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—————————————————————————————————————————-

1. Introduction

In 1934, Marty [15] introduced the concept of hypergroups by generalizing the notion of

a group. In a hypergroup, the binary operation is defined on a non-empty set and satisfies

properties such as associativity, the existence of an identity element, and the presence of

invertible elements. Hypergroups can be seen as a natural extension of groups and have

applications in various fields, including physics, computer science, and combinatorics. Beyond

hypergroups, other algebraic hyperstructures such as hyperrings and hyperfields also exist.

These structures are utilized in algebraic geometry, number theory, and many areas of pure

and applied mathematics (see [3–5,9–12,25]).

Vougiouklis introduced the notion of weak hyperstructures, also known as Hv-structures,

at the Fourth Congress of the Algebraic Hyperstructures and its Applications (AHA) in 1990

[23, 24]. A weak hyperstructure is a generalization of a hyperstructure where the binary
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operation is not necessarily defined for all pairs of elements in the set, but only for certain

subsets of pairs. This weakening of the definition of a hyperstructure allows for a wider range

of structures to be studied, and has applications in fields such as topology and fuzzy logic.

Vougiouklis’s work on weak hyperstructures has also led to the development of other related

concepts, such as soft sets and rough sets, which are used in data analysis and decision making.

Fuzzy set theory, introduced by Lotfi A. Zadeh [26] in 1965, deals with the concept of

partial truth, where an element can belong to a set to a certain degree, rather than being

either completely in or completely out of the set. While fuzzy set theory has many real-life

applications, it has limitations when it comes to dealing with situations of indeterminacy.

This is where neutrosophy comes in. Neutrosophy, introduced by Florentin Smarandache

in 1995, is a generalization of fuzzy set theory that deals with situations of indeterminacy,

inconsistency, and incomplete knowledge. It extends the concept of partial truth by introducing

the concept of ”neutrosophic truth,” where a statement can be simultaneously true, false, and

indeterminate to different degrees. Neutrosophy allows for a more flexible and nuanced way

of modeling real-world situations, and it has applications in a variety of fields, including

philosophy, mathematics, and artificial intelligence. Symbolic neutrosophic theory refers to

the use of abstract symbols, such as the letters T, I, and F, to represent the neutrosophic

components of truth, indeterminacy, and falsehood. This notation allows for a more concise

and precise way of expressing neutrosophic statements and computations, and it has been used

in a variety of applications, such as decision-making, image processing, and expert systems.

Fore more detail about neutrosophy, we refer to [16,18–21].

In 2015, Florentin Smarandache [17] introduced the concept of neutrosophic quadruple num-

bers, which are a generalization of real and complex numbers that incorporate the neutrosophic

concept of partial truth. Neutrosophic quadruple numbers consist of four components: a real

component, an imaginary component, a neutrosophic truth component, and a neutrosophic

falsity component. Smarandache presented the arithmetic operations of addition, subtrac-

tion, multiplication, and scalar multiplication on the set of neutrosophic quadruple numbers.

Agboola et al. [1] subsequently established a connection between neutrosophy and algebraic

structures by considering the set of neutrosophic quadruple numbers and using the defined op-

erations to discuss neutrosophic quadruple algebraic structures, such as neutrosophic groups

and neutrosophic rings. Akinleye et al. [2] further generalized this work in 2016 by considering

the set of neutrosophic quadruple numbers and defining hyperoperations on it, leading to the

study of neutrosophic quadruple hyperstructures, such as neutrosophic hypergroups and neu-

trosophic hyperrings. Overall, the introduction of neutrosophic quadruple numbers and the

study of neutrosophic algebraic structures and hyperstructures have opened up new avenues
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of research and applications in fields such as mathematics, computer science, and engineer-

ing. In neutrosophic mathematics, a neutrosophic quadruple Hv-group is a hypergroup with

four binary operations, namely neutrosophic addition, neutrosophic multiplication, neutro-

sophic h-addition, and neutrosophic h-multiplication, which satisfy certain axioms. Similarly,

a neutrosophic quadruple Hv-ring is a ring with four binary operations that satisfy additional

axioms.

The study of neutrosophic quadruple Hv-groups and neutrosophic quadruple Hv-rings is a

relatively new area of research in neutrosophic mathematics, and many of their properties and

characteristics are still being explored. However, it is interesting to note that the concept of

the fundamental group, which is a central concept in algebraic topology, has been extended to

neutrosophic quadruple Hv-groups, and its properties have been studied.

In particular, it has been shown that the fundamental group of a neutrosophic quadruple

Hv-group is also a neutrosophic quadruple group, which is a group-like structure with four

components representing truth, falsehood, indeterminacy, and non-membership. This result

provides a deeper understanding of the topological properties of neutrosophic quadruple Hv-

groups and their relationship to algebraic structures.

The authors in [6,7] discussed neutrosophic quadruple Hv-groups and neutrosophic quadru-

ple Hv-rings and studied their properties. Then in [8], they found the fundamental group of

neutrosophic quadruple Hv-groups and proved that it is a neutrosphic quadruple group. Our

paper extends their results to Hv-modules and it is constructed as follows: after an Intro-

duction, Section 2 presents the basic concepts that are used throughout our paper. Section 3

defines neutrosophic Hv-modules and studies their basic properties. Finally, Section 4 charac-

terizes the fundamental module of neutrosophic Hv-modules up to isomorphism.

2. Preliminaries

This section provides some hyperstructure theory, definitions and theorems that are used

throughout the paper. (See [10,12,25].)

A hyperoperation on a non-empty set H is a binary operation ◦ : H ×H → P∗(H), where

P∗(H) is the set of all non-empty subsets of H. The operation ◦ is usually denoted by ◦n when

it has arity n, that is, when it takes n arguments. For example, ◦2 is the binary operation

defined above.

A hyperoperation can be thought of as a generalization of a binary operation, which takes

two elements of H and returns a single element of H. In contrast, a hyperoperation takes two

elements of H and returns a non-empty subset of H.
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Hyperoperations are used in the study of hypergroups, which are algebraic structures that

generalize groups.

To clarify the definitions further, if we have given a hyperoperation ◦ on a non-empty set

H and two non-empty subsets A,B ⊆ H, we define A ◦ B as the union of all elements of the

form a ◦ b where a ∈ A and b ∈ B. That is,

A ◦B =
⋃

a∈A,b∈B
a ◦ b.

We also define x ◦A as {x} ◦A and A ◦ x as A ◦ {x}.

Definition 2.1. Let (H, ◦) be a hypergrupoid. Then:

• (H, ◦) is a semihypergorup if ◦ is associative, meaning that for any x, y, z ∈ H, we

have (x ◦ y) ◦ z = x ◦ (y ◦ z).
• (H, ◦) is a quasi-hypergroup if every element x ∈ H reproduces the entire set H under

the hyperoperation ◦, meaning that x ◦H = H = H ◦ x.

• (H, ◦) is a hypergroup if it is both a semihypergroup and a quasi-hypergroup.

Hypergroups generalize the notion of groups and provide a natural framework for studying

non-associative algebraic structures.

The concept of Hv-structures were introduced by T. Vougiouklis [23, 24] is an important

generalization of hyperstructures that allows for more flexible and weaker axioms, which can

capture a wider range of algebraic systems. This makesHv-structures a powerful tool for study-

ing hyperstructures that arise in various areas of mathematics and science such as algebraic

geometry, combinatorics, and physics, to model complex systems that cannot be described by

traditional algebraic structures. However, Most of Hv-structures are used in representation

theory.

Definition 2.2. A hypergroupoid (H, ◦) is called an Hv-semigroup if it satisfies the following

axiom:

(h1 ◦ (h2 ◦ h3)) ∩ ((h1 ◦ h2) ◦ h3) 6= ∅ for all h1, h2, h3 ∈ H.

This axiom is weaker than the associativity axiom of classical semigroups, which requires that

(h1 ◦ h2) ◦ h3 = h1 ◦ (h2 ◦ h3) for all h1, h2, h3 ∈ H.

The Hv-semigroups are used to study non-associative algebraic structures that arise in

representation theory.

An element 0 ∈ H is called an identity of (H, ◦) if it satisfies the following axiom:

h ∈ 0 ◦ h ∩ h ◦ 0 for all h ∈ H.
Madeleine Al Tahan, Saba Al-Kaseasbeh, Bijan Davvaz, Neutrosophic Quadruple
Hv-modules and their fundamental module



Neutrosophic Sets and Systems, Vol. 72, 2024 308

Definition 2.3. A hypergroupoid (H, ◦) is called an Hv-group if it is a quasi-hypergroup and

an Hv-semigroup. A quasi-hypergroup is a hypergroupoid (H, ◦) such that for every h1 ∈ H,

there exists h2 ∈ H such that h1 ∈ h2 ◦ h1 ∩ h1 ◦ h2.

An Hv-subgroup of an Hv-group (H, ◦) is a non-empty subset S ⊆ H such that (S, ◦) is also

an Hv-group.

Definition 2.4. A multivalued system (R∼,+, ·) is a hyperring if (1) (R∼,+) is a hypergroup;

(2) (R∼, ·) is a semihypergroup; (3) · is distributive with respect to +. And it is an Hv-ring if

(1) (R∼,+) is an Hv-group; (2) (R∼, ·) is is an Hv-semigroup; (3) · is weak distributive with

respect to +. (R∼,+, ·) is said to be commutative if α + β = β + α and α · β = β · α for all

α, β ∈ R∼.

An element 1 ∈ R∼ is called a unit if α ∈ 1 ·α∩α ·1 for all α ∈ R∼. A subset S of an Hv-ring

(R∼,+, ·) is called an Hv-subring of R∼ if (S,+, ·) is an Hv-ring. To prove that (S,+, ·) is an

Hv-subring of (R∼,+, ·), it suffices to show that α + S = S + α = S and α · β ⊆ S for all

α, β ∈ R∼.

Now, a homomorphism between two Hv-rings (R∼,+, ?) and (S,+′, ?′) is a function f :

R∼ → S that preserves the ring structure and the valuation function, meaning:

f(α + β) = f(α) +′ f(β) for all α, β ∈ R∼. f(α ? β) = f(α) ?′ f(β) for all α, β ∈ R∼.

vS(f(α)) = vR∼(α) for all α ∈ R∼. Here, v∼R and vS denote the valuation functions on R∼

and S, respectively.

Finally, two Hv-rings R∼ and S are isomorphic if there exists an Hv-ring homomorphism

f : R∼ → S that is bijective, and its inverse f−1 : S → R∼ is also an Hv-ring homomorphism.

In other words, R∼ and S are isomorphic if they have the same ring structure and the same

valuation function, up to a bijective change of variables.

Definition 2.5. A non-empty set M is an Hv-module over an Hv-ring R∼, if (M,+) is an

Hv-group and there exists a map ? : R ×M −→ P∗(M), (r, α) → r ? α, such that for all

α, β ∈M , r, s ∈ R, the following conditions hold.

• (r ? (α+ β)) ∩ (r ? α+ r ? β) 6= ∅;
• ((r + s) ? α) ∩ (r ? α+ s ? α) 6= ∅;
• ((rs) ? α) ∩ (r ? (s ? α)) 6= ∅.

Definition 2.6. A non-empty subset K of an Hv-module (M,+, R, ·) over an Hv-ring R is

called an Hv-submodule of M if r · x ⊆ K and α+K = K + α = K for all r ∈ R,α, x ∈ K.
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These conditions ensure that K is a well-behaved subset of M that is stable under the

action of R, and forms a group under addition that is closed under both vector addition

and set addition. Note that if M is a finite-dimensional vector space over a field, then an

Hv-submodule of M is simply a subspace of M .

Definition 2.7. An Hv-module homomorphism f : M → N is a structure-preserving map

between Hv-modules (M,+, R, ?) and (N,+′, S, ?′) over Hv-rings R and S, respectively. It

satisfies the following conditions:

• f(x+ y) = f(x) +′ f(y) for all x, y ∈M .

• There exists an Hv-ring homomorphism g : R → S such that f(r ? x) = g(r) ?′ f(x)

for all x ∈M and r ∈ R. This means that f preserves the Hv-module structure of M

and N , and also the ring structure of R and S.

Two Hv-modules (M,+, R, ?) and (N,+′, S, ?′) are isomorphic if there exists a bijective

Hv-module homomorphism f : M → N and an Hv-ring isomorphism g : R → S such that

f(x + y) = f(x) +′ f(y) and f(r ? x) = g(r) ?′ f(x) for all x, y ∈ M and r ∈ R. This

means that M and N have the same Hv-module structure and are related by an Hv-module

homomorphism and an Hv-ring isomorphism.

Example 2.8. Let R be a ring, (M,+, R, ?) be an R-module and N be a submodule of M .

Then (M,+, R, ·) is an R-Hv-module where “·” is defined as follows: for all (r,m) ∈ R ×M ,

r ·m = r ? m+N .

For the special case R = Z, M = Z4 (M is the Z-module of integers under standard addition

and multiplication modulo four.) and N = 2Z4 = {0, 2}. we get the following:

k · 0 = k · 2 = {0, 2},

k · 1 = k · 3 = {k mod 4, (k + 2) mod 4} =

{0, 2}, if k is an even integer;

{1, 3}, otherwise.

Example 2.9. Let F2 = {0, 1} and define (F2,+) and (F2,×) by the following tables:

+ 0 1

0 0 1

1 1 F2

× 0 1

0 0 0

1 0 1

Define the map · : F 2
2 × F2 → P∗(F 2

2 ) as:

a · (x, y) = (a× x, a× y)

for all a, x, y, z ∈ F2.
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It is clear that F 2
2 is an Hv-module over F2. We present “+M” by the following symmetric

table after setting m0 = (0, 0),m1 = (1, 0),m2 = (0, 1),m3 = (1, 1).

+M m0 m1 m2 m3

m0 m0 m1 m2 m3

m1 {m0,m1} m3 {m2,m3}

m1 {m0,m2} {m1,m3}

m1 F 2
2

and “·” as follows: 0 ·mi = m0 and 1 ·mi = mi for i = 0, 1, 2, 3.

3. Neutrosophic quadruple Hv-modules and their properties

Neutrosophic quadruple algebraic structures are mathematical systems that generalize

the concepts of groups, rings, and fields. They are defined based on the concept of a hyper-

operation, which is a binary operation that can be extended to n-ary operations. In [1, 2],

Agboola et al. and Akinleye et al. studied neutrosophic quadruple algebraic structures based

on quadruple numbers over the set of real numbers. As an alternative to real or complex

numbers, neutrosophic quadruple numbers are considered in this section, and they are used to

define neutrosophic quadruple Hv-modules over neutrosophic quadruple numbers. Hv-rings.

Definition 3.1. [13] A neutrosophic quadruple X-number is an ordered quadruple

(a1, a2T, a3I, a4F ), where a1, a2, a3, a4 ∈ X and a2T, a3I, a4F are subsets of X such that

a1 + a2T + a3I + a4F = X and a2T ∩ a3I = a3I ∩ a4F = a4F ∩ a2T = ∅.

Here, T , I, and F stand for the truth, indeterminacy, and falsity values, respectively. The

neutrosophic quadruple X-number is used to represent the truth, indeterminacy, and falsity

degrees of a statement with respect to a nonempty set X.

The element a1 represents the true degree of the statement, while the sets a2T , a3I, and

a4F represent the indeterminate, uncertain, and false degrees of the statement, respectively.

The sets a2T , a3I, and a4F are mutually exclusive, meaning that a statement cannot have

both a high degree of truth and a high degree of falsity. The set of all neutrosophic quadruple

X-numbers is denoted by NQ(X), that is,

NQ(X) = {(a1, a2T, a3I, a4F ) : a1, a2, a3, a4 ∈ X}.

The Absorbance Law for the multiplications of T , I, and F with respect to the preference

law T < I < F is defined as follows:

• T · T = T

• T · I = I × T = I
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• T · F = F × T = F

• I · I = I

• I · F = F × I = I

• F · F = F

This law governs how the neutrosophic values of truth, indeterminacy, and falsity interact with

each other under multiplication. The law is called the Absorbance Law because it specifies that

the values of indeterminacy and falsity are absorbed by the value of truth under multiplication.

For example, if a statement has a high degree of truth (T ) and a moderate degree of

indeterminacy (I), then the Absorbance Law implies that the overall degree of the statement

should be closer to T than to I. Similarly, if a statement has a high degree of falsity (F ) and

a moderate degree of indeterminacy (I), then the overall degree of the statement should be

closer to F than to I.

We recall some concepts and results related to neutrosophic quadruple Hv-groups and neu-

trosophic quadruple Hv-rings from [6,7].

Let (R,+,×) be an Hv-ring with zero “0” and unit “1” and define “⊕” and “⊗” on NQ(R)

as follows:

(x1, x2T, x3I, x4F )⊕ (y1, y2T, y3I, y4F )

= {(a, bT, cI, dF ) : a ∈ x1 + y1, b ∈ x2 + y2, c ∈ x3 + y3, d ∈ x4 + y4}.

and

(x1, x2T, x3I, x4F )⊗ (y1, y2T, y3I, y4F )

= {(a, bT, cI, dF ) : a ∈ x1 × y1, b ∈ x1 × y2 ∪ x2 × y1 ∪ x2 × y2,
jc ∈ x1 × y3 ∪ x2 × y3 ∪ x3 × y1 ∪ x3 × y2 ∪ x3 × y3,
d ∈ x1 × y4 ∪ x2 × y4 ∪ x3 × y4 ∪ x4 × y1 ∪ x4 × y2 ∪ x4 × y3 ∪ x4 × y4}.

In the context of the paper, the symbols T , I, and F represent the truth, indeterminacy,

and falsity values, respectively, with T < I < F denoting the preference order of these values.

Moreover, the mathematical structure under consideration is an Hv-ring denoted by (R,+,×),

which satisfies the following conditions:

• R is a set equipped with two binary operations, + (addition) and × (multiplication).

• (R,+) is an abelian group with identity element 0.

• (R,×) is a monoid with identity element 1.

• The multiplication operation × distributes over the addition operation +, i.e., a× (b+

c) = (a× b) + (a× c) and (a+ b)× c = (a× c) + (b× c) for all a, b, c ∈ R.

• The element 0 is an absorbing element for the multiplication operation ×, i.e., x× 0 =

0× x = 0 for all x ∈ R.
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Theorem 3.2. [6] Let H be a set with 0 ∈ H. Then (NQ(H),⊕) is an Hv-group (called

neutrosophic Hv-group) with identity 0 = (0, 0T, 0I, 0F ) if and only if (R,+) is an Hv-group

with identity “0” and 0 + 0 = 0.

The following theorem characterizes the relationship between the hyperoperations on a set

R and the hyperstructure of its neutrosophic quadruple numbers NQ(R).

Theorem 3.3. [7] (NQ(R),⊕,⊗) is a neutrosophic Hv-ring with zero and unit as 0 =

(0, 0T, 0I, 0F ) and 1 = (1, 0T, 0I, 0F ) respectively if and only if (R,+,×) is an Hv-ring with

zero and unit as 0” and 1,” respectively.

The above theorem provides a useful criterion for determining whether a given hyperstruc-

ture of neutrosophic quadruple numbers is a neutrosophic Hv-ring. By checking whether the

hyperoperations on R satisfy the conditions of an Hv-ring, we can determine whether the

corresponding neutrosophic quadruple hyperstructure is also an Hv-ring.

Let (M,?,R, ·) be an R-Hv-module with 0M ∈M , 0M ? 0M = 0M , m ∈ 1 ·m, 0M ∈ 0R ·m,

0M ∈ r · 0M for all r ∈ R,m ∈M . We define the following hyperoperations on NQ(M):

(m,nT, pI, qF ) � (m′, n′T, p′I, q′F ) = (m ?m′, (n ? n′)T, (p ? p′)I, (q ? q′)F )

and

(a, bT, cI, dF )� (m,nT, pI, qF ) = (a ·m, (b · n)T, (c · p)I, (d · q)F ).

In what follows, (M,?,R, ·) is an R-Hv-module with identity 0M ∈ M , 0M ? 0M = 0M ,

0M ∈ 0R ·m and m ∈ 1 ·m for all m ∈M and 0M ∈ r · 0M for all r ∈ R.

Theorem 3.4. Let (M,?,R, ·) be an R-Hv-module. Then (NQ(M),�, NQ(R),�) is an

NQ(R)-Hv-module.

Proof. Suppose that (M,?,R, ·) is an R-Hv-module. Then (M,?) is an Hv-group. Theo-

rem 3.2 asserts that (NQ(M),�) is an Hv-group. Since R · M ⊆ M , it follows from the

definition of “�” that NQ(R) � NQ(M) ⊆ NQ(M). We prove now that the conditions of

Definition 2.5 are satisfied. Let r = (r1, r2T, r3I, r4F ), s = (s1, s2T, s3I, s4F ) ∈ NQ(R) and

m = (m1,m2T,m3I,m4F ), n = (n1, n2T, n3I, n4F ) ∈ NQ(M).

(1) We have: (r1, r2T, r3I, r4F ) � ((m1,m2T,m3I,m4F ) � (n1, n2T, n3I, n4F )) = (r1 ·
(m1 ? n1), r2 · (m2 ? n2)T, r3 · (m3 ? n3)I, r4 · (m4 ? n4)F ) and ((r1, r2T, r3I, r4F ) �
(m1,m2T,m3I,m4F )) � ((r1, r2T, r3I, r4F )� (n1, n2T, n3I, n4F ))

= (r1 · m1 ? r1 · n1, (r2 · m2 ? r2 · n2)T, (r3 · m3 ? r3 · n3)I, (r4 · m4 ? r4 · n4)F ). Having

(ri · (mi ? ni)) ∩ (ri · mi ? ri · ni) 6= ∅ for i = 1, 2, 3, 4 implies that (r1, r2T, r3I, r4F ) �
((m1,m2T,m3I,m4F )�)(n1, n2T, n3I, n4F )) ∩ ((r1, r2T, r3I, r4F ) � (m1,m2T,m3I,m4F )) �

((r1, r2T, r3I, r4F )� (n1, n2T, n3I, n4F )) 6= ∅.
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(2) We have: ((r1, r2T, r3I, r4F ) ⊕ (s1, s2T, s3I, s4F )) � (m1,m2T,m3I,m4F ) = ((r1 +

s1) · m1, ((r2 + s2) · m2)T, ((r3 + s3) · m3)I, ((r4 + s4) · m4)F ) and (r1, r2T, r3I, r4F ) �
(m1,m2T,m3I,m4F )�(s1, s2T, s3I, s4F ))�(m1,m2T,m3I,m4F ) = ((r1 ·m1?s1 ·m1), (r2 ·m2?

s2 ·m2)T, (r3 ·m3 ?s3 ·m3)I, (r4 ·m4 ?s4 ·m4)F ). Having ((ri+si) ·mi)∩ (ri ·mi ?si ·mi) 6= ∅ for

i = 1, 2, 3, 4 implies that ((r1, r2T, r3I, r4F ) ⊕ (s1, s2T, s3I, s4F )) � (m1,m2T,m3I,m4F ) =

((r1 + s1) · m1, (r2 + s2) · m2T, (r3 + s3) · m3I, (r4 + s4) · m4F ) ∩ (r1, r2T, r3I, r4F ) �
(m1,m2T,m3I,m4F ) � (s1, s2T, s3I, s4F ))� (m1,m2T,m3I,m4F ) 6= ∅.

(3) One can easily see that (r1?(s1?m1), (r2?(s2?m2))T, (r3?(s3?m3))I, (r4?(s4?m4))F ) ∈
r � (s�m) and that ((r1 × s1) ? m1, ((r2 × s2) ? m2)T, ((r3 × s3) ? m3)I, ((r4 × s4) ? m4)F ) ∈
(r ⊗ s) � m. Having (ri ? (si ? mi)) ∩ ((ri × si) ? mi) 6= ∅ for i = 1, 2, 3, 4 implies that

(r � (s�m)) ∩ ((r ⊗ s)�m)) 6= ∅.
It is clear that 0M = (0M , 0MT, 0MI, 0MF ) is an identity inNQ(M) and that 0M�0M = 0M .

Therefore, NQ(M) is an Hv-module.

Notation 1. Let (M,?,R, ·) be an R-Hv-module. Then (NQ(M),�, NQ(R),�) is called

Neutrosophic quadruple Hv-module.

Corollary 3.5. Let (M,?,R, ·) be an R-Hv-module. Then we can construct infinite non-

isomorphic Neutrosophic quadruple Hv-module.

Proof. Suppose that (M,?,R, ·) is an R-Hv-module. Theorem 3.4 asserts that (NQ(M),

�, NQ(R),�) is a neutrosophic quadruple Hv-module over NQ(R). Having NQ(NQ(R))

a neutrosophic quadruple Hv-ring and applying Theorem 3.4 on (NQ(M),�, NQ(R),�),

we get (NQ(NQ(M)),�1, NQ(NQ(R)),�1) is a neutrosophic quadruple Hv-module over

NQ(NQ(R)). Continuing on this pattern, we get NQ(NQ(. . . NQ(. . . (M)) . . .) is a neu-

trosophic quadruple Hv-module over NQ(NQ(. . . NQ(. . . (R)) . . .).

Theorem 3.6. Let M be a non-empty set with 0M ∈ M and let (NQ(M),�, NQ(R),�) be

an R-Hv-module with identity 0M and 0M � 0M = 0M . Then (M,?,R, ·) is an Hv-module.

Proof. Theorems 3.2 and 3.3 assert that (M,?) is an Hv-group and (R,+,×) is an Hv-ring

respectively. Let r, s ∈ R, m,n ∈ M . Then r = (r, 0T, 0I, 0F ), s = (s, 0T, 0I, 0F ) ∈ NQ(R)

and m = (m, 0MT, 0MI, 0MF ), n = (n, 0MT, 0MI, 0MF ) ∈ NQ(M). Applying conditions of

Definition 2.5 on r, s,m, n, we get the conditions of Definition 2.5 are satisfied for r, s,m, n.

Using Theorem 3.4 and Theorem 3.6, we get the following Theorem.

Theorem 3.7. Let M be a non-empty set with 0M ∈M . Then (NQ(M),�, NQ(R),�) is an

NQ(R)-Hv-module if and only if (M,?,R, ·) is an R-Hv-module.
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Remark 3.8. Let (M,?,R, ·) be a finite R-Hv-module. Then |NQ(M)| = |M |4.

Example 3.9. Let R be any ring with unit “1” and M be an R-module. Then (NQ(M),�,

NQ(R),�) is a neutrosophic quadruple Hv-module.

Example 3.10. Let R = Z, M = Z4 be an R-module and N = 2Z4 = {0, 2} in Example 2.8.

Then (NQ(Z4),�, NQ(Z),�) is a neutrosophic quadruple Hv-module with 44 elements. We

present how the hyperoperation “�” is defined: for all m,n, p, q ∈M ,

(0, 0T, 0I, 0F ) � (m,nT, pI, qF ) = {(a, bT, cI, dF ) : a, b, c, d ∈ {0, 2}}, (1, 1T, 0I, 0F ) �
(m,nT, pI, qF ) = {(a, bT, cI, dF ) : a, b ∈ {1, 3}, c, d ∈ {0, 2}}.

Example 3.11. Let (F 2
2 ,+M , F2, ·) be the Hv-module defined in Example 2.9 over F2. Then

(NQ(F 2
2 ),�, NQ(F2),�) is a neutrosophic quadruple Hv-module with 44 elements.

Definition 3.12. Let (M,?,R, ·) be an R-Hv-module. A subset X of NQ(M) with 0M =

(0M , 0MT, 0MI, 0MF ) ∈ X is called a Neutrosophic Hv-submodule of NQ(M) if there exists

S ⊆M such that X = NQ(S) and (X,�, NQ(R),�) is a neutrosophic quadruple Hv-module.

Proposition 3.13. Let (M,?,R, ·) be an R-Hv-module and S ⊆M . A subset X = NQ(S) ⊆
NQ(M) is a Neutrosophic Hv-submodule of NQ(M) if the following conditions are satisfied:

(1) 0M = (0M , 0MT, 0MI, 0MF ) ∈ X;

(2) (m,nT, pI, qF ) �X = X � (m,nT, pI, qF ) = X for all (m,nT, pI, qF ) ∈ X;

(3) NQ(R)�X ⊆ X.

Proof. The proof is straightforward.

Theorem 3.14. Let (M,?,R, ·) be an R-Hv-module, N a non-empty subset of M and X =

NQ(N). Then (X,�, NQ(R),�) is a neutrosophic Hv-submodule of (NQ(M),�, NQ(R),�)

if and only if N is an Hv-submodule of M with 0M ∈ N .

Proof. Let (M,?,R, ·) be an R-Hv-module and X be a neutrosophic Hv-submodule of NQ(M).

Then there exist N ⊆ M with 0M ∈ N such that X = NQ(N). We need to show that N

is a submodule of M . For all n ∈ N and r ∈ R, we have (n, 0MT, 0MI, 0MF ) ∈ NQ(N)

and (r, 0T, 0I, 0F ) ∈ NQ(R). Since NQ(N) is a neutrosophic Hv-submodule of NQ(M), it

follows that (n, 0MT, 0MI, 0MF ) � NQ(N) = NQ(N) � (n, 0MT, 0MI, 0MF ) = NQ(N) and

that (r · n, 0MT, 0MI, 0MF ) = (r, 0T, 0I, 0F ) � (n, 0MT, 0MI, 0MF ) ⊆ NQ(N). The latter

implies that n ? N = N ? n = N and that r ·N ⊆ N .

Conversely, let N be an Hv-submodule M with 0M ∈ N . It is clear that 0M =

(0M , 0MT, 0MI, 0MF ) ∈ X = NQ(N). Let (m1,m2T,m3I,m4F ) ∈ NQ(N) and

(r1, r2T, r3I, r4F ) ∈ NQ(R). Having mi ∈ N, ri ∈ R for i = 1, 2, 3, 4 and N an Hv-submodule
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of M imply that ni ? N = N ? ni = N and ri · N ⊆ N for i = 1, 2, 3, 4. It is obvious now

that (m1,m2T,m3I,m4F ) � NQ(N) = NQ(N) � (m1,m2T,m3I,m4F ) = NQ(N) and that

(r1, r2T, r3I, r4F )�NQ(N) ⊆ NQ(N).

Example 3.15. Let (NQ(Z4),�, NQ(Z),�) be the neutrosophic quadruple Hv-module de-

fined in Example 3.11. Then NQ(Z4), NQ({0}) and NQ({0, 2}) are the only neutrosophic

quadruple Hv-submodules of NQ(Z4).

Example 3.16. Let (NQ(F 2
2 ),�, NQ(F2),�) be the neutrosophic quadruple Hv-module de-

fined in Example 3.11. Then NQ(F 2
2 ), NQ({m0}), NQ({m0,m1}), NQ({m0,m2}) are the only

neutrosophic quadruple Hv-submodules of NQ(F 2
2 ).

Definition 3.17. Let (NQ(M),�1, NQ(R),�1) and (NQ(N),�2, NQ(R),�2) be neutro-

sophic quadruple Hv-modules. A function φ : NQ(M) → NQ(N) is called neutosophic

homomorphism if the following conditions are satisfied.

(1) φ(0M , 0MT, 0MI, 0MF ) = (0N , 0NT, 0NI, 0NF );

(2) φ(x�1 y) = φ(x) �2 φ(y) for all x, y ∈ NQ(M);

(3) φ(r �1 x) = r �2 φ(x) for all r ∈ NQ(R), x ∈ NQ(M).

If φ is a neutrosophic homomorphism and bijective then it is called neutrosophic isomorphism

and we write NQ(M) ∼= NQ(N).

Proposition 3.18. If f : M → N is an R-Hv-module homomorphism with f(0M ) =

0N . Then there exist a neutrosophic homomorphism from (NQ(M),�1, NQ(R),�1) to

(NQ(N),�2, NQ(R),�2).

Proof. Let φ : NQ(M)→ NQ(N) be defined as follows:

φ((m,nT, pI, qF )) = (f(m), f(n)T, f(p)I, f(q)F ).

It is clear that φ is a neutrosophic homomorphism.

Proposition 3.19. Let (M,+1, R, ·1) and (N,+2, R, ·2) be isomorphic Hv-modules with our

assumption on the conditions for 0R, 1R ∈ R and 0M ∈ M, 0N ∈ N and f : (M,+1, R, ·1) →
(N,+2, R, ·2) be an isomorphism. Then f(0M ) = 0N .

Proof. Let f(0M ) = a. Since a = f(0M ) = f(0M +1 0M ) = a+2 a and a+2 y = f(0M +1 x) 3
f(x) = y for all y ∈ N , it follows that a is a zero of N satisfying a+2 a = a.
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Corollary 3.20. Let (M,+1, R, ·1) and (N,+2, R, ·2) be isomorphic Hv-modules. Then

(NQ(M),�1, NQ(R),�1) and (NQ(N),�2, NQ(R),�2) are isomorphic neutrosophic quadru-

ple Hv-modules.

Proof. The proof is straightforward by using Proposition 3.18 and Proposition 3.19.

Let (M,?,R, ·) be a commutative Hv-module, i.e. (M,?) is a commutative Hv-group, and

S be an Hv-submodule of M containing 0M . Then (M/S, ?′, R, ·′) is an Hv-module under the

following hyperoperations: For all s, t ∈ S, r ∈ R, we have:

(s ? S) ?′ (t ? S) = (s ? t) ? S and r ·′ (s ? S) = (r · s) ? S.

It is clear that S is a zero for M/S and that S ?′ S = S.

We define “�′” and “�′” on NQ(M/S) in the usual way as defining “�” and “�” on NQ(M).

Proposition 3.21. Let (S, ?,R, ·) be an Hv-submodule of a commutative Hv-module

(M,?,R, ·). Then (NQ(M/S),�′, NQ(R),�′) is an Hv-module.

Proof. The proof follows from having (M/S,+′, R, ·′) an Hv-module with S as zero and from

Theorem 3.7.

Proposition 3.22. [6] Let (S,+) be an Hv-subgroup of a commutative Hv- group (M,+).

Then (NQ(M/S),⊕) ∼= (NQ(M)/NQ(S),⊕′).

The authors used in the proof of Proposition 3.22 a function g : NQ(M)/NQ(S) →
NQ(M/S) and defined it as follows:

g((x1, x2T, x3I, x4F )⊕NQ(S)) = (x1 + S, (x2 + S)T, (x3 + S)I, (x4 + S)F ).

And they proved that it is an Hv-group isomorphism.

Proposition 3.23. Let (S, ?,R, ·) be an Hv-submodule of a commutative Hv-module

(M,?,R, ·). Then (NQ(M/S),�′, NQ(R),�′) ∼= (NQ(M)/NQ(S),�′′, NQ(R),�′′).

Proof. Let g : NQ(M)/NQ(S)→ NQ(M/S) be defined as follows:

g((x1, x2T, x3I, x4F )⊕NQ(S)) = (x1 + S, (x2 + S)T, (x3 + S)I, (x4 + S)F ).

We claim that g is a neutrosophic isomorphism, that is, g is well defined, one-to-one, onto and

neutrosophic homomorphism. The proof that g is well defined and one-to-one is the same as

that in the proof of Proposition 3.22. (We refer to [6] for more details.) Moreover, it is clear

that f is an onto function. We prove that g is neutrosophic homomorphism. Let xi ∈M, ri ∈ R
for i = 1, 2, 3, 4.
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• g((0M , 0MT, 0MI, 0MF ) �NQ(S)) = (S, ST, SI, SF ),

• We have g(((x1, x2T, x3I, x4F )�NQ(S))�′′ ((y1, y2T, y3I, y4F )�NQ(S))) = g((x1 +

y1, (x2 + y2)T, (x3 + y3)I, (x4 + y4)F ) �NQ(S)) = (x1 + y1 + S, (x2 + y2 + S)T, (x3 +

y3 + S)I, (x4 + y4 + S)F ).

On the other hand, we have g((x1, x2T, x3I, x4F )�NQ(S))�′g((y1, y2T, y3I, y4F )�

NQ(S)) = (x1 +S, (x2 +S)T, (x3 +S)I, (x4 +S)F )� (y1 +S, (y2 +S)T, (y3 +S)I, (y4 +

S)F ).

• We have:

(r1, r2T, r3I, r4F ) �′′ ((x1, x2T, x3I, x4F ) ⊕ NQ(S)) = (r1 · x1, (r2 · x2)T, (r3 ·
x3)I, (r4 · x4)F ) �NQ(S) and (r1, r2T, r3I, r4F )�′ g((x1, x2T, x3I, x4F ) �NQ(S)) =

(r1, r2T, r3I, r4F ) �′ (x1 + S, (x2 + S)T, (x3 + S)I, (x4 + S)F ) = (r1 · x1 + S, (r2 ·
x2 + S)T, (r3 · x3 + S)I, (r4 · x4 + S)F ). It is clear that g((r1, r2T, r3I, r4F ) �′′

((x1, x2T, x3I, x4F )⊕NQ(S))) = (r1, r2T, r3I, r4F )�′ g((x1, x2T, x3I, x4F )⊕NQ(S)).

Therefore, (NQ(M/S),�′, NQ(R),�′) ∼= (NQ(M)/NQ(S),�′′, NQ(R),�′′).

Example 3.24. Using Examples 3.10 and 3.15, we get NQ(Z4/{0, 2}) ∼= NQ(Z4)/NQ({0, 2}).

4. Fundamental module of neutrosophic Hv-module

In this section, we find the fundamental ring of neutrosophic quadruple Hv-rings and we

use it to find the fundamental module of neutrosophic quadruple Hv-modules.

Fundamental relations are a key tool in connecting hyperstructures with classical algebraic

structures. They are a generalization of the concept of subalgebra from classical algebra, and

they allow us to define algebraic operations on subsets of a hyperstructure in a way that pre-

serves the hyperstructure properties. In 1936, Marty in his seminal paper [15] introduced the

concept of fundamental relations in hyperstructure theory, Then Koskas [14] later contributed

to the study of fundamental relations and their applications in hyperstructure theory.

Definition 4.1. [11] For all n ≥ 2, we define the relation γ on an Hv-ring (R,+, ·) as follows:

aγb⇔ {a, b} ⊆ u where u is finite sum of finite products of elements in R.

Note that The relation γ is reflexive and symmetric. To see that it is reflexive, note that for

any a ∈ R, we have a ∈ a, which is a finite sum of finite products of elements in R. Therefore,

aγa. To see that it is symmetric, suppose aγb for some a, b ∈ R. Then there exists a finite

sum s =
∑k

i=1 ai of finite products of elements in R such that a, b ∈ s. But then we also have

b, a ∈ s, so bγa.
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The fundamental equivalence relation γ? is defined as the transitive closure of γ. This means

that aγ?b if and only if there exist elements a0, . . . , an ∈ R such that a = a0γa1γ · · · γan = b.

In other words, aγ?b if and only if a and b are connected by a chain of elements related by γ.

It is easy to see that γ? is an equivalence relation on R.

The fundamental ring R/γ? is the quotient of R by the equivalence relation γ?. Elements

of R/γ? are equivalence classes [a] of elements in R that are related by γ?. The addition and

multiplication operations on R/γ? are defined by [a] + [b] = [a + b] and [a] × [b] = [a × b]. It

can be shown that R/γ? is a well-defined ring.

Similarly, we can define the relation γN on NQ(R) and its fundamental equivalence relation

γ?N , which gives rise to the fundamental ring NQ(R)/γ?N . This ring is obtained by quotienting

the neutrosophic quadruple ring NQ(R) by the equivalence relation γ?N . The addition and

multiplication operations on NQ(R)/γ?N are defined in a similar way to those on R/γ?.

Proposition 4.2. Let (R,+,×) be an Hv-ring and a, b, c, d ∈ R. Then

(1) γN (a, 0T, 0I, 0F ) = γN (a, bT, cI, dF );

(2) γ?N (a, 0T, 0I, 0F ) = γ?N (a, bT, cI, dF );

(3) γN (0, 0T, 0I, 0F ) = γN (0, bT, cI, dF );

(4) γ?N (0, 0T, 0I, 0F ) = γ?N (0, bT, cI, dF ).

Proof. Let a, b, c, d ∈ R.

(1) Having (1, 0T, 0I, 0F )⊗ (0, 1T, 0I, 0F ) = {(0, 0T, 0I, 0F ), (0, 1T, 0I, 0F )} implies that

{(0, 0T, 0I, 0F ), (0, bT, cI, dF )} ⊆ (1, 0T, 0I, 0F )⊗ (0, 1T, 0I, 0F )⊗ (0, bT, cI, dF ).

It is obvious that (a, 0T, 0I, 0F ), (0, bT, cI, dF ) ∈ ((1, 0T, 0I, 0F ) ⊗ (a, 0T, 0I, 0F )) ⊕
((1, 0T, 0I, 0F )⊗ (0, 1T, 0I, 0F )⊗ (0, bT, cI, dF )).

(2) It is straightforward by using 1.

(3) By setting a = 0 in 1., we get the required.

(4) It is straightforward by using 3.

Proposition 4.3. Let (R,+,×) be an Hv-ring and a, a′ ∈ R. Then aγa′ if and only if

γN (a, 0T, 0I, 0F ) = γN (a′, 0T, 0I, 0F ).

Proof. Let aγa′. Then there exist xij ∈ R and n, ki ∈ N such that a, a′ ∈
1≤i≤n

(
∑ ∏

1≤j≤ki
xij). It

is easy to see that

(a, 0T, 0I, 0F ), (a′, 0T, 0I, 0F ) ∈
∑

1≤i≤n
(

∏
1≤j≤ki

xij),

where xij = (xij , 0T, 0I, 0F ).
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Let γN (a, 0T, 0I, 0F ) = γN (a′, 0T, 0I, 0F ). Then there exist (xij , yijT, zijI, wijF ) ∈ NQ(R),

n, ki ∈ N such that (a, 0T, 0I, 0F ), (a′, 0T, 0I, 0F ) ∈
∑

1≤i≤n
(

∏
1≤j≤ki

(xij , yijT, zijI, wijF )). Then

it is clear that a, a′ ∈
∑

1≤i≤n
(

∏
1≤j≤ki

xij). Thus, aγa′.

Proposition 4.4. Let (R,+,×) be an Hv-ring and a, a′, b, b′, c, c′, d, d′ ∈ R.

If γN (a, bT, cI, dF ) = γN (a′, b′T, c′I, d′F ) then aγa′.

Proof. Let (a, bT, cI, dF )γN (a′, b′T, c′I, d′F ). Then there exist (xij , yijT, zijI, wijF ) ∈ NQ(R),

n, ki ∈ N such that

(a, bT, cI, dF ), (a′, b′T, c′I, d′F ) ∈
∑

1≤i≤n
(

∏
1≤j≤ki

(xij , yijT, zijI, wijF )).

Then it is clear that a, a′ ∈
∑

1≤i≤n
(

∏
1≤j≤ki

xij). Thus, aγa′.

Proposition 4.5. Let (R,+,×) be an Hv-ring and a, a′ ∈ R. Then aγ?a′ if and only if

γ?N (a, 0T, 0I, 0F ) = γ?N (a′, 0T, 0I, 0F ).

Proof. Let aγ?a′. Then there exist ai ∈ R and k ∈ N with i = 1, 2, . . . , k such that

aγa1, a1γa2,. . . , akγa
′. Using Proposition 4.3, we get (a, 0T, 0I, 0F )γN (a1, 0T, 0I, 0F ),

(a1, 0T, 0I, 0F )γN (a2, 0T, 0I, 0F ), . . . , (ak, 0T, 0I, 0F )γN (a′, 0T, 0I, 0F ). Thus,

(a, 0T, 0I, 0F )γ?N (a′, 0T, 0I, 0F ).

Suppose that (a, 0T, 0I, 0F )γ?N (a′, 0T, 0I, 0F ). Then there exist k ∈ N and xi =

(xi, yiT, ziI, wiF ) ∈ NQ(R), i = 1, 2, 3, 4 such that (a, 0T, 0I, 0F )γNx1, x1γNx2, . . . ,

xkγN (a′, 0T, 0I, 0F ). Proposition 4.4 asserts that aγx1, x1γx2, . . .xkγa
′. Thus, aγ?a′ .

Proposition 4.6. Let (R,+,×) be an Hv-ring and a, b, c, d ∈ R. Then aγ?a′ if and only if

γ?N (a, bT, cI, dF ) = γ?N (a′, b′T, c′I, d′F ).

Proof. Suppose that aγ?a′. Proposition 4.5 asserts that (a, 0T, 0I, 0F )γ?N (a′, 0T, 0I, 0F ). By

using Proposition 4.2, we get

(a, 0T, 0I, 0F )γ?N (a, bT, cI, dF ) and (a′, 0T, 0I, 0F )γ?N (a′, b′T, c′I, d′F ).

Having γ?N an equivalence relation on NQ(R) implies that

(a, bT, cI, dF )γ?N (a′, b′T, c′I, d′F ).

Conversely, let (a, bT, cI, dF )γ?N (a′, b′T, c′I, d′F ). By using Proposition 4.2, we get

(a, 0T, 0I, 0F )γ?N (a, bT, cI, dF ) and (a′, 0T, 0I, 0F )γ?N (a′, b′T, c′I, d′F ). Having γ?N an equiv-

alence relation on NQ(R) implies that (a, 0T, 0I, 0F )γ?N (a′, 0T, 0I, 0F ). The latter and using

Proposition 4.5 imply that aγ?a′.
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We define “⊕γ”, “⊗γ” on R/γ? and “⊕γN ”, “⊗γN ” on NQ(R)/γ?N as follows: For all

ri, si ∈ R with i = 1, 2, 3, 4, we have:

γ?(r1)⊕γ γ?(r2) = γ?(r), where r ∈ r1 + r2,

γ?(r1)⊗γ γ?(r2) = γ?(r), where r ∈ r1 × r2,

γ?N (r1, rT , r3I, r4F )⊕γN γ?N (s1, s2T, s3I, s4F )

= γ?N (r), r ∈ (r1, rT , r3I, r4F )⊕ (s1, s2T, s3I, s4F ),

γ?N (r1, rT , r3I, r4F )⊗γN γ?N (s1, s2T, s3I, s4F )

= γ?N (r), r ∈ (r1, r2T, r3I, r4F )⊗ (s1, s2T, s3I, s4F ).

Theorem 4.7. Let (R,+,×) be an Hv-ring. Then NQ(R)/γ?N
∼= R/γ?.

Proof. Suppose that ψ : NQ(R)/γ?N → R/γ? be defined as follows:

ψ(γ?N (a, bT, cI, dF )) = γ?(a).

Proposition 4.6 asserts that ψ is well defined and one-to-one. Moreover, it is clear that ψ is onto

as ψ(γ?N (a, 0T, 0I, 0F )) = γ?(a) for all a ∈ R. We need to show that ψ is ring homomorphism.

We have:

(1) ψ(γ?N (a, bT, cI, dF )⊕γN γ?N (a′, b′T, c′I, d′F )) = ψ(γ?N (e, fT, gI, hF )) = γ?(e),

where (e, fT, gI, hF ) ∈ (a, bT, cI, dF )⊕(a′, b′T, c′I, d′F ) = (a+a′, (b+b′)T, (c+c′)I, (d+d′)F ).

On the other hand, we have

ψ(γ?N (a, bT, cI, dF ))⊕γ ψ(γ?N (a′, b′T, c′I, d′F )) = γ?(a)⊕γ γ?(a′) = γ?(e),

where e ∈ a+ a′. Consequently, we obtain

ψ(γ?N (a, bT, cI, dF )⊕γN γ?N (a′, b′T, c′I, d′F ))

= ψ(γ?N (a, bT, cI, dF ))⊕γ ψ(γ?N (a′, b′T, c′I, d′F )).

(2) ψ(γ?N (a, bT, cI, dF ) ⊗γN γ?N (a′, b′T, c′I, d′F )) = ψ(γ?N (e, fT, gI, hF )) = γ?(e) where

(e, fT, gI, hF ) ∈ (a, bT, cI, dF ) ⊗ (a′, b′T, c′I, d′F ). It is clear that e ∈ a × a′. On the other

hand, we have ψ(γ?N (a, bT, cI, dF ))⊗γ ψ(γ?N (a′, b′T, c′I, d′F )) = γ?(a)⊗γ γ?(a′) = γ?(e) where

e ∈ a × a′. Thus, ψ(γ?N (a, bT, cI, dF ) ⊗γN γ?N (a′, b′T, c′I, d′F )) = ψ(γ?N (a, bT, cI, dF )) ⊗γ
ψ(γ?N (a′, b′T, c′I, d′F )).

Corollary 4.8. Let (R,+,×) be an Hv-ring. Then NQ(R) has a trivial fundamental ring if

and only if R has a trivial fundamental ring.

Proof. The proof follows from Theorem 4.7.
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The authors in [?,4] considered the set of arithmetic functions R and defined hyperoperations

+ and × on it as follows:

α+ β(n) = {α(d) + β(
n

d
) : d|n};

and

α× β(n) = {α(d)β(
n

d
) : d|n}.

Let 0?(n) = 0 for all n ∈ N and

ι(n) =

1 if n = 1

0 otherwise.

It is clear that 0?+0? = 0? and that ι× ι = ι. The authors proved that (R,+,×) is an Hv-ring

with 0? as zero and ι as unit and found its fundamental ring as the ring of complex numbers

C under standard addition and multiplication.

It is obvious that 0? is an absorbing element.

Proposition 4.9. Let (R,+,×) be the Hv-ring of arithmetic functions under the above hy-

peroperations. Then (NQ(R),⊕,⊗) is a neutrosophic quadruple Hv-ring.

Proof. The proof follows from Theorem 3.3.

Example 4.10. Let (R,+,×) be the Hv-ring of arithmetic functions. Then the ring of

complex numbers C under standard addition and multiplication is the fundamental ring of

(NQ(R),⊕,⊗).

Definition 4.11. For all n > 1, we define the relation ε on an Hv-module (M,+, R, ?) over

an Hv-ring R as follows: xεy if and only if there exist n, ni ∈ N, (m1, · · · ,mn) ∈ Mn,

(k1, · · · , kn) ∈ Nn, (xi1, · · · , xik) ∈ Rki such that

x, y ∈
n∑
i=1

m′i,m
′
i = mi or m′i =

ni∑
j=1

(

kij∏
k=1

xijk)mi.

Clearly, the relation ε is reflexive and symmetric. Denote by ε∗ the transitive closure of

ε. The ε? is called the fundamental equivalence relation on M and M/ε∗ is the fundamental

module.

In what follows, (M,?,R, ·) is an R-Hv-module with identity 0M ∈ M , 0M ? 0M = 0M ,

0M ∈ 0R ·m and m ∈ 1 ·m for all m ∈M and 0M ∈ r · 0M for all r ∈ R and ε, εN the relation

on R,NQ(R) and ε?, ε?N their fundamental relations respectively.

Proposition 4.12. Let (M,?,R, ·) be an Hv-module and m,n, p, q ∈M . Then

(1) εN (m, 0MT, 0MI, 0MF ) = εN (m,nT, pI, qF );

(2) ε?N (m, 0MT, 0MI, 0MF ) = ε?N (m,nT, pI, qF );
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(3) εN (0M , 0MT, 0MI, 0MF ) = εN (0M , nT, pI, qF );

(4) ε?N (0M , 0MT, 0MI, 0MF ) = ε?N (0M , nT, pI, qF ).

Proof. We prove 1., the others are straightforward. One can easily see that

(m, 0MT, 0MI, 0MF ), (m,nT, pI, qF )

∈ ((1, 0T, 0I, 0F )� (m, 0MT, 0MI, 0MF ))

�(((1, 0T, 0I, 0F )⊗ (0, 1T, 0I, 0F ))� (0M , nT, 0MI, 0MF ))

�(((1, 0T, 0I, 0F )⊗ (0, 0T, 1I, 0F ))� (0M , 0MT, pI, 0MF ))

�(((1, 0T, 0I, 0F )⊗ (0, 0T, 0I, 1F ))� (0M , 0MT, 0MI, qF )).

Proposition 4.13. Let (M,?,R, ·) be an Hv-module and m,m′ ∈M . Then mεm′ if and only

if εN (m, 0MT, 0MI, 0MF ) = εN (m′, 0MT, 0MI, 0MF ).

Proof. Let mεm′. Then there exist n, ni ∈ N, (m1, · · · ,mn) ∈ Mn, (k1, · · · , kn) ∈ Nn,

(xi1, · · · , xik) ∈ Rki such that

m,m ∈
n∑
i=1

m′i,m
′
i = mi or m′i =

ni∑
j=1

(

kij∏
k=1

xijk)mi.

It is easy to see that

(m, 0MT, 0MI, 0MF ), (m′, 0MT, 0MI, 0MF ) ∈
n∑
i=1

m′i,m
′
i = mi or m′i =

ni∑
j=1

(

kij∏
k=1

xijk)mi.

where xij = (xij , 0T, 0I, 0F ) and mi = (mi, 0MT, 0MI, 0MF ). In a similar way, we prove the

backward direction.

Proposition 4.14. Let (M,?,R, ·) be an Hv-module and m,m′, n, n′, p, p′, q, q′ ∈ M . Then

mε?m′ if and only if ε?N (m,nT, pI, qF ) = ε?N (m′, n′T, p′I, q′F );

Proof. The proof is similar to that of Proposition 4.6.

Let (M,?,R, ·) be an Hv-module. Then NQ(M)/ε?N is an NQ(R)/γ?N -module and that

M/ε? is an Rγ?-module.

We define “�ε”, “�ε” on M/ε? and “�εN ”, “�εN ” on NQ(M)/ε?N as follows: For all mi, ni ∈
M , ri ∈ R with i = 1, 2, 3, 4, we have:

ε?(m1) �ε ε
?(m2) = ε?(m) where m ∈ m1 +m2,

γ?(r1)�ε ε?(m1) = ε?(m) where m ∈ r1 ·m1,

ε?N (m1,m2T,m3I,m4F )) �εN ε?N (n1, n2T, n3I, n4F ) = ε?N (m),
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γ?N (r1, rT , r3I, r4F )�εN ε?N (m1,m2T,m3I,m4F ) = ε?N (n),

where m ∈ (m1,m2T,m3I,m4F ) � ((n1, n2T, n3I, n4F ) and n ∈ (r1, r2T, r3I, r4F ) �
(m1,m2T,m3I,m4F ),

Theorem 4.15. Let (M,?,R, ·) be an Hv-module. Then NQ(M)/ε?N
∼= M/ε?.

Proof. Let χ : NQ(M)/ε?N →M/ε? be defined as follows:

χ(ε?N (a, bT, cI, dF )) = ε?(a).

Proposition 4.14 asserts that χ is well defined and one-to-one. Moreover, it is clear that χ is

onto as χ(ε?N (a, 0MT, 0MI, 0MF )) = ε?(a) for all a ∈ M . We need to show that χ is module

homomorphism. We have:

(1) χ(ε?N (a, bT, cI, dF ) �εN ε?N (a′, b′T, c′I, d′F )) = χ(ε?N (e, fT, gI, hF )) = ε?(e) where

(e, fT, gI, hF ) ∈ (a, bT, cI, dF ) � (a′, b′T, c′I, d′F ) = (a ? a′, (b ? b′)T, (c ? c′)I, (d ? d′)F ). On

the other hand, we have χ(ε?N (a, bT, cI, dF )) �ε χ(ε?N (a′, b′T, c′I, d′F )) = ε?(a) �ε ε
?(a′) =

ε?(e) where e ∈ a ? a′. Thus, we obtain χ(ε?N (a, bT, cI, dF ) �εN ε?N (a′, b′T, c′I, d′F )) =

χ(ε?N (a, bT, cI, dF )) �ε χ(ε?N (a′, b′T, c′I, d′F )).

(2) χ(γ?N (r1, r2T, r3I, r4F ) �εN ε?N (a, bT, cI, dF )) = χ(ε?N (e, fT, gI, hF )) = ε?(e) where

(e, fT, gI, hF ) ∈ (r1, r2T, r3I, r4F ) � (a, bT, cI, dF ). It is clear that e ∈ r1 · a. On the other

hand, we have γ?(r1)�ε χ(ε?N (a, bT, cI, dF )) = γ?(r1)�ε ε?(a) = ε?(e) where e ∈ r1 · a. Thus,

χ(γ?N (r1, r2T, r3I, r4F ) �εN ε?N (a, bT, cI, dF )) = ψ(r1, r2T, r3I, r4F ) �ε χ(ε?N (a, bT, cI, dF )).

Here “ψ is the ring isomorphism defined in the proof of Theorem 4.7.

Corollary 4.16. Let (M,?,R, ·) be an Hv-module. Then NQ(M) has a trivial fundamental

module if and only if M has a trivial fundamental module.

Proof. The proof follows from Theorem 4.15.

Example 4.17. Let R = Z, M = Z4 and N = 2Z4 = {0, 2} in Example 2.8. One can easily

see that M/ε? ∼= M/N ∼= Z2 where (Z2,+,Z, ·) is the Z-module of integers under standard

addition and multiplication modulo two. Using Theorem 4.15, we get (NQ(Z4/ε
?
N )) ∼= Z2.

5. Conclusion

The paper presented a detailed study on neutrosophic quadruple Hv-modules. It estab-

lished that if M and N are isomorphic Hv-modules, then their corresponding neutrosophic

quadruple Hv-modules are also isomorphic. Furthermore, the paper provided significant in-

sights into the properties and characteristics of neutrosophic quadruple Hv-modules, thereby

contributing to the understanding and application of neutrosophic logic in the field of mathe-

matics.
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