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Abstract. This paper focuses on a crucial issue in data analysis: the incorporation of neutrosophic theory into regression pre-

diction to accurately characterize and depict uncertainty in the social innovation ecosystem. The study centers on the limitations 
of conventional regression methods in modeling intricate and uncertain events related to social innovation, a subject of growing 

importance in a dynamic global landscape. This paper aims to address the gap in the literature by utilizing neutrosophic theory 

to provide a more comprehensive and dynamic representation of innovation processes, which are characterized by indetermi-

nacy and ambiguity. The methodology employed for this study involves including neutrosophic numbers in the regression 
models, therefore enabling a more comprehensive and intricate assessment of the variables associated with social innovation. 

Through empirical analysis and simulations, the results demonstrate that the neutrosophic approach enhances predictive capa-

bility by more effectively capturing the intricacies and uncertainty of the data. This work makes a theoretical contribution to 

the area by presenting a novel viewpoint on the modeling of social innovation and its inherent difficulties. It also has practical 
consequences by offering more accurate tools for evaluating and designing innovation practices in social settings. Furthermore, 

the results enhance the comprehension of how uncertainty can be efficiently controlled in the prediction and decision-making 

processes of social innovation.

Keywords: Neutrosophic Statistical Prediction, Regression Analysis, Predictive Modeling, Social Innovation.

1 Introduction 
 

The depiction of uncertainty in forecasting is a subject of growing importance in the scientific study of social 

innovation. In a dynamic and complex world, conventional predictive models are typically inadequate in capturing 

the extensive dynamics and uncertainties of the innovation ecosystem. The primary objective of this work is to 

include neutrosophic theory in regression analysis to overcome the existing constraints. This novel approach holds 

the potential to enhance the precision and comprehension of predictions within dynamic social environments. The 

significance of this method is in the necessity to create more resilient instruments for decision-making in a setting 

marked by data ambiguity and variability [1]. The modeling of uncertainty in prediction has traditionally pro-

gressed from basic statistical methods to intricate strategies rooted in probability theory and sophisticated regres-

sion models. Nevertheless, with the increasing importance of the social innovation area, there has been a demand 

to integrate approaches that not only take into account numerical data but also manage qualitative and contextual 

uncertainty. Neutrosophic theory, a development of set theory that addresses indeterminacy and contradictions, 

presents a novel viewpoint that has the potential to transform our approach to these types of problems [2,3]. 

The issue addressed by this work is the absence of efficient techniques to depict uncertainty in predictive mod-

els inside the social innovation ecosystem. This study aims to achieve two objectives: The first objective is to 

investigate the application of neutrosophic theory in enhancing the predictive ability of regression models within 

social innovation contexts. An effective integration of uncertainty into predictive modeling is sought in this work 

through a series of empirical investigations and simulations [4]. Essentially, this study seeks to address a significant 

gap in the existing research by proposing a methodology that integrates neutrosophic theory with regression tech-

niques to tackle the difficulties associated with prediction in a social innovation ecosystem. The findings hold the 
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potential to not only enhance theoretical knowledge but also provide practical implementations that can enhance 

the precision of forecasts and the effectiveness of innovation initiatives in real-life situations. 

 

2 Preliminaries 
2.2 Social Innovation Ecosystem 

 

The current panorama is characterized by a complex and multifaceted social innovation ecosystem, which 

represents the complicated interactions of actors, resources, and dynamics aiming to revolutionize society through 

innovative solutions. Fundamentally, this ecosystem encompasses not just social innovators and entrepreneurs, but 

also a diverse array of entities including governments, corporations, non-governmental organizations, and local 

communities. Each of these components offers a distinct and perhaps incompatible viewpoint on what qualifies as 

a suitable "solution" to current societal issues. Comprehending and examining these relationships is essential, not 

only to enhance the efficiency of social programs but also to cultivate a culture of cooperation and reciprocal 

knowledge acquisition that enables a more holistic approach to tackling global complexities [5]. 

From a historical standpoint, the notion of social innovation has witnessed substantial evolution. In its initial 

manifestations, social innovation primarily emphasized problem-solving through community initiatives and social 

movements aimed at effecting changes in public policies. However, as time has passed, the approach has become 

more varied, including more organized and cooperative techniques that engage several stakeholders. In large part, 

this transformation has been propelled by the increasing acknowledgment that intricate social issues cannot be 

resolved independently, but necessitate a comprehensive strategy that combines various knowledge, resources, and 

capacities [6]. 

The problem within this ecosystem is defined as the task of enhancing the efficacy of social innovation efforts. 

Notwithstanding the enthusiasm and increasing investment in this domain, notable obstacles remain, including 

insufficient collaboration among stakeholders, issues in quantifying the actual influence of innovations, and reluc-

tance to embrace change in established societal frameworks. The primary inquiry is: How can participants in the 

social innovation ecosystem enhance their collaboration to surmount these obstacles and attain significant positive 

outcomes? To uncover avenues for increased integration and effectiveness, this question directs the investigation 

and evaluation of present practices and tactics [7]. 

To tackle intricate social problems and attain sustained social progress, the social innovation ecosystem is 

essential. Thus, current literature fails to provide a comprehensive perspective that incorporates all components of 

the ecosystem. This paper presents a hybrid approach that combines qualitative and quantitative approaches to 

comprehensively analyze the dynamics and perspectives of many participants in the ecosystem. Network analysis 

tools will graphically represent the connections and patterns of resource allocation among participants, therefore 

offering a more lucid perspective on how cooperation and coordination can be enhanced. The results may guide 

the development of policies and strategic allocation of resources. Furthermore, the report provides practical sug-

gestions to enhance the execution of social innovation projects, assisting stakeholders in identifying areas that need 

development and adopting more efficient strategies. This methodology enhances the trajectory of social innovation 

and facilitates the resolution of worldwide social issues. 

 

a. Machine learning 
  

Machine learning (ML) [8] is the methodology of using mathematical formulas to develop models capable of 

learning from data in order to generate predictions or judgments, without the need for explicit programming of 

such tasks. Statistical interval prediction in machine learning is the method of forecasting a range of potential 

results for a given input, rather than a single estimate. Through the provision of intervals, these approaches not 

only provide forecasts but also offer valuable understanding of the dependability and unpredictability of the pre-

dictions, which is essential for making decisions in uncertain circumstances. 

For a dataset consisting of independent variables 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛] and a dependent variable, the objective 

of regression analysis is to precisely represent the connection between X and Y. The mathematical expression for 

this relationship is as follows[9]: 

𝑦 =  𝑓(𝑋;  𝜃) + ϵ          (1) 

where: 

𝑦 is the dependent variable or the objective to be predicted. 

𝑋 represents the independent or explanatory variables that are used in prediction. 

𝑓 is the regression function, which can vary depending on the type of regression model used (linear, polynomial, 

logistic, etc.) 

𝜃 are the parameters or coefficients of the model, adjusted during the training process to minimize a loss func-

tion, classically the mean square error (MSE) for regression [10]. 
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ϵ is the error term or noise, which represents the deviation or error that cannot be entirely explained by the 

model. 

The representation of predictions as prediction intervals in regression analysis offers a more comprehensive 

perspective on the uncertainty linked to the predictions. A prediction interval yields a range in which we anticipate 

the actual value of the dependent variable to lie with a certain likelihood, usually 95% or 99%. The utility of this 

approach lies in its consideration of data variability that may not be adequately reflected by prediction alone [11]. 

Computation of a prediction interval requires consideration of both the uncertainty in the estimate of the re-

gression model and the intrinsic variability of the data. The interval is delineated around the projected value and 

typically exhibits symmetry, encompassing a specific extent both above and below the predicted value. This inter-

val is established by considering the standard error of the forecast and the residual standard deviation, which indi-

cates the spread of the residuals or errors of the model. 

For example, in a logistic regression model, the prediction interval for a new observation is given by [1]: 

 

�̂�0 ± 𝑡∝ /2,𝑛−2 ⋅ 𝑆𝐸          (2) 

 

Where 

 �̂�0 is the predicted probability of the outcome of the new observation 

𝑡∝ /2,𝑛−2, is the critical value from the t-distribution for a given confidence level ∝ and 𝑛 − 2 degrees of free-

dom. 

𝑆𝐸 is the standard error of the prediction, which quantifies the uncertainty around the predicted value. 

Using prediction intervals in regression analysis is beneficial because they offer a realistic spectrum of possible 

outcomes, which aids in the decision-making process. This recognizes that a single predicted value is not absolute 

but rather a likely scenario within a range of potential outcomes. This forecasting method effectively incorporates 

the inherent uncertainties associated with future predictions, providing a more accurate description of what to 

expect [12].  

To further refine this model, neutrosophic statistics can be applied, which excel in managing ambiguity and 

indeterminacy in data. By converting the interval to a neutrosophic number, the traditional interval is enhanced to 

include a component of indeterminacy. This addition captures the uncertainty and imprecision that is typically 

present in real-world data, offering a more nuanced understanding of data variability. The neutrosophic treatment 

of the interval is as follows [1]: 

�̂�0 − 𝑡∝/ 2,𝑛−2 ⋅ 𝑆𝐸 + (�̂�0 + 𝑡∝ /2,𝑛−2 ⋅ 𝑆𝐸)𝐼       (3) 

 

Here, 𝐼𝑁represents the indeterminacy factor associated with the prediction, where 𝐼𝑁 ∈ [𝐼𝑙 , 𝐼𝑢]. This notation 

introduces the limits of indeterminacy. 𝐼𝑙(lower indeterminacy) and 𝐼𝑢 (upper indeterminacy), which defines the 

range of possible deviations due to uncertain elements that affect the prediction [12,13]. 

 

3 Methods 
  

Regression analysis of a data set and representation of uncertainty using neutrosophic numbers can be divided 

into four essential stages, as outlined in reference [1]: 

1. Data Segmentation: The initial stage involves dividing the data into separate sets for training and testing. 

This separation is essential as it enables the verification of the model using never-before seen data, 

therefore guaranteeing that the performance of the model is not solely due to overfitting the training 

data. Data scientists commonly employ a 70-30 or 80-20 partition arrangement, whereby 70% or 80% 

of the data is allocated for training purposes and the remaining portion is reserved for testing. 

2. Model Optimization: Subsequently, each model undergoes training using the training set. This entails 

fine-tuning the model parameters to more accurately correspond to the facts. The training procedure 

entails identifying model parameters that minimize a loss function, therefore effectively capturing the 

fundamental structural characteristics of the dataset. 

3. Estimation of Prediction Ranges: After training the models, the subsequent task is to quantify the pre-

diction intervals for new observations. This is the point at which neutrosophic numbers become relevant. 

Neutrosophic intervals differ from conventional sharp intervals by include measurements of truth, in-

determinacy, and falsehood, therefore enabling a more sophisticated depiction of uncertainty in predic-

tions. Depending on the features of the model and the nature of the data, each model may necessitate 

distinct approaches to compute these ranges. 
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4. Uncertainty Analysis: The final stage involves analyzing the uncertainty represented by neutrosophic 

values. This step examines how indeterminacy varies across models and what it implies for data com-

plexity and variability. A higher indeterminacy level may indicate greater external constraints or inher-

ent unpredictability within the dataset [15, 16]. 

 

In this work, we employ neutrosophic methods to combine interval predictions with other approaches as part 

of a fusion theory in regression analysis. Neutrosophic approaches offer significant benefits in effectively merging 

several predictive models by allowing the smooth incorporation of uncertainty, indeterminacy, and contradicting 

information that may arise from separate data sources or model outcomes. The suggested methodology improves 

the robustness and reliability of prediction models by providing a complete framework that takes into account 

several aspects of uncertainty. The neutrosophic mean, represented as 𝑋𝑛, is computed by taking into account the 

neutrosophic inclusion 𝐼𝑁 that falls inside the interval. [𝐼𝑙, 𝐼𝑢].This mean comprises two primary components: 𝑋𝑙, 

representing the average of the lower section of the neutrosophic samples, and 𝑋𝑢, representing the average of the 

upper section. The corresponding definitions are [17, 18]: 

𝑋𝑙 =
∑ 𝑋𝑖𝑙

𝑛𝑙
𝑖=1 1

𝑛𝑙
                                                   (4) 

𝑋𝑢 =
∑ 𝑋𝑖𝑢

𝑛𝑢
𝑖=1

𝑛𝑢
                                                           (5) 

where 𝑛𝑙and 𝑛𝑢 represent the number of elements in the lower and upper parts of the neutrosophic samples, 

respectively. Therefore, the neutrosophic mean 𝑋𝑛is expressed as the sum of 𝑋𝑙and 𝑋𝑢, adjusted by the interval of 

indeterminacy  𝐼𝑛  [19, 20]: 

𝑋𝑁 =  𝑋𝑙 +  𝑋𝑢𝐼𝑁;  𝐼𝑁 ∈  [𝐼𝑙 , 𝐼𝑢]                                              (6) 

𝐼𝑙,=0, and𝐼𝑢  

𝐼𝑢 = (𝑋𝑢 − 𝑋𝑙) 𝑋𝑢⁄                     (7) 

Hence, the neutrosophic mean can be regarded as a versatile depiction that encompasses both specified values 

(the minimum and maximum limits) and a component of uncertainty, represented by the indeterminacy interval 𝐼𝑁 

[21] 

 

4 Results 
 

The dataset used contains 60 records and includes the following variables: 

• Investment (thousands of $): The financial resources allocated to the project. 

• Number of Employees: The staff working on the project. 

• Duration (months): The length of the project. 

• Direct Beneficiaries: The number of people directly impacted by the project. 

• Community Involvement (%): The level of community involvement as a percentage. 

• Social Impact (0-100): The target variable, represents the social impact based on various criteria such 

as quality of life improvements, access to services, and poverty reduction. 

 

The social impact was predicted using many regression models based on the characteristics indicated above. 

Statistical prediction intervals were computed for each model to measure the level of uncertainty in the forecasts. 

In addition, neutrosophic forms were developed to depict the uncertainty or indeterminacy linked to each model, 

shown as a spectrum of potential results of the indeterminate parameter.  

The following table provides a summary of the prediction intervals and their accompanying neutrosophic forms 

for the various regression models used on the dataset. 

 
Table 1: Neutrosophic Forms and Prediction Intervals for Regression Models 

 

Model Prediction Interval 

[Lower Bound, Upper 

Bound] 

Neutrosophic Form 

Linear Regression  [77.54, 95.23] 77.54+95.23I;𝐼 ∈ [0,0.186] 
Random Forest  [80.12, 97.65] 80.12+97.65I;𝐼 ∈ [0,0.180] 
Support Vector Ma-

chine  

[75.34, 94.12] 75.34+94.12I;𝐼 ∈ [0,0.200] 

Mean [77.67,95.67] 77.67+95.67I;𝐼 ∈ [0,0.188] 
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Figure 1. Model Prediction Intervals Comparison 
 

The table presents prediction intervals along with their neutrosophic forms, illustrating the varying levels of 

indeterminacy for each model. Linear Regression, Random Forest, Support Vector Machine, and the Mean-based 

approach were evaluated, with Random Forest demonstrating the smallest indeterminacy. The neutrosophic forms 

provide a deeper understanding of the uncertainty inherent in each model’s predictions, which is crucial for deci-

sion-making processes that rely on accurate social impact assessments. 

 

 Conclusion 
 

This paper explores the application of neutrosophic theory to enhance the representation of uncertainty in re-

gression models used for predicting social effect. The application of neutrosophic numbers enabled us to address 

the intrinsic uncertainties and variations in the social innovation ecosystem, therefore providing a more advanced 

and flexible understanding of prediction intervals. The results suggest that incorporating neutrosophic components 

into traditional regression models, such as Linear Regression, Random Forest, and Support Vector Machines, can 

enhance their capacity to effectively capture prediction uncertainty. In this specific configuration, Random Forest 

exhibited the least amount of uncertainty among the analyzed models, suggesting a more reliable prediction per-

formance. The synthesis of prediction intervals and neutrosophic forms offers a comprehensive viewpoint on pos-

sible outcomes, thereby enabling better-informed decision-making in social innovation initiatives. 

Moreover, this work offers prospects for further exploration of the potential of neutrosophic theory in novel 

machine learning models and broader applications. Future study should give priority to improving the methodol-

ogy in order to more precisely quantify the degree of uncertainty in various data-driven scenario, such as economic 

forecasting or evaluation of public policy. Moreover, the integration of neutrosophic theory with real-time data 

analysis and dynamic modeling has the capacity to enhance the adaptability of prediction models in rapidly chang-

ing social contexts. Implementing this approach not only improves the accuracy of forecasts but also enables the 

creation of more resilient techniques for addressing complex social issues. 
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