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Abstract: This study suggests a novel statistical distribution known as the neutrosophic log-

gamma distribution (NLGD) for analyzing the interval value data. The proposed distribution is 

derived from the transformation method, utilizing the approach of neutrosophic logic. The 

statistical characteristics of the proposed are studied within a neutrosophic framework. Basic 

statistical properties such as moments of origin, mode, mean deviation, and other related functions 

that are commonly employed in statistical applications are derived. In addition to the basic 

properties of the model, the estimation approach of maximum likelihood is also studied. The 

derived estimators of the proposed model are further assessed by the simulation method. 

Comparative research using real-world examples shows that NLGD does a better job of modelling 

complicated industrial growth and production measures than standard distribution. Application of 

the proposed model improves our understanding of the theoretical component and our ability to 

forecast outcomes in statistical applications. This, in turn, leads to improved decision-making and 

operational efficiency in many industrial sectors. 

Keywords: Neutrosophic model, descriptive statistics, uncertainty measures, estimation, 

simulation. 

 

1. Introduction 

The distribution of income size is crucial for all economies when it comes to making decisions 

on social and economic policies [1] . The distribution of income plays a crucial role in economic and 

social statistics, serving as the foundation for concentration and Lorenz curves [2], [3] . These curves 

are essential for measuring inequality and evaluating overall social welfare. Market demand and 

elasticity are influenced by income distribution, which in turn impacts how firms behave and 

ultimately affects market equilibrium [4]. Income distribution plays a crucial role in shaping the 

level of savings within a society, as well as impacting the productive efforts of different societal 

groups. Understanding the distribution of firm sizes is crucial for economists specializing in 

industrial organization, government regulators, and courts [5] . In antitrust cases, courts rely on 

market share data from firms and industries to make informed decisions.  Pareto's laws of income 

distribution laid the foundation for statistical studies on personal income distributions [6].  There 
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are many statistical distributions used to model income size[6], [7], [8]  . One of such distributions is 

gamma distribution [9], [10]. The Pearson type III distribution, also known as the gamma 

distribution, is widely utilized in applied statistics for modeling unimodal and positive data. It is 

commonly employed in analyzing waiting times, income levels, insurance claims, and rainfall 

patterns. 

If the exponential function applied to gamma distribution we obtained the  log-gamma distribution 

which also has very important applications in economics [11-13] . Mathematically, if random 

variable 𝑌  follows gamma distribution with two parameters, then 𝑋 = 𝑒𝑥𝑝(𝑌)  follows the log-

gamma distribution with probability density function (PDF) given below: 

𝑓(y) =
𝑏𝑝

Γ(𝑝)
y𝑏−1(log(y))𝑝−1, y ≥ 1, p, b > 0       (1) 

where 𝑝, and 𝑏 are both shape parameters of the distribution. 

The classical structure of log-gamma distribution is shown in Figure 1.  

 

 
 

Figure 1: Density plots of the log-gamma distribution 

 

The log gamma distribution is very versatile and can be viewed as the generalized form of the 

Pareto distribution. Particularly with parameter p = 1, it reduces to the Pareto distribution of type-I. 

Unlike the Pareto type I distribution, which always has a decreasing density, the log-gamma 

distribution can have unimodal densities, making it more flexible. The shape of the classical. There 

are several reasons that log-gamma distribution is very important in statistical applications for 

business data, finance and engineering studies. The log-gamma distribution is well suited for 

modelling skewed data. Many real data sets exhibit skewness and log-gamma provides adequate fit 

compared to other symmetric distributions. In terms of scale and shape parameters log-gamma 

distribution is symmetric for modeling variety of real data sets and its versatile behaviors [14]. It 

has a key application in modelling financial data such as profit, loss asset returns, especially when 

applications exhibit skewness and heavy tails problems. In reliability studies, it is commonly 

employed to model the lifetime of systems and products. It is highly useful in studying the survival 

time and in planning maintenance schedules. This also frequently used in medical research for 

modelling survival data which are often skewed. The log-gamma distribution is also used as prior 

distribution for many parameters in Bayesian studies. To model extreme events, it is also used in 

extreme value theory. This helps in understanding risk assessment and mitigation.  
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Although the log-gamma distribution is useful for skewed and heavy-tailed data, it struggles 

with imprecise data. Neutrosophic distributions, on the other hand, are tailored to handle 

uncertainty and imprecision commonly found in real-world situations [15-17]. Neutrosophic 

collections provide a more thorough approach compared to the traditional collection notion when 

dealing with ambiguous, vague, and irregular information [18]. The subscription features, namely 

truth-membership, indeterminacy-membership, and falsity-membership, provide a precise 

understanding of whether a component belongs to the collection, is uncertain, or does not belong to 

the collection. This structure also incorporates relevant data and probability distributions to further 

enhance its efficiency in handling intricate information [19-22]. Neutrosophic statistics, together 

with possibility distributions, offer valuable methods for analyzing data or uncertainty that is 

characterized by neutrosophic sets [23-25]. Neutrosophic probability distributions are used to 

determine the likelihood of events or outcomes in situations where there is ambiguity. They 

specifically focus on measures such as central tendency, dispersion, and other properties of 

neutrosophic data [26]. 

To develop a more adaptable distribution term the NLGD is the primary aim of this study. 

This neutrosophic model effectively manages the fuzzy applications. The core motivation behind 

this study is to handle the ambiguous data and enhancing its ability to analyze and interpret such 

vague information. 

This study is organized as follows: Section2 describes the classical model and its extension to 

neutrosophic model. Section 3 discusses the quantile function and simulation analysis of the NLGD. 

Section4 examines the estimation strategy for unknown parameters. Section 5 conducts a real data 

analysis to explain the theoretical part of the proposed model. Finally, Section 6 concludes major 

findings. 

 

2. Proposed Model 

In the neutrosophic framework, the parameters p and b are not fixed numbers rather than 

belonging to intervals or fuzzy sets. This reflecting the imprecision and uncertainty in the model 

and can be defined as: 

𝑓(𝑧; β𝑁 , 𝑝𝑁) =
β𝑁

𝑝𝑁

Γ(𝑝𝑁)
𝑧β𝑁−1(log 𝑧)𝑝𝑁−1,  𝑧 ≥ 1,  𝑝𝑁 > 0,  β𝑁 > 0    (2) 

where 𝑝𝑁𝜖[𝑝𝑙 , 𝑝𝑢] and β𝑁𝜖[𝛽𝑙 , 𝛽𝑢] are two imprecise shape parameters of the proposed NLGD. 

The conversion of log-gamma distribution into neutrosophic structure enhanced the capability of 

the distribution to manage uncertain and imprecise data. The neutrosophic form provide more 

realistic and flexible data modelling, making it more valuable distribution for handling applications 

involving ambiguous information. The structure of imprecise distribution can be seen in Figure 2. 
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Figure 2: PDF plot of the NLGD for different imprecise parameters setting 

 

Figure 2 visualize the PDF plot of NLGD assuming that shape parameter 𝑃𝑁 is imprecise while the 

𝛽𝑁 is crisp value. Due to not precisely unknown value of shape parameter 𝑃𝑁 , uncertainty in the 

PDF is shown with yellow shaded color each plot. This representation indicates more 

comprehensive understanding of possible shape of the distribution can take. Neutrosophic PDF 

helps in visualizing how parametric imprecision affects the distribution, allowing better decision 

making under uncertain environment. The neutrosophic PDF can have numerous benefits, for 

example it allows actuaries to view the potential variability in loss distributions that may lead to 

setting reserves and premiums. Similarly, it also guides the economists to count for uncertainties in 

economic indicators resulting in more robust forecasting models. Similar to PDF function another 

associated function is the cumulative distribution function. The neutrosophic CDF function of 

NLGD can be determined as follows: 

𝐻(𝑧) = ∫
β𝑁

𝑝𝑁

Γ(𝑝𝑁)
𝑧β𝑁−1(log 𝑧)𝑝𝑁−1𝑑𝑧

𝑧

1
        (3) 

Further simplification of (3) yielded: 

𝐻(𝑧) =
𝛾(𝑝𝑁,

𝑙𝑜𝑔(𝑧)

β𝑁
)

𝐺𝑎𝑚𝑚𝑎(𝑝𝑁)
          (4) 

where  𝛾(. ) representing the incomplete gamma distribution. 
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The shape of the neutrosophic CD function is depicted in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: CDF curves of the NLGD with various imprecise parameters. 

 

Figure 3 shows the CDF of the NLGD indicates the cumulative probability of random variable 

being less than or equal to some particular value. Figure 3 indicates that similar to classic structure 

plot starts at zero and increases to one with non-decreasing feature. This plot provides a complete 

description of the NLGD. The yellow area in each plot indicates indeterminacy in the parameters of 

the distribution. The yellow bounded area encapsulates the possible variations in the CD function 

due to imprecision in the studied parameters. By plotting the lower and upper bound of the 

distribution plot, users can assess the potential variability in the cumulative probabilities which 

quite significant for knowing the behavior of the model over its entire domain. 

The other important function related to CDF is the survival function. Survival function is 

critical concepts used in reliability theory, risk management and survival analysis. This function is 

important because it provides information about the failure rates or longevity of systems or 

processes. Mathematically the survival function can easily be established for the NLGD as: 

𝑆(𝑧) = 1 − 𝐻(𝑧) = 1 −
𝛾(𝑝𝑁,

𝑙𝑜𝑔(𝑧)

β𝑁
)

𝐺𝑎𝑚𝑚𝑎(𝑝𝑁)
        (5) 

For imprecise values of neutrosophic parameters, the survival function of the NLGD can be 

depicted in Figure 4. 
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Figure 4: Survival function of the NLGD 

 

 

As shown in Figure 4, survival function is time dependent function which provides 

information about the likelihood of systems or component to survival behind the time period 𝑡. It is 

essential information because this information is used in reliability analysis to improve the 

durability of the products. It helps in making data-driven decisions about warranties of the 

products and better understanding about the distribution of lifetimes.  The ratio between PDF and 

survival functions provides the hazard function. The hazard function of the NLGD is given by: 

ℎ(𝑧; β𝑁 , 𝑝𝑁) =

β𝑁
𝑝𝑁

Γ(𝑝𝑁)
𝑧β𝑁−1(log 𝑧)𝑝𝑁−1

1−
γ(𝑝𝑁,

log(𝑧)
β𝑁

)

Γ(𝑝𝑁)

; 𝑧 ≥ 1,  𝑝𝑁 > 0,  β𝑁 > 0.     (6)  

Hazard function provides the instantaneous failure rate of component or system at any specific 

time. It represents the likelihood of death or failure occurring at particular time t given that system 

or component has been survived up to that time. The hazard function for different values of 

neutrosophic parameters are shown in Figure 5. 
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Figure 5: Hazard function of the NLGD for different imprecise parameters setting 

 

As shown in Figure 5, neutrosophic hazard function is different from the classical concept of hazard 

function. It is represented by a sturdy curve and able to handle vagueness, indeterminacy and 

uncertainty. This sturdy structure reflects the inherent variability in due to assuming the imprecise 

values of the distributional parameters. 

The 𝑘𝑡ℎ moment of the NLGD can be written as follows: 

𝐸(𝑍𝑘) = (
β𝑁

β𝑁−𝑘
)

𝑝𝑁
,  𝑘 < β𝑁        (7) 

 

In neutrosophic framework (7) can be derived as follows: 

𝐸(𝑍𝑘) = ∫ 𝑧𝑘𝑓(𝑧; β𝑁 , 𝑝𝑁)
∞

1
 𝑑𝑧        (8) 

Equation (8) can be further simplified as: 

𝐸(𝑍𝑘) = ∫ 𝑧𝑘 β𝑁
𝑝𝑁

Γ(𝑝𝑁)

∞

1
𝑧β𝑁−1(log 𝑧)𝑝𝑁−1 𝑑𝑧       (9) 

Solving (9) yielded: 

𝐸(𝑍𝑘) =
β𝑁

𝑝𝑁

Γ(𝑝𝑁)

Γ(𝑝𝑁)

(β𝑁−𝑘)𝑝𝑁
         (10) 

Hence simplification of (10) provided 

𝐸(𝑍𝑘) = (
β𝑁

β𝑁−𝑘
)

𝑝𝑁
          (11) 

which is required result. 

Now assuming the different of values of 𝑘 mean and variance can easily be derived. 
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Thus, the mean of the NLGD is given by: 

𝑚𝑒𝑎𝑛 = 𝐸(𝑍) = (
β𝑁

β𝑁−1
)

𝑝𝑁
        (12) 

Similarly, variance from (11) can be written as: 

var(𝑍) = (
β𝑁

β𝑁−2
)

𝑝𝑁
− (

β𝑁

β𝑁−1
)

2𝑝𝑁
,  β𝑁 > 2       (13) 

  

Utilizing mean and variance coefficient of variation of the NLGD can be written as: 

CV =

√(
β𝑁

β𝑁−2
)

𝑝𝑁
−((

β𝑁
β𝑁−1

)
𝑝𝑁

)

2

(
β𝑁

β𝑁−1
)

𝑝𝑁          (14) 

Similarly, mode of the NLGD can be expressed as: 

𝑧mode = exp (
𝑝𝑁−1

β𝑁+1
)          (15) 

To derive the mode of the NLGD, we need to differentiate the PDF with respect to 𝑧 and setting it to 

zero. 

i.e., 

𝑑

𝑑𝑧
𝑓(𝑧) =

β𝑁
𝑝𝑁

Γ(𝑝𝑁)
[(β𝑁 − 1)𝑧β𝑁−2(log 𝑧)𝑝𝑁−1 + 𝑧β𝑁−2(𝑝𝑁 − 1)(log 𝑧)𝑝𝑁−2] = 0  (16) 

Simplification of (16) leads to: 

(β𝑁 − 1) log 𝑧 + (𝑝𝑁 − 1) = 0        (17) 

Further simplification yielded: 

𝑧mode = exp (
𝑝𝑁−1

β𝑁+1
)          (18) 

which is required result. 

Utilizing (11) , third and fourth moments respectively  can be written as: 

𝐸(𝑍3) = (
β𝑁

β𝑁−3
)

𝑝𝑁
         (19) 

𝐸(𝑍4) = (
β𝑁

β𝑁−4
)

𝑝𝑁
         (20) 

Using (19) and (20), coefficients of skewness and kurtosis can be written as: 

γ1 =
(

β𝑁
β𝑁−3

)
𝑝𝑁

−3(
β𝑁

β𝑁−1
)

𝑝𝑁
σ2−((

β𝑁
β𝑁−1

)
𝑝𝑁

)

3

σ3        (21) 

γ2 =
(

β𝑁
β𝑁−4

)
𝑝𝑁

−4(
β𝑁

β𝑁−1
)

𝑝𝑁
(

β𝑁
β𝑁−3

)
𝑝𝑁

+6((
β𝑁

β𝑁−1
)

𝑝𝑁
)

2

(
β𝑁

β𝑁−2
)

𝑝𝑁
−3((

β𝑁
β𝑁−1

)
𝑝𝑁

)

4

((
β𝑁

β𝑁−2
)

𝑝𝑁
−((

β𝑁
β𝑁−1

)
𝑝𝑁

)

2

)

2     (22) 

 

Likewise other important functions and key statistical properties can be established in the 

neutrosophic framework. Table 1 shows some basic suggested model based on neutrosophic 

parameters. 

 

Table 1: Computation of basic properties of proposed model 

β𝑁 𝑝𝑁 Mean variance CV 

[2.5,3.5] [1, 2] [1,5.44] [0,48] [0,6.92] 

[3.1,4.0] [2,4] [1.06,13.16] [0,173.73] [0,12.34] 

[4,4.5] [3,4] [1.42,5.06] [0,23.40] [0,3.24] 

[5,5.5] [4,5] [1.52, 4.91] [0,18.38] [0,2.81] 

[6,6.5] [5, 6] [1.54, 4.82] [0,16.02] [0,2.5] 

[7, 7.5] [7, 8] [1.67,5.96] [0, 22.8] [0,2.84] 
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Table1 indicates the values in intervals, reflecting the imprecision and vagueness existed in the 

distribution parameters. Some intervals particularly related to variance and CV include zero, 

indicating that the distribution can be perfectly predictable in some cases. Generally, CV tends to 

decrease as values of the parameters increase. 

 

3. Quantile Function 

The quantile function of the NLGD can be calculated easily by inversing the CDF function. 

However, the quantile function of the NLGD does not have no closed form expression that makes it 

difficult to solve it analytically. Instead, some numerical solution will be applicable to find random 

numbers generation from the NLGD. Finding the quantile function via inverse CDF method is a 

fundamental concept in statistical applications and used essentially for generating random samples 

from the NLGD. Using quantile function on uniform numbers, one can generate random samples 

from the target model.  

In the neutrosophic framework the quantile function can be written as : 

𝑄(𝑢) = [𝑄𝐿(𝑢), 𝑄𝑈(𝑢)]          (23) 

The exact expression for (23) is not straightforward and may be expressed as: 

𝑄(𝑢) = [𝑄𝐿
−1(𝑢), 𝑄𝑈

−1(𝑢)]         

 (24) 

To find the numerical solution of (24), the Newton Raphson method may be used. It is an iterative 

procedure to find successively better approximation to the root of real value function. Given the 

𝐹(𝑧), the iteratively updates the estimate 𝑧𝑛 as follows: 

𝑧𝑛+1 = 𝑧𝑛 −
𝐹(𝑧𝑛)−𝑢

𝐹(𝑧𝑛)́           (25) 

where  𝐹(𝑧𝑛)́  is the derivative of 𝐹(𝑧𝑛). This method needs the derivative of CDF which is an 

essential component of the fundamental equation. The used of Newton Raphson method is most 

effective in initial guess is chosen closer to true value. To find the random samples from the NLGD, 

a program written in R has been utilized. Let we assume that the proposed model with β𝑁 =

[2.5, 3.5 ] and 𝑝𝑁 = [1, 2]. The random generated samples with some specific seed setting, are shown 

in Table 2. 

Table 2: Random samples generation from the NLGD. 

Random Samples 

[1.31, 1.49] [1.72, 1.84] [1.42, 1.58] [1.81,1.93] [1.90, 2.00] 

[0.88, 1.14] [1.51, 1.66] [1.82, 1.94] [1.53, 1.68] 1.45, 1.62] 

[1.93, 2.03] [1.45, 1.62] [1.62, 1.76] [1.54, 1.69] [1.05, 1.28] 
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Table 2 show 15 random samples generated through computer program written in R. The R 

package “VGAM” has been utilized for random samples generation of the NLGD. Table 2 indicates 

that values are in intervals due to assumed vagueness in the parameters of the proposed model.  

4. Estimation Procedure 

In this section, analytical results of the NLD for moments, skewness, and kurtosis have been 

validated using the Monte Carlo simulation. The NLD can be readily simulated in R software to 

assess the validity of theory-based results. 

To estimate the parameters of the NLGD, we can focus on the commonly used method of 

maximizing the log-likelihood function of the NLGD. This method is well known in statistical 

analysis and commonly used known as maximum likelihood estimation. In this procedure we try to 

find the best fit parameters of shape and scale parameters that maximize the likelihood of the 

observed sample. Let for the data values 𝑍 = 𝑧1, 𝑧2, . . . 𝑧𝑛 assume to follow the NLGD then the log-

likehood function can be written as: 

 

ℒ(β𝑁 , 𝑝𝑁; {𝑧𝑖}) = ∑ [log (
β𝑁

𝑝𝑁

Γ(𝑝𝑁)
) + (β𝑁 − 1) log 𝑧𝑖 + (𝑝𝑁 − 1) log(log 𝑧𝑖)]𝑛

𝑖=1     (26) 

Further simplification of (26) yielded: 

ℒ(β𝑁 , 𝑝𝑁; {𝑧𝑖}) = 𝑛 log (
β𝑁

𝑝𝑁

Γ(𝑝𝑁)
) + (β𝑁 − 1) ∑ log 𝑧𝑖

𝑛
𝑖=1 + (𝑝𝑁 − 1) ∑ log(log 𝑧𝑖)

𝑛
𝑖=1    (27) 

 

Partial derivatives of (27) with respect to 𝛽𝑁 and 𝑝𝑁 resulted in respectively: 

∂ℒ

∂β𝑁
= 𝑛

𝑝𝑁

β𝑁
+ ∑ log 𝑧𝑖

𝑛
𝑖=1            (28) 

∂ℒ

∂𝑝𝑁
= 𝑛 (log β𝑁 −

Γ′(𝑝𝑁)

Γ(𝑝𝑁)
) + ∑ log(log 𝑧𝑖)

𝑛
𝑖=1        (29) 

Now it is evident that analytical solution of (28) and (29) are not possible, instead some numerical 

approach would be used to find the optimum values of 𝛽𝑁  and 𝑝𝑁 .  We have utilized BFGS 

optimization method to find the values of 𝛽𝑁 and 𝑝𝑁 . A program written in R has been utilized to 

find the optimum values of shape and scale parameters of the NLGD. The objective of this 

simulation program is to find the optimum estimates and the calculate the corresponding mean 

squared error (MSE) at various sample sizes. Random sample of sizes {𝑛 = 25, 50, 75,   100 𝑎𝑛𝑑 120} 
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are drawn from the NLGD with 𝑝𝑁 = [1,1] and β𝑁 = [2.5,3.5]. To ensure sufficient statistical power 

each sample size is simulated 1000 times to find the estimates and corresponding MSE. Results from 

this simulation are shown in Table 3. 

 

Table 3: Estimated parameters of the NLGD with MSE using simulated data 

Sample Size Estimated (𝛽𝑁) Estimated (𝑝𝑁) MSE (𝛽𝑁) MSE (𝑝𝑁) 

25 [2.54, 4.01] [2.41, 3.91] [0.85, 2.58] [2.16,11.49] 

50 [3.75, 3.75] [1.01, 4.21] [0.32, 1.30] [1.12, 6.55] 

75 [2.15, 4.09] [1.76, 4.83] [0.24, 1.03] [0.92, 5.19] 

100 [1.97, 3.49] [1.68, 4.21] [0.22, 0.97] [0.84, 4.83] 

120 [2.11, 2.59] [1.92, 3.07] [0.20, 1.00] [0.83, 4.41] 

 

Table 3 shows the results from the simulation data, where each dataset is simulated for specified 

sample size. The estimated parameters and their MSE(s) are given in ranges due to assumed 

indeterminacy in the parameters of underlying model. Results show that as the sample size 

increases, the estimated values of parameters tend to narrow, indicating precise estimation with 

larger sample sizes. Overall MSE of the estimated values decrease with increasing sample size. This 

indicates that more reliable and accurate results are expected with larger sample sizes. 

5  Real Data Application 

In this section, we have utilized the suggested distribution model on actual carbon dioxide (CO2) 

data obtained from the World Bank for Saudi Arabia [27]. The release of CO2 has a notable effect on 

a country's climate. To do high emissions of CO2, air quality in urban areas of Kingdom is highly 

compromised because of industrial activities. This climate indicator is a focal point of research 

globally and plays a crucial role in the ongoing changes to the world's climate. The primary cause of 

carbon emissions stems from the combustion of fossil fuels during industrial activities and 

deforestation. The Kingdom of Saudi Arabia holds a prominent position in the global oil market, 

presenting both distinct challenges and opportunities when it comes to managing carbon emissions. 

It is crucial to study the effects of CO2 on public health and take measures to reduce its emission on 

a smaller scale. The Kingdom, known for its desert and arid environment, is especially at risk from 

climate change. The changes in the climate have a profound impact not only on the country's 

weather patterns but also contribute significantly to heatwaves, global warming, and harsh weather 

conditions. As a result, these weather phenomena have repercussions on natural resources like 

water availability, shifts in climate patterns, and affect agricultural productivity. On the other hand, 
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due to major supplier oil, Kingdom highly depends on fossile export. Transitioning to renewable 

energy sources particularly solar power can help decrease carbon emissions. Utilization of country 

vast desert zone and solar industry can provide healthy environment. Due to environmental and 

instrumental factors, carbon emissions values are not always precise and can vary. In order to 

determine the significance of a proposed method, exact carbon emission values are transformed 

into interval values using a procedural methodology [28]. The carbon emission values in time span 

of 2005 to 2020 are given in Table 4. 

Table 4: Carbon emission values for Saudi Arabia time period 2005-2020 

Carbon emission values 

[12.63,13.21] [12.42, 14.00] [13.02,13.84] [13.32, 15.08] [13.33, 15.21] 

[15.12, 15.21] [14.85, 15.90] [15.08, 16.87] [15.43, 16.53] [16.36,17.28] 

[16.30, 18.21] [16.34, 17.24] [15.40, 16.75] [14.49, 16.63] [14.60, 14.80] 

 

Interval values in Table 4 show that imprecise values are available for analysis due to technical 

malfunctions and limitations of measuring devices or sensors. Carbon emissions are usually 

measured by air sampling procedures or gas emission at specific points. Thus, due limitations of 

these procedures, collected samples can be considered compromised and not available in exact 

numbers. If we fit the conventional model of log-gamma distribution on carbon emission values, 

fitting graph can be seen in Figure 6. 

 

Figure 6: Fitting plot of log-gamma distribution on carbon emissions data 
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Figure 6 shows that log-gamma distribution is better fit model the carbon emissions data. However, 

the existing log-gamma distribution could not be used to analysis imprecise data given in Table 4. A 

statistical description of the data in terms of estimated parameters of the NLGD are given in Table 

5. 

Table 5: Estimated parameters of the NLGD for carbon emissions data 

 

 

 

 

Results in Table 5 show that estimated values of the parameters are in interval forms due to 

vagueness in the underlying data. These imprecise estimated values can be used to find the 

statistical characteristics of the carbon emissions data. The neutrosophic model in this way is more 

generic as compared to existing model. 

 

6 Conclusions 

In this study, a novel distribution called NLGD has been introduced for analyzing neutrosophic 

data. The NLGD distribution shows great efficacy in analyzing data with interval values. By 

employing the neutrosophic logic, the suggested distribution has established a statistical model for 

describing interval characteristics such as mean, mode, variance, and shape coefficients. Key 

functions like the reliability function and hazard function have been devloped due to the 

widespread use of the proposed model in reliability analysis. These functions are essential for 

understanding and analyzing the model utility in survival analysis. The MLE method has been 

used to estimate the parameters of the proposed model under an indeterminate environment. A 

simulation has been conducted to evaluate the accuracy of the established model and examine the 

impact of sample size on the results. Based on the simulation results, it can be concluded that larger 

sample sizes lead to more precise estimation. At long last, a genuine data set on carbon emissions 

has been employed to analyze both the theoretical framework of the study and the practical 

implementation of the proposed model. 
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Statistical measures Computed values 

Estimated (β𝑁) [7.49, 8.48] 

Estimated (𝑝𝑁) [123.75, 123.91] 
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