuzzy environments like trapezoidal neutrosophic numbers or trapezoidal

single-valued neutrosophic numbers to capture and handle many real-world problems where

impreciseness are inherently involved. In the future, the outcomes of our research may be used

to patient safety systems, medical safety systems, human error safety systems, power genera-

tion safety systems, compressor safety systems, engineering maintenance safety systems, and

so on.
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